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Hegedűs, C.; Virág, L. Tricetin

Reduces Inflammation and Acinar

Cell Injury in Cerulein-Induced

Acute Pancreatitis: The Role of

Oxidative Stress-Induced DNA

Damage Signaling. Biomedicines 2022,

10, 1371. https://doi.org/10.3390/

biomedicines10061371

Academic Editors: Marlene Costa

and Fátima Paiva-Martins

Received: 7 May 2022

Accepted: 7 June 2022

Published: 10 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

Tricetin Reduces Inflammation and Acinar Cell Injury in
Cerulein-Induced Acute Pancreatitis: The Role of Oxidative
Stress-Induced DNA Damage Signaling
Máté Nagy-Pénzes 1,2,†, Zoltán Hajnády 1,2,†, Zsolt Regdon 1, Máté Á. Demény 3 , Katalin Kovács 1,3,
Tarek El-Hamoly 1,4, József Maléth 5,6,7, Péter Hegyi 5,8,9, Csaba Hegedűs 1 and László Virág 1,3,*
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Abstract: Acute pancreatitis (AP) poses a worldwide challenge due to the growing incidence and
its potentially life-threatening course and complications. Specific targeted therapies are not avail-
able, prompting the identification of new pathways and novel therapeutic approaches. Flavonoids
comprise several groups of biologically active compounds with wide-ranging effects. The flavone
compound, tricetin (TCT), has not yet been investigated in detail but sporadic reports indicate
diverse biological activities. In the current study, we evaluated the potential protective effects of
TCT in AP. TCT (30 µM) protected isolated primary murine acinar cells from the cytotoxic effects of
cerulein, a cholecystokinin analog peptide. The protective effects of TCT were observed in a general
viability assay (calcein ester hydrolysis), in an apoptosis assay (caspase activity), and in necrosis
assays (propidium iodide uptake and lactate dehydrogenase release). The effects of TCT were not
related to its potential antioxidant effects, as TCT did not protect against H2O2-induced acinar cell
death despite possessing radical scavenging activity. Cerulein-induced expression of IL1β, IL6, and
matrix metalloproteinase 2 and activation of nuclear factor-κB (NFκB) were reduced by 30 µM TCT.
In vivo experiments confirmed the protective effect of TCT in a mouse model of cerulein-induced AP.
TCT suppressed edema formation and apoptosis in the pancreas and reduced lipase and amylase
levels in the serum. Moreover, TCT inhibited interleukin-1β (IL1β), interleukin-6 (IL6), and tumor
necrosis factor-α (TNFα) expression in the pancreas and reduced the activation of the oxidative DNA
damage sensor enzyme poly(ADP-ribose) polymerase-1 (PARP-1). Our data indicate that TCT can be
a potential treatment option for AP.

Keywords: acute pancreatitis; tricetin; inflammation; cell death; necrosis; oxidative stress

1. Introduction

The pancreas functions as an exocrine and endocrine organ [1]. The secretion of pancre-
atic juice containing digestive enzymes (e.g., chymotrypsin, trypsin, lipase, amylase, etc.),
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protease inhibitors, and bicarbonate into the intestine is termed the exocrine function of
the pancreas [2,3]. The endocrine function includes the production of insulin, glucagon,
somatostatin, ghrelin, and amylin by cells of the islets of Langerhans [4,5]. Pancreatitis is an
autolytic process initiated in the exocrine pancreas. Autoactivation of zymogenic digestive
enzymes is typically triggered by binge alcohol consumption or the formation of bile stones
blocking the terminal section of the common bile duct (papilla Vateri) through which both
the pancreatic juice and the bile are secreted [2]. Hypertriglyceridemia, infections, toxins,
drugs, endoscopic retrograde cholangiopancreatography, and surgery are also linked to
acute pancreatitis (AP) and about 10% of AP cases are classified as idiopathic [6,7]. The
incidence of AP varies between 13 and 45 cases/100,000 people in developing countries [8]
and the incidence of AP is increasing in many countries. The severity of AP ranges from
mild, spontaneously healing forms to life-threatening severe cases [9].

Although drugs are generally overused in AP [10,11], treatment options for AP are
limited and include two-phases of fluid resuscitation [12] and early enteral feeding [13].
Targeted therapies are not available despite extensive efforts to identify molecular targets
for AP treatment.

Several novel treatments were identified in preclinical studies; however, translation
of these efforts into the clinic was mostly unsuccessful. Therapies that work in preclini-
cal models of AP include, but are not limited to, nonsteroidal anti-inflammatory drugs
(e.g., indomethacin, diclofenac, ketorolac) [14], pentoxifylline [15], calcium channel inhibi-
tion with CM4620 [16], poly(ADP-ribose) polymerase (PARP) inhibitors [17–19], peptide
hormones (e.g., somatostatin, secretin) [20,21], hemin [22], neostigmine [23], and block-
ing the TNFα receptor with infliximab [24]. Moreover, various dietary supplements and
natural products (e.g., glutamine, resveratrol, spilanthol) [25–29] were also effective in
preclinical models of AP. Several ongoing clinical trials aim to determine which of these
novel therapeutic approaches can be translated to the clinic.

Polyphenols, including compounds of the flavonoid family, have anti-pancreatitis po-
tential [30]. Flavonoids share the 2-phenyl-1,4 benzopyrone structure, known as the flavone
backbone. Flavonoids from most subgroups have been evaluated for potential protective
effects in AP. For example, genistein (isoflavone) [31], quercetin (flavonol) [32], narin-
genin (flavanone) [33], apigenin (flavone) [34], dihydromyricetin (flavanonol) [35], luteolin
(flavone) [36], and fisetin (flavonol) [37] either suppressed inflammation, prevented acinar
cell damage, or both [38,39]. Tricetin (TCT) (Supplementary Figure S1B) is a flavone com-
pound with likely or proven bioactivity in models of neurotoxicity, Parkinson’s disease [40],
diabetes [41,42], and bacterial infections [43]. Most studies focus on the potential anticancer
and anti-metastatic effects of TCT [44–46]. However, the effects of TCT in AP have not been
investigated. Data reporting the anti-inflammatory effects of TCT in other types of inflam-
mations are also scarce [47–49]. Therefore, the aim of this study was to determine if TCT
has a protective effect in isolated acinar cells and in an animal model of AP. Our data show
that TCT is an effective cytoprotective and anti-pancreatitis agent in a cerulein-induced
acinar cell injury model.

