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Introduction
Cerebrospinal fluid (CSF) assessment is often part of 
the diagnostic workup for multiple sclerosis (MS), 
and its value is supported by the latest 2017 revisions 
of the McDonalds criteria.1 CSF examination is fre-
quently performed in diagnosing MS for excluding 
alternative diagnoses, although, in the current MS cri-
teria,2 the assessment of oligoclonal IgG bands (OCB) 
plays a limited role. However a recent study showed 
the added value of OCB in the MS diagnostic crite-
ria.3 In the 2017 revisions, the OCB have a prominent 
role in patients with a clinically isolated syndrome 
(CIS). The presence of both magnetic resonance 
imaging (MRI) criteria for dissemination in space 
(DIS) and CSF-specific OCB will enable to establish 

the MS diagnosis in patients with a single clinical epi-
sode suggestive of central nervous system (CNS) 
inflammatory demyelinating disease. The OCB 
assessment also has important prognostic value in 
CIS and MS.4,5 However, the assessment of OCB is 
labor-intensive, requires trained personnel, and is in 
some cases examiner- and method-dependent, which 
may affect its reliability.

Alongside intact immunoglobulins, which are com-
posed of two heavy and two light chains, plasma cells 
produce and secrete immunoglobulin free light 
chains (FLC) of either kappa (KFLC) or lambda 
(LFLC) chains. KFLC and LFLC can be detected in 
both CSF and serum.6–10 Since the late 1970s, 
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Objective: To validate kappa free light chain (KFLC) and lambda free light chain (LFLC) indices as a 
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for the LFLC index was 6.9 (95% CI = 4.5–22.2). For CIS/MS patients, sensitivity of the KFLC index 
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multiple studies have reported increased CSF levels 
of KFLC in MS.6–14 The analytical specificity of the 
earlier methods (e.g. radioimmunoassay,15,16 quanti-
tative enzyme-linked immunosorbent assay)8,17 was 
insufficient, but with the recent emergence of the 
more sensitive nephelometric and turbidimetric FLC 
assays, research in this field has been revived. 
Nephelometric (and turbidimetric) FLC level deter-
mination has the additional advantage compared to 
OCB of being assessed by an automated procedure 
and being quantifiable.18

Using the FLC assay,19 recent studies showed that 
both CSF KFLC levels and the KFLC index are 
increased in patients with CIS or relapsing-remitting 
MS (RRMS) compared with controls.8,14,18,20–22 The 
use of an index measure is necessary, for example 
[CSF KFLC/serum KFLC]/[CSF albumin/serum 
albumin], to include blood-CSF barrier permeabil-
ity.10,14 The KFLC index has comparable sensitivity 
and specificity to OCB for diagnosis of MS and 
CIS.14,21,23 However, large-scale studies comparing 
diagnostic performance of the two methods and to 
define the cut-off of FLC are lacking. The main aim 
of this study was to validate KFLC and LFLC indices 
as a diagnostic biomarker in MS compared with OCB 
in a large multicenter study including samples from 
18 MS centers across Europe.

Methods

Patients and controls
Eighteen MS centers participated, located in the 
Netherlands, Spain, France, Belgium, Hungary, Italy, 
Poland, Turkey, Denmark, Serbia, Austria, and 
Switzerland. We selected 745 paired CSF/serum sam-
ples from patients with known OCB status, diagnosed 
as CIS (n = 242), RRMS (n = 235), primary-progres-
sive MS (PPMS) (n = 41), and secondary-progressive 
MS (SPMS) (n = 8). We also included inflammatory 
neurological disease controls (INDC) (n = 67), non-
inflammatory neurological disease controls (NINDC) 
(n = 76), symptomatic controls (SC) (n = 49), and 
healthy controls (HC) (n = 27) as defined previously.24 
The different control groups were pooled into one 
control group (n = 219). The CIS and MS patients 
were also pooled (CIS/MS) (n = 526).

The large majority (84%) of the CIS/MS patients 
fulfilled the 2010 McDonald criteria2 but, in some 
cases, the patients were diagnosed according to the 
2005 McDonald criteria25 (16%). Table 1 presents 
the demographic and clinical characteristics of the 
patients and controls.

CSF and serum samples
Only CSF samples that were immediately centrifuged 
and stored in polypropylene tubes within 2 hours at 
−80°C, at the local center, were included. The assess-
ment of OCB had been performed by isoelectric 
focusing (on agarose or polyacrylamide gel), fol-
lowed by immunofixation by the centers as part of the 
diagnostic workup.

Samples were taken between 2005 and 2016, with a 
median age of 2.9 years (IQR = 1.7–5.7).

We used fresh aliquots, and in our lab, we did not 
freeze and thaw the samples during the analyses. As 
far as we know, no effects of freezing and thawing 
have been reported.

KFLC, LFLC, and albumin analysis
KFLC, LFLC, and albumin concentrations in CSF and 
serum samples were analyzed using the turbidimetric 
analyzer SPAplus® (The Binding Site, Birmingham, 
UK) with the serum free light chain immunoassay 
(Freelite®, The Binding Site, Birmingham, UK) 
according to the manufacturer’s instructions. All sam-
ples were measured centrally in the Neurochemistry 
Laboratory of the Department of Clinical Chemistry  
of the VU University Medical Center (VUmc), 
Amsterdam, the Netherlands. All samples were run 
blinded for the clinical data.

To verify the QC data supplied by the manufacturer, 
we calculated intra-assay coefficient of variation 
(CV) by taking the mean CVs of four replicates of 
five samples (CSF/serum) within one run. We calcu-
lated inter-assay CV based on n = 5 samples (CSF/
serum) measured in 5 different days. CV values for 
KFLC and LFLC were all found to be lower than 
those supplied by the manufacturer (Supplemental 
Table 1). CV values for albumin were comparable to 
those supplied by the manufacturer. Assay linearity 
was experimentally confirmed for albumin (serum 
and CSF) and the FLC assays in serum and showed 
that recalculated values varied by 25.7% (KFLC) and 
14.2% (LFLC) from the original value.

For 29 samples, CSF albumin results were below 
detection. Here, we assigned a random uniform value 
between 35 mg/mL (lowest detected value in undi-
luted rerun) and 175 mg/mL (formal detection limit).

FLC indices
We determined the CSF/serum quotients (Q FLC) of 
KFLC and LFLC and calculated indices in order to 
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take possible blood-CSF diffusion into account. The 
FLC indices were defined as [Q FLC] × [serum albu-
min/CSF albumin].

Statistics
Differences in demographics, clinical characteristics, 
FLC concentrations, and FLC indices were tested via 
the Mann–Whitney U test for comparison of two 
groups of non-normally distributed data. For compar-
ison of more than two groups, Kruskal–Wallis test 
with post hoc Dunn’s multiple comparison test was 
applied. For normally distributed continuous varia-
bles, an independent-samples t test or one-way analy-
sis of variance (ANOVA) with post hoc Bonferroni 
correction was applied. For binary variables, a chi-
square test was performed. These statistical analyzes 
were performed in SPSS 22.0 (IBM Crop., Armonk, 
NY, USA).

Gaussian mixture modeling was used to define cut-
offs for abnormal FLC indices using the R statistical 
software program version 3.2.1 mixtools package. 
First, the number of distributions that best described 
the data was determined with the R boot.comp func-
tion. Next, we defined a data-driven cut-off as the 
point where the lines of two fitted normal distribu-
tions crossed each other. The main analyses included 
all subjects. Data were log-transformed because FLC 
indices were not normally distributed. Based on the 
defined cut-off, subjects were classified as positive or 
negative for kappa or lambda FLC as binary result, 
similar as the available results for OCB status. As 
extra comparisons, we combined the different tools to 
compare with the single measurement OCB. The 

three combinations were as follows: KFLC with 
OCB, LFLC with OCB, and KFLC with LFLC. We 
defined the outcome of the combination as followed: 
when one of the measurements is positive, the combi-
nation is positive, when both are negative, the combi-
nation is negative.

To compare the sensitivity, specificity, and accuracy 
between the two different diagnostic tools (OCB and 
FLC), the McNemar test was used (SPSS 22.0 (IBM 
Crop., Armonk, NY, USA)). The positive and negative 
predictive values (PPVs and NPVs) were compared 
using the R package DTcompair. The p values < 0.05 
were considered statistically significant.

Results
Paired CSF and serum samples from a total of 745 
patients were included in this multicenter study (see 
Supplemental Figure 1 for the flowchart of patient 
selection). The patient groups (n = 526) consisted of 
242 CIS and 284 MS patients. The control group 
(n = 219) consisted of 76 NINDC, 67 INDC, 49 SC, 
and 27 HC. The control group was older 
(mean = 42 ± 12 years) than the CIS/MS patient group 
(mean = 35 ± 10 years, p < 0.001). There was no sig-
nificant difference in sex distribution between the two 
groups (p = 0.20). Only 7.7% of the control group had a 
positive OCB status. The diagnoses of these patients 
are as follows: Tolosa hunt (n = 2), meningitis (n = 1), 
neurosarcoidosis (n = 2), lupus (n = 1), transient global 
amnesia (n = 1), stroke (n = 1), post-infectious myelitis 
(n = 1), myelitis (n = 1), encephalitis (n = 1), epilepsy 
(n = 1), ADEM (n = 1), neurodegeneration (n = 1), 
INDC, exact diagnosis unknown (n = 2), and neuritis 
optica (n = 1).