2. Materials and Methods
2.1. Isolation and Culture of Pancreatic Acinar Cells

Pancreatic acinar cells were isolated from male and female C57BL/6j mice and pre-
pared by collagenase digestion as previously described [50]. The cells were cultured in a 5%
CO2 incubator at 37 ◦C. The cells were grown in endotoxin-free high glucose Dulbecco’s
modified Eagle’s medium (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 2.5%
fetal bovine serum, 1% penicillin-streptomycin mixture, 0.25 mg/mL of trypsin inhibitor
(Sigma-Aldrich, St. Louis, MO, USA), and 25 ng/mL of recombinant human epidermal
growth factor (Sigma-Aldrich, St. Louis, MO, USA).
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2.2. Cell Treatments

Cells were seeded in 96-well tissue culture plates for viability and cytotoxicity assays,
24-well tissue culture plates for immunofluorescence (IF), and 6-well tissue culture plates
for reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) assays,
Western blotting, and NFκB p65 binding assays. Surfaces of the plates were coated with
laminin (Sigma-Aldrich, St. Louis, MO, USA) 1 h before seeding. Laminin was discarded
and plates were washed with PBS and dried. One hour of pretreatment with various
concentrations of TCT (Extrasynthese, Genay, France) was followed by treatment with
100 nM cerulein (Sigma-Aldrich, St. Louis, MO, USA) for 24 h. Cerulein and TCT were
dissolved in dimethyl sulfoxide (DMSO) (stock solution). DMSO concentrations were
below 0.1% (v/v) in cell cultures and did not have any effects on the parameters measured.

2.3. Radical Scavenging Assay

The ABTS (2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) assay was used to de-
termine the radical scavenging (antioxidant) effect of TCT using vitamin C (Sigma-Aldrich,
St. Louis, MO, USA) as a positive control. ABTS is a chromogenic free radical generated
overnight by combining it with potassium persulfate (7.4 mM ABTS (Merck Millipore,
Burlington, MA, USA) + 10% 24.5 mM K-persulfate). Antioxidant properties of the com-
pounds were determined by the decolorization of the intense green ABTS radical solution.
The ABTS solution was prepared as described [51]. The ABTS solution was diluted with
50 mM Gly-HCl buffer to reach a concentration where the absorbance of the solution
was A = 1 (1 cm light path at 405 nm) in a Spark photometer (Tecan Spark, Männedorf,
Switzerland). Three-fold serial dilutions of TCT and vitamin C were pipetted into 96-well
plates containing the assay solution and after 30 min incubation time, absorbance was
measured at 405 nm.

2.4. Cell Viability (Calcein-AM Assay)

A calcein-AM (Sigma-Aldrich, St. Louis, MO, USA) stock solution (4 mM in DMSO)
was diluted in medium and was added to the cells cultured in 96-well plates (1 µM final
concentration). Calcein-AM was also added to blank wells containing no cells but cell-free
medium. After 40 min incubation at 37 ◦C, fluorescence intensity of the wells containing
medium with or without cells was determined at 485/535 nm in a Spark plate reader.
Viability was calculated and expressed as a percentage of the control cells.

2.5. Lactate Dehydrogenase (LDH) Assay

LDH activity was determined with a commercially available Cytoscan LDH-assay kit
purchased from G-Biosciences (St. Louis, MO, USA) following the kit’s protocol with slight
modifications as follows. Briefly, 50 µL of culture medium was transferred from the cells to
96-well half-area microplates and 50 µL of LDH reagent mixture was added to each well.
Supernatants of lysed control cells (prepared by the addition of 10% Triton-X in PBS for
10 min) were used as a positive control (100% LDH activity). After 20 min incubation at
room temperature, the absorbance was measured at 490 nm in a Spark microplate reader.
Cytotoxicity was calculated with the following equation:

Relative LDH release (%) = 100 × (ODsample − ODcontrol)/(ODlysate − ODcontrol)

2.6. Propidium Iodide (PI) Uptake

Acinar cells were isolated and seeded into CellCarrier Ultra 96-well microplates
(Perkin Elmer, Waltham, MA, USA). Cells were treated with TCT and cerulein or hy-
drogen peroxide for 24 h. Cells were then stained with propidium iodide (2.5 µg/mL)
(Sigma-Aldrich, St. Louis, MO, USA) and Hoechst342 (5 µg/mL) (Sigma-Aldrich, St. Louis,
MO, USA) for 15 min. Images were analyzed as previously reported [52] with an Opera
Phenix High-Content Analysis system (Perkin Elmer, Waltham, MA, USA) using a 40× air
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objective and appropriate laser and filter settings in sequential mode to avoid overlapping
of the emission spectra.

2.7. Caspase Activity Assay

Acinar cells were isolated and seeded into CellCarrier Ultra 96-well microplates
(Perkin Elmer, Waltham, MA, USA). Cells were pretreated for 1 h with TCT (30 µM) and
then treated with cerulein (100 nM). CellEvent Caspase-3/7 Green reagent (5 µM; Thermo
Fisher Scientific, Waltham, MA, USA) was added and fluorescence of the CellEvent reagent
was detected every 3 h for 18 h with an Opera Phenix High-Content Analysis system
(Perkin Elmer, Waltham, MA, USA) using a 40× air objective and appropriate laser and
filter settings. Cells were identified in bright field mode.

2.8. RNA Extraction, Reverse Transcription, and qPCR Analysis

Acinar cells were isolated and seeded into 6-well plates. After treatment (or after
collection of pancreas tissues from mice), total RNA was isolated from cells/tissues with TRI
reagent (Molecular Research Center, Cincinnati, OH, USA) and RNA purity was checked by
measuring the A260/280 ratio. RT-qPCR was performed as described previously [52]. Gene
expression levels were normalized to the harmonic mean of 36B4 and RPS26, as reference
housekeeping genes. Primers used for RT-qPCR are summarized in Table 1.