Table 2. FLC in CIS/MS and controls.

A CIS/MS (n = 526) Controls (n = 219) p-value

CSF KFLC (mg/L) 3.7 (1.0–10.1) 0.2 (0.1–0.4) <0.001

Serum KFLC (mg/L) 12.4 (9.8–15.7) 13.7 (10.6–16.9) 0.001

KFLC index 75.6 (21.8–197.0) 2.8 (2.2–4.9) <0.001

KFLC index ⩾ 6.6 460 (87.5) 38 (17.4) –

B CIS/MS (n = 543) Controls (n = 202) p-value

CSF LFLC (mg/L) 0.5 (0.2–1.3) 0.2 (0.2–0.3) < 0.001

Serum LFLC (mg/L) 11.3 (9.2–13.7) 12.1 (9.8–15.4) 0.001

LFLC index 11.6 (5.3–33.3) 3.3 (2.5–4.7) < 0.001

LFLC index ⩾ 6.9 359 (68.3) 30 (13.7) –

FLC: free light chains; CIS: clinically isolated syndrome; MS: multiple sclerosis; A: KFLC in CIS/MS and controls; CSF: cerebrospi-
nal fluid; KFLC: kappa free light chain; index: FLC quotient/albumin quotient; B: LFLC in CIS/MS and controls; LFLC: lambda free 
light chains; IQR: interquartile range.
Values are given as n (%) or as median (IQR).
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For a detailed list including the diagnoses of non-
inflammatory neurological diseases and inflamma-
tory neurological diseases included in the groups, see 
Supplemental Tables 2A and 2B.

FLC concentrations and FLC indices
Table 2 shows the levels and indices of the KFLC and 
LFLC in CIS/MS patients and controls. CSF KFLC 
and CSF LFLC concentrations were significantly 
increased in CSF of CIS/MS patients compared to 
controls (both p < 0.001). In addition, KFLC and 
LFLC concentrations in CSF were higher in MS 
patients than CIS patients (both p < 0.001).

KFLC and LFLC serum concentrations were signifi-
cantly higher in the control group than CIS/MS (both, 
p = 0.001) but did not differ significantly between CIS 
and MS (KFLC p = 0.33, LFLC p = 1.00).

See Figure 1(a) for the KFLC indices per subgroup 
and Figure 1(b) for the LFLC indices per subgroup. 
KFLC and LFLC indices were significantly increased 
in CIS/MS compared to controls (both p < 0.001). In 
addition, FLC indices were higher in MS than in CIS 
(KFLC p = 0.07, LFLC p < 0.001).

FLC index cut-off
In the total cohort (n = 745) (all diagnostic subgroups), 
a bimodal distribution of the log-transformed KFLC 
index values fitted the data best. This yielded a cut-off 
for the log-KFLC index of 1.89 (95% confidence 
interval (CI) = 1.65–4.92) (Figure 2(a)), which corre-
sponds to an KFLC index of 6.6 (95% CI = 5.2–138.1) 
on the original scale.

For the LFLC index, a bimodal distribution yielded an 
optimal cut-off for the log-LFLC index of 1.9 (95% 

Figure 1. CSF KFLC and LFLC indices of CIS, MS, CIS/MS and controls. (a) Levels of KFLC indices, (b) levels of 
LFLC indices. Horizontal bars in the scatter dot plot represent the median.
CSF: cerebrospinal fluid; KFLC: kappa free light chains; LFLC: lambda free light chains; CIS: clinically isolated syndrome; MS: 
multiple sclerosis.
*p ⩽ 0.001.

Figure 2. Cerebrospinal fluid (a) KFLC and (b) LFLC cut-off values based on mixture modeling. The red (low values) 
and green (high values) lines are the individual components of the estimated mixture distributions, the dotted line is the 
combined estimated mixture distribution. The cut-off is defined as the point where the red and green lines cross.
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CI = 1.5–3.1) (Figure 2(b)), which corresponds to an 
LFLC index of 6.9 (95% CI = 4.5–22.2) on the origi-
nal scale.

Diagnostic sensitivity and specificity of the 
indices compared to OCB
KFLC index. When pooling CIS and MS as one 
group (CIS/MS), the sensitivity to identify CIS/
MS from controls of the KFLC index (0.88) was 
significantly higher than of OCB (0.82; p < 0.001) 
at the cost of a significantly lower specificity 
(KFLC index = 0.83, OCB = 0.92; p < 0.001) (see 
Table 3).