Table 1. Primers used for RT-PCR.

Gene Forward Primers (5→3) Reverse Primers (5→3)

IL1β CAACCAACAAGTGATATTCTCCATG GATCCACACTCTCCAGCTGCA
IL6 GAGGATACCACTCCCAACAGACC AAGTGCATCATCGTTGTTCATACA
IL10 GGCGCTGTCATCGATTTCTC ATGGCCTTGTAGACACTTTGG

TNFα CATCTTCTCAAAATTCGAGTGACAA TGGGAGTAGACAAGGTACAACCC
TGFβ CCGCAACAACGCCATCTATG GTTCCACATGTTGCTCCACAC
IFNγ GGAACTGGCAAAAGGATGGTG ATGTTGTTGCTGATGGCCTG
CCL5 TGCAGTCGTGTTTGTCACTC AGAGCAAGCAATGACAGGGA

CXCL10 GATGACGGGCCAGTGAGAAT CGTGGCAATGATCTCAACAC
MMP2 AACGGTCGGGAATACAGCAG GTAAACAACGCTTCATGGGGG
36B4 GGACCCGAGAAGACCTCCTT GCACATCACTCAGAATTCAATCC

RPS26 CCACAATTCAGACCTGCTG GGGTAATTTTCCTTCCGTCCT

2.9. NFκB Assay

To investigate the effect of TCT on nuclear translocation and consensus sequence
binding of the NFκB p65 subunit, an NFκB p65 Transcription Factor Assay Kit (Abcam,
Cambridge, UK) was used according to the manufacturer’s instructions. The cells were
pretreated with 30 µM TCT, or medium for 1 h and were then treated with a combination of
20 ng/mL murine interferon-γ (mIFNγ) (Sigma-Aldrich, St. Louis, MO, USA) and 1 µg/mL
lipopolysaccharide (LPS) (Sigma-Aldrich, St. Louis, MO, USA) or with 1 µM phorbol
12-myristate 13-acetate PMA (Sigma-Aldrich, St. Louis, MO, USA) for 1 h. Nuclear fractions
were extracted from the cells using the protocol supplied with the kit. To investigate the
direct effect of TCT on NFκB DNA binding, TCT (30 µM) was added to some nuclear
extract samples 1 h before the binding assay. Absorbance was measured at 450 nm and
DNA binding capacity of the p65 subunit was expressed as a percentage of the control.

2.10. PARP Inhibition Assay

To determine the PARP inhibitory effect of TCT, a PARP Activation Kit (Trevigen,
Gaithersburg, Maryland, USA) was used according to the manufacturer’s instructions;
3-aminobenzamide (3-AB) was used as a positive PARP inhibitor control. The concentra-
tions of TCT and 3-AB were 10 mM, 1 mM, 300 µM, 100 µM, 30 µM, 10 µM, 3 µM, 1 µM,
0.3 µM, 0.1 µM, and 0.1 nM.
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2.11. Immunofluorescent (IF) Staining of Acinar Cells

Acinar cells were isolated and seeded onto 13 mm coverslips (Thermo Fisher Scientific,
Waltham, MA, USA). The cells were treated with 250 µM hydrogen peroxide (7.5 min)
with or without 10–30 µM TCT pretreatment (1 h). Coverslips were incubated in methanol
for 20 min at −20 ◦C, washed with phosphate-buffered saline (PBS), and lysed with 10%
Triton-X in PBS. After blocking in 1% bovine serum albumin (BSA) in PBS at room tem-
perature, cells were incubated with a mouse monoclonal poly(ADP-ribose) (PAR) specific
antibody (purified in-house from the supernatant of the 10H hybridoma; isotype IgG3)
overnight at 4 ◦C. On the following day, cells were incubated with a goat anti-mouse
Alexa633-conjugated secondary antibody (Thermo Fisher Scientific, Waltham, MA, USA)
(1:1000) and 4′,6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich, St. Louis, MO, USA)
(1:2000) at room temperature. The coverslips were viewed with an SP8 Leica confocal
microscope. The intensity of the PAR signal was analyzed with ImageJ software.

2.12. Western Blot Analysis

Acinar cells were isolated and seeded into 6-well tissue culture plates. The cells were
treated with 250 µM hydrogen peroxide for 7.5 min with or without 10 and 30 µM TCT
pretreatment (1 h). Total protein lysates were separated on 8% SDS-PAGE gels at 100 V
for 90 min. Proteins were transferred to nitrocellulose membranes. Membranes were
blocked with 5% BSA in phosphate buffered saline with Tween® 20 (PBST) for 1 h at room
temperature. Membranes were incubated with antibodies against PAR (clone 10H; purified
in-house) overnight at 4 ◦C. After washing with Tris buffered saline with Tween® 20 (TBST),
membranes were incubated with peroxidase-conjugated anti-mouse IgG (1:3000; Cell
Signaling, Danvers, MA, USA) and anti-β-actin (1:20,000; Santa Cruz Biotechnology, Santa
Cruz, CA, USA) antibodies for 2 h at room temperature. Membranes were then washed
with PBST and incubated with WestFemto chemiluminescent reagent (Thermo Fisher
Scientific, Waltham, MA, USA). Luminescence was detected with a Chemidoc Touch gel
documentation system (BioRad Laboratories, Hercules, CA, USA). Signal intensities were
quantified using Image Lab software (BioRad). The blot area used for signal quantification
was selected to cover the PARylated PARP1 region (ca. 100–180 kDa) and actin signals were
used for normalization.

2.13. Acute Pancreatitis Model

Animal experiments were approved by the institutional animal welfare committee of
University of Debrecen protocol number: 25/2017/DEMÁB. Mice (C57BL/6j, 8–10 weeks old)
were bred and maintained at 21–23 ◦C, 30–60% relative humidity, and a 12 h light/dark
cycle. Mice were housed in Eurostandard Type II cages and were fed ad libitum with VRF1
(P) food and water. Acute pancreatitis was induced as previously described [53] with modi-
fication as follows. Male mice (n = 18) were randomized into three groups: control, cerulein,
and cerulein + TCT. Mice in the control group were given saline only. In the cerulein-treated
group, AP was induced by eight intraperitoneal injections of cerulein (50 µg/kg BW) at
hourly intervals. In the cerulein + TCT group, mice received two intraperitoneal injections
of TCT (10 mg/kg BW) 12 h and 1 h before the first cerulein injection.

We also tested the in vivo efficacy of TCT in a posttreatment setting. Control (n = 5),
cerulein-treated (n = 6), and cerulein + TCT-treated mice (n = 6) received two i.p. injections
of TCT (30 mg/kg BW) between the fourth and fifth cerulein injections and 10 mg/kg BW
of TCT after the last cerulein injection. We chose TCT doses mainly based on literature data
on the effects of flavonoids in the mouse model of AP. The flavonol compound fisetin [37]
and the prenylated flavonol glycoside icariin [54] were both administered i.p. and their
doses were the same as ours (10 mg/kg). The flavonoid most closely related to TCT luteolin
was used in 25–50–100 mg/kg doses in a study [36]. Since a posttreatment is always
less effective than a pretreatment, for the posttreatment protocol we chose a higher first
dose (30 mg/kg) to quickly reach a potentially therapeutic serum concentration and a low
second dose (10 mg/kg) for “maintenance” therapy.
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Mice in the control and cerulein groups were given saline (with 0.3% DMSO) instead
of TCT. The DMSO contents of the cerulein and TCT solutions were 0.1% and 0.3%, respec-
tively. Mice were sacrificed 10 h after the first cerulein injection in both the pretreatment
and posttreatment experiments and blood and pancreas tissues were collected.

2.14. Serum α-Amylase and Lipase Determination

Blood samples were taken by cardiac puncture and were centrifuged at 5000× g for
10 min at 4 ◦C. Serum α-amylase and lipase activities were measured (using an enzymatic
assay kit from Diagnosticum Zrt., Budapest, Hungary) in a kinetic reaction over 20 min ac-
cording to the manufacturer’s instructions using a Spark plate reader at 405 nm (α-amylase)
and 580 nm (lipase). Absorbance was measured every 15 s to generate a kinetic curve. The
slope of the curves was related to the slope of the control sample curve.

2.15. Myeloperoxidase Assay

Tissue myeloperoxidase (MPO) activity was measured as an indicator of neutrophil
infiltration in the pancreas, as described previously [26] with modifications as follows.
Tissue samples were thawed, homogenized in 1 mL of 20 mM phosphate buffer (pH 7.4),
and centrifuged at 13,000× g for 30 min at 4 ◦C. The resulting pellet was resuspended in
0.5 mL of 50 mM phosphate buffer (pH 6.0) containing 0.5% hexadecyltrimethylammonium
bromide (Sigma-Aldrich, St. Louis, MO, USA). The homogenates were then frozen in liquid
nitrogen and thawed on three consecutive occasions before sonication. Total protein con-
centration was measured with a Direct Detect Spectrometer (Merck Millipore, Burlington,
MA, USA). The samples were then centrifuged (13,000× g for 30 min at 4 ◦C), and the
supernatants were collected for the MPO assay. Supernatants (100 µL) were mixed with
100 µL substrate solution containing 1.6 mM 3,3′,5,5′-tetramethylbenzidine (Sigma Aldrich,
St. Louis, MO, USA) and 1 mM hydrogen peroxide. The mixture was incubated at 37 ◦C for
90 s, and the reaction was stopped with 200 µL 2 M H2SO4. The absorbance was measured
using a Tecan Spark plate reader at 450 nm and then normalized to total protein content.

2.16. Histology

Pancreatic tissues were collected and fixed in 10% formalin for 48 h. Dehydration,
embedding, sectioning, and staining with hematoxylin and eosin were performed according
to guidelines in [55]. The TUNEL (terminal deoxynucleotidyl transferase dUTP nick end
labeling) assay was performed with a TUNEL Assay Kit—HRP—DAB (Abcam, Cambridge,
UK) according to the manufacturer’s instructions.

Staining was scored by a pathologist blinded to the experimental design and identity
of the samples. A scoring scheme from 0 to 3 for edema, leukocyte infiltration, necrosis,
and TUNEL assay was used [56], as presented in Table 2.

Table 2. Histologic scoring of tissue sections.

0 1 2 3

Edema no edema interlobular edema
interlobular and

moderate
intralobular edema

interlobular and
severe intralobular

edema

Infiltration absent low perivascular
infiltration

moderate
perivascular and low

diffuse infiltration

severe diffuse
infiltration

Necrosis none or negligible observed in one
third of the cells

observed in half of
the cells

observed in
most cells

TUNEL 0–5 average spot
number/400× field

6–15 average spot
number/400× field

16–35 average spot
number/400× field

>5 average spot
number/400× field

2.17. Immunofluorescent (IF) Detection of PAR Polymers in Tissue Sections

Poly(ADP-ribose) (PAR) polymer was detected by immunofluorescence, as described
previously [57]. Sections (5 µm) of pancreatic tissue were blocked with 1% BSA in PBS for



Biomedicines 2022, 10, 1371 7 of 20

1 h at room temperature and then incubated with mouse monoclonal poly(ADP ribose) anti-
body (purified in-house) at 3 µg/mL concentration overnight at 4 ◦C. The tissues were then
incubated with Alexa633-conjugated goat anti-mouse IgG secondary antibody (Thermo
Fisher Scientific, Waltham, MA, USA) (1:1000), and DAPI (Sigma-Aldrich, St. Louis, MO,
USA) (1:2000) at room temperature. Sections were viewed with a Leica Sp8 Confocal Mi-
croscope (Leica, Wetzlar, Germany). The PAR signal was analyzed using ImageJ software.
PARylation rates were calculated and expressed as intensity values.