When identifying CIS patients from controls, the 
sensitivities did not differ significantly between 
KFLC and OCB (KFLC index = 0.81, OCB = 0.77; 
p = 0.15), but the specificity of OCB was significantly 
higher (KFLC index = 0.83, OCB = 0.92, p < 0.001). 
Identifying MS patients from controls, the sensitivity 
of the KFLC index (0.93) was significantly higher 
than of OCB (0.86; p < 0.001) but the specificity 
(0.83) was significantly lower (0.92; p < 0.001).

The accuracies were similarly high for both biomark-
ers for all three comparisons. The PPVs were higher 
for OCB (in all three comparisons p < 0.001). The 
NPV was the same for both markers (p = 0.56) in CIS 

Table 3. Diagnostic sensitivity and specificity of the FLC indices compared to OCB.

OCB KFLC p-value LFLC p-value

CIS/MS vs controls

 Sensitivity 0.82 (95% 
CI = 0.79–0.85)

0.88 (95% 
CI = 0.85–0.90)

< 0.001 0.66 (95% 
CI = 0.62–0.70)

< 0.001

 Specificity 0.92 (95% 
CI = 0.89–0.96)

0.83 (95% 
CI = 0.78–0.88)

< 0.001 0.86 (95% 
CI = 0.81–0.91)

0.019

 Accuracy 0.85 (95% 
CI = 0.82–0.88)

0.86 (95% 
CI = 0.84–0.89)

1.000 0.74 (95% 
CI = 0.70–0.77)

< 0.001

 PPV 0.96 (95% 
CI = 0.94–0.98)

0.92 (95% 
CI = 0.90–0.95)

< 0.001 0.92 (95% 
CI = 0.90–0.95)

0.001

 NPV 0.68 (95% 
CI = 0.63–0.73)

0.73 (95% 
CI = 0.68–0.79)

0.010 0.53 (95% 
CI = 0.48–0.58)

< 0.001

CIS vs controls

 Sensitivity 0.77 (95% 
CI = 0.72–0.82)

0.81 (95% 
CI = 0.76–0.86)

0.150 0.60 (95% 
CI = 0.54–0.66)

< 0.001

 Specificity 0.92 (95% 
CI = 0.89–0.96)

0.83 (95% 
CI = 0.78–0.88)

< 0.001 0.86 (95% 
CI = 0.82–0.91)

0.019

 Accuracy 0.84 (95% 
CI = 0.80–0.88)

0.82 (95% 
CI = 0.78–0.85)

0.149 0.73 (95% 
CI = 0.68–0.77)

< 0.001

 PPV 0.92 (95% 
CI = 0.88–0.95)

0.84 (95% 
CI = 0.79–0.88)

< 0.001 0.83 (95% 
CI = 0.77–0.89)

0.001

 NPV 0.78 (95% 
CI = 0.73–0.83)

0.79 (95% 
CI = 0.74–0.84)

0.56 0.66 (95% 
CI = 0.61–0.72)

< 0.001

MS vs controls

 Sensitivity 0.86 (95% 
CI = 0.82–0.90)

0.93 (95% 
CI = 0.90–0.97)

< 0.001 0.75 (95% 
CI = 0.70–0.80)

< 0.001

 Specificity 0.92 (95% 
CI = 0.89–0.96)

0.83 (95% 
CI = 0.78–0.88)

< 0.001 0.86 (95% 
CI = 0.81–0.91)

0.019

 Accuracy 0.89 (95% 
CI = 0.86–0.92)

0.89 (95% 
CI = 0.86–0.92)

1.000 0.80 (95% 
CI = 0.77–0.84)

< 0.001

 PPV 0.94 (95% 
CI = 0.91–0.97)

0.88 (95% 
CI = 0.84–0.91)

< 0.001 0.88 (95% 
CI = 0.84–0.92)

0.002

 NPV 0.84 (95% 
CI = 0.79–0.88)

0.91 (95% 
CI = 0.86–0.95)

0.001 0.73 (95% 
CI = 0.68–0.78)

< 0.001

FLC: free light chains; OCB: oligoclonal IgG bands; KFLC: kappa free light chains; LFLC: lambda free light chains; CIS: 
clinically isolated syndrome; MS: multiple sclerosis; PPV: positive predictive value; NPV: negative predictive value.
To compare the sensitivity and specificity between the two different diagnostic tools (OCB and FLC), the McNemar test was used.
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versus controls, but when pooling CIS/MS and in MS 
alone, the NPVs were slightly higher for KFLC 
(p = 0.010, p < 0.001) (see Table 3).