2.18. Statistical Analysis

In vitro experiments were repeated at least three times and all values are expressed as
mean ± SD. The Kolmogorov-Smirnov test was used to check if continuous variable data
displayed normal distribution. All data showed normal distribution. One- or two-way
ANOVA followed by a Tukey post hoc test was used for analysis. Discrete variables
(scores of micrographs) were analyzed using Fisher’s exact test. The value of p < 0.05 was
considered significant.

3. Results
3.1. Tricetin Is Nontoxic to Acinar Cells

Isolated acinar cells are a good cell model for studying the exocrine pancreas. We
isolated primary acinar cells from mice and tested the toxicity of TCT. Cell viability was eval-
uated with calcein assay and plasma membrane injury was assessed with LDH release assay
using hydrogen peroxide (1 mM) as a positive control. We found that TCT was non-toxic to
primary acinar cells up to a concentration of 30 µM (Supplementary Figure S1). At three
times higher concentration (100 µM), TCT had a small but significant toxic effect on acinar
cells. This could be observed in both the calcein and LDH release assays (Supplementary
Figure S1). Therefore, we chose 30 µM TCT for the subsequent cell-based experiments.

3.2. Tricetin Protects Isolated Acinar Cells from Cerulein-Induced but Not from Hydrogen
Peroxide-Induced Cell Death

The cholecystokinin analog peptide, cerulein, is used extensively to model overstimulation-
induced acinar cell injury both in cell-based experiments and in vivo. At 100 nM concen-
tration, cerulein decreased cell viability of primary acinar cells, as indicated by the calcein
assay (Figure 1A).

This effect was also observed in the LDH release assay (Figure 1B). Pretreatment
of the cells with 30 µM TCT significantly protected acinar cells from cerulein-induced
injury in both assays (Figure 1A,B). Necrotic cell death and cell membrane injury are
critical features of AP; thus, we also examined the effects of TCT on propidium iodide
(PI) uptake. The effects of cerulein and TCT on PI uptake were consistent with the results
of both the LDH release and the calcein assays (Figure 1C). Apoptotic cell death could
also be observed in the cerulein-treated cells as indicated by increased caspase activity
(Figure 1D,E). Pretreatment of cells with 30 µM TCT significantly reduced caspase activation
(Figure 1D). Representative fluorescent images also illustrate reduced caspase activation in
TCT-treated acinar cells (Figure 1E).

TCT displayed radical scavenging activity (ABTS radical scavenging assay) similar
to that of vitamin C (Supplementary Figure S2A). Therefore, we tested whether this effect
translates to cytoprotection from H2O2-induced cell injury. H2O2 caused a concentration-
dependent cytotoxicity (Supplementary Figure S2B–D) but TCT had no effect on H2O2-
induced toxicity. Collectively, these results indicate that TCT interferes with the cerulein-
induced acinar cell death pathways (Supplementary Figure S2B–D).
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were pretreated with 0–30 μM tricetin (TCT) for 1 h and then treated with 100 nM cerulein for 24 h. 
Viability was determined with calcein assays (A), and necrotic cell death was measured by LDH 
release (B) and propidium iodide (PI) uptake assays (C). Primary acinar cells were pretreated with 
30 μM tricetin (TCT) or medium for 1 h and then treated with 100 nM cerulein. Caspase activity was 
detected every 3 h for 18 h as described in the Materials and Methods section (D). Representative 
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Figure 1. Tricetin protects isolated acinar cells from cerulein-induced cell death. Primary acinar cells
were pretreated with 0–30 µM tricetin (TCT) for 1 h and then treated with 100 nM cerulein for 24 h.
Viability was determined with calcein assays (A), and necrotic cell death was measured by LDH
release (B) and propidium iodide (PI) uptake assays (C). Primary acinar cells were pretreated with
30 µM tricetin (TCT) or medium for 1 h and then treated with 100 nM cerulein. Caspase activity was
detected every 3 h for 18 h as described in the Materials and Methods section (D). Representative
images of caspase activity detection at the first and the last time points are shown (E). (Scale bar is
100 µm) Error bars represent the SD of three independent measurements. Statistical analysis was
performed with one-way ANOVA test followed by Tukey’s post hoc test. Stars (*) indicate significant
(p < 0.05) difference between cerulein-treated cells versus control. Hashtags (#) indicate significant
(p < 0.05) cytoprotection by TCT versus the cerulein-treated group.
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3.3. Cerulein-Induced Expression of Interleukin-1β (IL-1β), Interleukin-6 (IL6), and Matrix
Metalloproteinase-2 (MMP2) Was Attenuated by Tricetin in Primary Pancreatic Acinar Cells

Inflammation contributes to the development of AP. However, AP is unique in the
sense that the primary event is cell injury and inflammation develops as a consequence of
tissue damage. Nonetheless, suppression of injury-associated inflammation has a beneficial
effect on the course of AP. Therefore, the effects of TCT on a set of inflammatory mediators
were investigated (Figure 2A).
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Figure 2. Tricetin reduces the expression of IL1β, IL6, and MMP2 genes, and inhibits NFκB activation
in primary pancreatic acinar cells. Primary acinar cells were pretreated with 30 µM tricetin (TCT)
or medium for one hour followed by 100 nM cerulein treatment. After 24 h, mRNA levels were
measured with RT-qPCR. Error bars represent the SD of five (or three in the cases of CCL5 and
CXCL10) independent experiments. Stars (*) indicate significant (p < 0.05) differences between
cerulein-treated cells versus control. Hashtags (#) indicate significantly (p < 0.05) reduced gene
expression by TCT versus the cerulein-treated group (A). Primary acinar cells were pretreated with
30 µM TCT or medium for one hour followed by 20 ng/mL mIFNγ + 1 µg/mL LPS, or 1 µM PMA
treatment for one hour. Nuclear fractions were extracted from the cells and were used in NFκB p65
binding assays as described in the Materials and Methods section (B). Part of the nuclear fractions
were treated with 30 µM TCT to investigate the effect of TCT on the DNA binding of NFκB (C).
Statistical analysis was performed with one-way (panel (A)) or two-way (panels (B,C)) ANOVA test
followed by Tukey’s post hoc test.

Cerulein treatment induced the expression of IL1β, IL6, and MMP2 mRNAs, whereas
TNFα, IFNγ, TGFβ (transforming growth factor-β), IL10, CCL5 (chemokine (C-C motif)
ligand 5), and CXCL10 (C-X-C motif chemokine ligand 10) expression was not induced by
cerulein. Pretreatment of acinar cells with TCT reduced the cerulein-induced expression of
IL1β, IL6, and MMP2 (Figure 2A).

3.4. Tricetin Inhibits NFκB Signaling

We hypothesized that the effect of TCT on cytokine and MMP2 expression may be
due to interference with NFκB signaling. In response to various inflammatory signals,
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NFκB is activated, translocates to the nucleus, and mediates the expression of inflammatory
mediator genes. The nuclear translocation of NFκB p65 could be observed in acinar cells
treated with IFNγ + LPS or PMA (Figure 2B,C). TCT (30 µM, 1 h) pretreatment significantly
decreased nuclear translocation of p65 (Figure 2B). However, addition of TCT to the nuclear
extracts had no effect on the DNA binding of p65 subunit (Figure 2C).

3.5. Tricetin Inhibits PARP1 and Suppresses H2O2-Induced Poly(ADP-ribosyl)ation (PARylation)
in Isolated Acinar Cells

Activation of PARP1 contributes to tissue injury and inflammation in acute and chronic
pancreatitis [58,59]. Therefore, we investigated whether TCT affected PARylation. In an
enzyme activity assay, TCT inhibited PARP activity to a similar extent as the reference
compound, 3-aminobenzamide (3-AB) (Figure 3A). The EC50 for 3-AB was 25 µM, and the
EC50 of TCT was 18 µM.
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Figure 3. Tricetin inhibits PARP in enzyme activity assays and in isolated acinar cells. Tricetin (TCT)
inhibits PARP1, as measured with a PARP activation kit (A). Primary acinar cells were pretreated
with 10 µM or 30 µM TCT for one hour and then treated with 250 µM hydrogen peroxide for 7.5 min.
Immunocytochemical staining of PAR polymer was evaluated with confocal microscopy followed
by image analysis with ImageJ software (scale bar 50 µm) (B,C). PAR polymer, the product of PARP
enzymes, was detected in Western blots and signals were quantitated with ImageLab software and
were normalized to actin signal intensities (D,E). Error bars represent the SD of three (IF) or four (WB)
independent experiments. Statistical analysis was performed with one-way ANOVA test followed by
Tukey’s post hoc test. Stars (*) indicate significant (p < 0.05) H2O2-induced PARylation compared to
the control. Hashtags (#) indicate significant (p < 0.05) reduction of the PAR signal in TCT-treated
samples versus H2O2-treated cells.

Moreover, hydrogen peroxide-induced PAR synthesis in isolated acinar cells was abol-
ished by 30 µM TCT, as indicated by the lack of PAR polymer formation (detected by IF and
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Western blotting; Figure 3B–E). Of note, a smear-like appearance of PARylated proteins as
seen in Figure 3D is normal because acceptor proteins can be modified with a varying num-
ber of negatively charged ADP-ribose units, greatly affecting their electrophoretic mobility.

3.6. Tricetin Pretreatment Protects Mice from Cerulein-Induced Acute Pancreatitis

Acute pancreatitis was induced in mice with cerulein, and mice were terminated 3 h
after the last cerulein injection (Figure 4A).
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nificantly reduced acinar cell injury, as reflected by decreased serum lipase and amylase 
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Figure 4. Tricetin inhibits tissue injury in acute pancreatitis. Acute pancreatitis was induced in
mice with intraperitoneal injections (8 × 50 µg/kg BW) of cerulein at hourly intervals. The animals
were sacrificed 10 h after the first cerulein injection. Tricetin (TCT) was applied as a pretreatment
(2 × 10 mg/kg BW) in i.p. injections, 12 h and 1 h before the first cerulein injection (A). Serum levels
of amylase and lipase were measured. Error bars represent SD of six mice. Statistical analysis was
performed with one-way ANOVA test followed by Tukey’s post hoc test. The cerulein treatment
caused significantly (* p < 0.05) elevated serum alpha amylase (B) and lipase (C) levels, which were
significantly (# p < 0.05) reduced by TCT pretreatment (B,C).

The effects of TCT (10 mg/kg BW) given at 1 and 12 h before the first cerulein injec-
tion were examined. The TCT dose was selected from in vivo studies in which a similar
compound fisetin (a flavonol) was investigated [37]. As expected, cerulein caused acinar
cell injury indicated by the elevated serum levels of lipase and amylase (Figure 4B). TCT
significantly reduced acinar cell injury, as reflected by decreased serum lipase and amylase
levels (Figure 4B). Moreover, analysis of H&E-stained sections revealed edema in the pan-
creas of cerulein-treated mice (Figure 5A). TCT prevented edema formation, neutrophil
infiltration, necrosis (Figure 5A), and formation of TUNEL positive cells/apoptotic bodies
(Figure 5B), as verified by semiquantitative analysis of the sections (Figure 5C).
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Tissue infiltration by white blood cells, especially granulocytes, is a hallmark of in-
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of tissues. MPO activity increased close to sevenfold after induction of AP (Figure 6A). 
TCT treatment significantly reduced tissue MPO levels, suggesting suppression of gran-
ulocyte migration into the pancreas (Figure 6A). 

Figure 5. Tricetin inhibits tissue injury, edema, apoptosis, and necrosis in acute pancreatitis. Micro-
graphs of hematoxylin and eosin-stained pancreas sections from mice treated with saline, cerulein,
or cerulein + tricetin (TCT) (scale bar in the top row is 200 µm and in the bottom row is 50 µm)
(A). Micrographs of pancreas sections stained for TUNEL assay from the same three groups of mice
(scale bar is 50 µm) (B). Edema, leukocyte infiltration, apoptosis (TUNEL assay), and necrosis scores
(0–3) were determined by a pathologist (C). Error bars represent SD of six mice. Statistical analysis
was performed with Fisher’s exact test. Stars (*) indicate significant (p < 0.05) differences between
cerulein-treated and control groups. Hashtags (#) indicate significantly (p < 0.05) reduced scores in
the TCT group versus the cerulein-treated group.

3.7. Tricetin Suppresses Granulocyte Infiltration, Production of Inflammatory Mediators, and
Synthesis of Poly(ADP-ribose) in Acute Pancreatitis

Tissue infiltration by white blood cells, especially granulocytes, is a hallmark of
inflammation. Measuring tissue MPO levels is a good indicator of the granulocyte content
of tissues. MPO activity increased close to sevenfold after induction of AP (Figure 6A). TCT
treatment significantly reduced tissue MPO levels, suggesting suppression of granulocyte
migration into the pancreas (Figure 6A).

The expression of IL1β and IL6 was upregulated in the pancreas in vivo (Figure 6B),
similar to cerulein-treated isolated acinar cells. Pretreatment with TCT prevented the
upregulation of IL1β and IL6 (Figure 6B). In contrast to the results in acinar cells, MMP2
levels did not change in vivo in the AP group and TCT did not affect MMP2 mRNA
expression levels (Figure 6B). TNFα, an important mediator of AP in vivo [60] was not
induced by cerulein in isolated acinar cells (Figure 2A). However, TNFα mRNA levels
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increased in the pancreas after cerulein treatment, and TCT treatment significantly inhibited
TNFα expression (Figure 6B).
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creased in the pancreas after cerulein treatment, and TCT treatment significantly inhibited 
TNFα expression (Figure 6B). 

PARP1 is a central mediator of inflammation and programmed necrotic cell death. 
We detected poly(ADP-ribose) (PAR) polymer, the product of PARP1, in tissue sections. 
A high number of nuclei in the exocrine pancreas were immunopositive for PAR (Figure 

Figure 6. Tricetin inhibits inflammatory cell migration, PAR synthesis, and expression of inflamma-
tory mediators in acute pancreatitis. Tricetin (TCT) treatment (2 × 10 mg/kg BW i.p.) suppressed
neutrophil infiltration in the pancreas, as indicated by the decreased MPO level in the cerulein-
induced acute pancreatitis model (A). TCT was effective in reducing IL1β, IL6, and TNFα expression,
as indicated by the RT-qPCR assay data (B). Representative pictures of PAR immunofluorescent stain-
ing of pancreas sections are shown (C). The extent of PARylation was quantified by ImageJ software
(D). TCT treatment (2 × 10 mg/kg BW i.p.) decreased PARylation in the cerulein-induced acute
pancreatitis model (scale bar 20 µm) (C,D). Error bars represent the SD of six mice. Statistical analysis
was performed with one-way ANOVA test followed by Tukey’s post hoc test. Stars (*) indicate
significant (p < 0.05) differences between cerulein-treated and control groups. Hashtags (#) indicate
significantly (p < 0.05) reduced scores in the TCT group versus the cerulein-treated group.

PARP1 is a central mediator of inflammation and programmed necrotic cell death. We
detected poly(ADP-ribose) (PAR) polymer, the product of PARP1, in tissue sections. A
high number of nuclei in the exocrine pancreas were immunopositive for PAR (Figure 6C),
indicating acinar PARP activation in AP. In contrast, PAR polymers were barely detectable
in pancreas sections from TCT-treated animals (Figure 6C,D).



Biomedicines 2022, 10, 1371 14 of 20

3.8. Posttreatment with Tricetin Protects Mice from Cerulein-Induced Acute Pancreatitis

The effects of TCT posttreatment on AP were examined (Figure 7A). TCT posttreatment
significantly reduced acinar cell injury as reflected by decreased serum amylase and lipase
levels (Figure 7B,C). Moreover, TCT significantly reduced pancreatic MPO levels, indicating
suppression of granulocyte migration into the tissue (Figure 7D).
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Figure 7. Posttreatment with tricetin inhibits tissue injury and inflammatory cell migration in acute
pancreatitis. Acute pancreatitis was induced in mice with (8 × 50 µg/kg BW, i.p.) cerulein treatment
at hourly intervals. The animals were sacrificed 10 h after the first cerulein injection. Tricetin (TCT)
was administered between the 4th and 5th cerulein injections (30 mg/kg BW, i.p.) and after the
last cerulein injection (10 mg/kg BW) (A). Serum levels of amylase and lipase were measured.
Cerulein treatment significantly elevated serum α-amylase and lipase levels. This elevation in serum
α-amylase and lipase levels was attenuated by TCT posttreatment (B,C). TCT suppressed neutrophil
infiltration in the pancreas as indicated by the decreased tissue MPO levels (D). Error bars represent
SD of six mice. Statistical analysis was performed with one-way ANOVA test followed by Tukey’s
post hoc test. Stars (*) indicate significant (p < 0.05) differences between cerulein-treated and control
groups. Hashtags (#) indicate significantly (p < 0.05) reduced values in the TCT group versus the
cerulein-treated group.

4. Discussion

Despite intensive preclinical and clinical research, we still do not have an effective
therapy for acute pancreatitis. While several flavonoids mitigate AP, the flavone compound
TCT has not yet been studied. Our results showed that TCT prevented acinar cell injury
and death and inflammation in both cell and animal models of AP.

To investigate the effects of TCT in AP, we chose cerulein exposure as a commonly
used model displaying key events of AP both in primary acinar cell culture and in vivo. In
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supraphysiologic concentrations, this cholecystokinin (CCK) analog peptide stimulates both
CCK1 and CCK2 receptors. These G protein-coupled receptors trigger calcium signaling
via PLC and inositol trisphosphate, resulting in reactive oxygen species (ROS) production,
immune-inflammatory signaling (Jak/STAT, NFκB), and cell death [61]. Acinar cells also
communicate with tissue macrophages in vivo to contribute to the pathogenesis of AP by
inflammatory cytokine and chemokine production [62].

Cerulein triggered cell death in isolated primary murine acinar cells. Loss of cell
viability in cerulein-treated acinar cells, as assessed by calcein assays, confirmed the toxic
effects of CCK receptor overstimulation by cerulein. Moreover, cerulein-induced cell death
had features of both apoptosis and necrosis, as indicated by caspase activation (apoptosis)
as well as LDH release and propidium iodide uptake (indicators of necrosis). The significant
cytoprotective effect of TCT could be observed both in the general viability assay as well
as in apoptosis and necrosis assays. Moreover, TCT treatment helped maintain cellular
viability in the mouse model of AP, as indicated by reduced serum amylase and lipase
levels in TCT-treated animals compared with the serum levels in cerulein-treated mice.
Interestingly, the effects of TCT were more pronounced on serum lipase activity than on
amylase activity. This may be due to a more robust lipase release response compared to the
less marked amylase release in the cerulein-treated animals. A previous study found that
lipase is indeed a more sensitive indicator of pancreatitis [63]. Nevertheless, both serum
markers confirmed the in vivo cytoprotective effects of TCT. TUNEL staining performed
on pancreatic tissue sections also suggested that TCT prevents apoptotic cell death in vivo.
The preserved pancreatic tissue architecture of TCT-treated animals also indicated less
severe tissue injury in response to cerulein.

Since ROS production was implicated in cerulein-induced acinar cell injury and
AP [64,65], we hypothesized that TCT may act, at least in part, by inhibiting ROS-induced
cell death mediated by PARP1. Of note, the oxidative stress-induced and PARP1-mediated
cell death pathway displays features of necrosis (including membrane permeabiliza-
tion) [66], which are in line with the primarily necrotic nature of acinar cells in AP. Further-
more, some flavonoids have previously been shown to exert PARP inhibitory effects [67].
TCT inhibited PARP with a potency similar to 3-aminobenzamide. Moreover, in oxidatively-
stressed primary pancreatic acinar cells, PAR polymer formation was observed, indicating
PARP activation. TCT abolished PAR synthesis, as demonstrated in both immunofluo-
rescent staining and Western blotting (Figure 3). Furthermore, in the cerulein-induced
AP model, acinar cell nuclei contained PAR polymers, and TCT treatment abolished PAR
formation (Figure 6). PARP1 and PARylation have been shown to contribute to the patho-
genesis of AP [18,59]. Our current findings confirm that PARP inhibition by TCT translates
to in vivo conditions, suggesting that PARP inhibition may be a key factor in the protection
provided by TCT in AP. The cytoprotective effects of flavonoids might also be due to their
effects on Akt signaling [68].

Oxidative stress is a common feature of various forms of inflammation, and it also
plays a key role in the pathomechanism of AP. We hypothesized that an antioxidant
mechanism may contribute to the protective effects of TCT in AP. Indeed, TCT had radical
scavenging activity, as shown in the ABTS free radical capture assay. Interestingly, however,
TCT did not protect against hydrogen peroxide-induced acinar cell injury (Supplementary
Figure S2B–D). This may be due to the lack of hydrogen peroxide-specific antioxidant
activity at the TCT concentration used in the assay. Moreover, instead of scavenging free
radicals, antioxidants are known to act primarily by increasing the nucleophilic tone [69],
inducing an antioxidant response via Nrf2 activation. Whether or not this is the case with
TCT, requires further investigation.

Our data clearly indicate that TCT suppresses inflammation in AP. Reduced edema,
suppressed inflammatory cell migration, and preserved tissue architecture support this
statement (Figure 5). The underlying mechanism for the anti-inflammatory effects of TCT
involves inhibition of the production of inflammatory mediators. From the cell-based
experiments, we established that TCT inhibits the activation of inflammatory mediator
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genes (Figure 2). Our in vivo data extended this list with TNFα as a central mediator
of inflammation induced by cerulein [70] and suppressed by TCT (Figure 6). TNFα was
not induced in acinar cell-based experiments, in line with our current understanding that
macrophages are the main source of this cytokine in AP [71]. Thus, TCT may suppress
inflammatory (cytokine, chemokine, MMP) gene activation both in acinar cells and in
macrophages. We hypothesized that inhibition of NFκB may be the underlying mechanism
for this effect. Indeed, our data proved that TCT inhibits NFκB activation in acinar cells
(Figure 2B). It had no direct effect on the binding of the transcription factor to its consensus
sequence (Figure 2C), suggesting that TCT interferes with a proximal step in the NFκB
signaling pathway. The effect of TCT on NFκB may also be due to the PARP inhibitory
effect of the drug, as PARP1 acts as a coactivator of NFκB and PARP inhibition/PARP1
knockout suppresses NFκB in a wide range of settings [58,72,73].

Although damage to acinar cells is the most studied cause of pancreatitis and the focus
of our studies is also on these cells, we cannot ignore the fact that the disease is not only
due to the failure of these cells. Early protease activation and NFκB activation are essential
features of AP; both occur in parallel during disease manifestation and strongly influence
each other. However, not only protease and NFκB activation play a critical role, but also
the cell type in which their activation occurs is important [74].

Although the focus of this work was on the antioxidant and PARP inhibitory effect of
TCT, it must be noted that TCT may also have additional effects contributing to its protection
against pancreatitis. Pancreatic ischemia plays a dominant role in the development of AP,
as well as in the progression of the disease into severe forms [75–77]. This statement is
supported by observations that reduction in pancreatic blood flow increases the severity of
acute pancreatitis [78], whereas improvement of pancreatic blood flow reduces the severity
of acute pancreatitis and accelerates pancreatic recovery in this disease [79,80]. Previous
studies have shown that the flavonoid quercetin [81,82] increased pancreatic blood flow in
AP which translated into tissue protective effects and accelerated pancreatic recovery. Such
observations suggest that the protective effect of tricetin on the pancreas in cerulein-induced
AP may be, at least in part, related to the improvement of pancreatic blood flow.

5. Conclusions

In summary, TCT can be a novel candidate for the treatment of AP. TCT inhibits
two central pathways of AP pathophysiology: acinar cell death and inflammation. The
antioxidant and PARP inhibitory effects of TCT may play a central role in the protective
effect of this flavone compound in AP.

Supplementary Materials: The following supporting information can be downloaded at: https://
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acinar cell death.
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