LFLC index. When pooling CIS and MS in one group 
(CIS/MS), the sensitivity to identify CIS/MS from con-
trols of the LFLC index (0.66) was significantly lower 
than that of OCB (0.82; p < 0.001). The specificity to 
discriminate CIS/MS from controls was also signifi-
cantly lower (0.86) than for OCD (0.92; p = 0.019).

When identifying CIS patients from controls, the 
sensitivities did differ; the LFLC index was signifi-
cantly lower than OCB (LFLC index = 0.60; 
OCB = 0.77; p < 0.001). The specificity of LFLC in 
CIS was lower than OCB (LFLC index = 0.86; 
OCB = 0.92; p = 0.019). Identifying MS patients from 
controls, the sensitivity of the LFLC index (0.75) was 
significantly lower than OCB (0.86; p < 0.001). The 
specificity (0.86) was also significantly lower than 
OCB (0.92; p = 0.019). The accuracies and NPV were 
significantly lower for LFLC than OCB for all three 
comparisons. The PPV was significantly lower for 
LFLC than OCB when comparing MS with controls, 
and in the other comparisons, the PPV of LFLC was 
similar to OCB (see Table 3).

Combination of the different tools compared to 
single measurement
Three combinations were made, KFLC index–OCB, 
LFLC index–OCB, and KFLC index–LFLC index, 
and all were compared with the analysis of OCB 
alone. Sensitivity and specificity were calculated for 
all the subgroups compared to the control group. The 
sensitivity of the combination OCB with the KFLC 
index increased to 0.88, and the specificity of this 
combination decreased to 0.83. The same results were 
obtained for the combinations of LFLC index–OCB 
and KFLC index–LFLC index compared to single 
OCB, showing a slightly higher sensitivity (LFLC 
index–OCB = 0.87, KFLC–LFLC index = 0.87) and a 
lower specificity (0.83 and 0.80, respectively).

Sensitivities and specificities in alternative 
subgroups
Including patients with the diagnosis CIS (according 
to McDonald 2005 criteria) as RRMS patients resulted 
in lower sensitivities of OCB, KFLC, and LFLC that 
were seen when comparing CIS patients with con-
trols. However, the p value did not change relevantly 
when comparing the new sensitivities for OCB, 
KFLC, and LFLC. No relevant differences were seen 
when comparing MS to control group.

No relevant differences were seen when we exclude 
patients with the CIS diagnosis according to 
McDonald 2005 criteria.

When excluding INDC from the control group, higher 
specificities were seen for OCB, KFLC, and LFLC 
when comparing CIS/MS with the controls. However, 
the p value did not change relevantly when comparing 
the new specificities of OCB, KFLC, and LFLC (data 
not shown).

Discussion
Our study indicates that the KFLC index is a valid test 
for diagnosing CIS/MS. Compared to OCB, the 
KFLC index is more sensitive at the cost of a lower 
specificity. This trade-off resulted in a higher NPV for 
the KFLC index compared to OCB, but a lower PPV. 
In addition, our results indicate that the LFLC index is 
not a valid test for diagnosing CIS/MS.

Our sensitivity and specificity for the KFLC index in 
CIS/MS were lower than a few much smaller previous 
studies,18,23,26 which reported sensitivity in the range 
of 0.93–0.95 and specificity in the range of 0.91–1.00. 
The study of Desplat-Jégo et al.9 showed a lower sen-
sitivity of 0.70 and a lower specificity of 0.82 for the 
KFLC index in MS patients. The more recent study of 
Vasilj et al.27 showed a lower sensitivity of 0.71, how-
ever a higher specificity of 0.98. The results of the 
comparison of KFLC and OCB are in line with results 
of a recent multicenter study,14 where a cut-off of 5.9 
was employed to validate KFLC in CSF as a diagnos-
tic biomarker in 60 CIS patients, 60 MS patients com-
pared to 60 OND, reporting a higher sensitivity of the 
KFLC index (0.78) compared to OCB (0.72) for diag-
nosis of CIS. In MS, the sensitivity of the KFLC and 
OCB was comparable (0.93 vs 0.93). However, the 
specificity (0.95) in CIS and MS was higher compared 
to our study. Another paper used the same 5.9 cut-off; 
this resulted in a sensitivity and specificity of 0.96 and 
0.98, respectively, in MS patients.21

This discrepancy in the crude sensitivity and specific-
ity of the KFLCs may be due to the more heterogene-
ous control group in our study compared to the 
previous studies, due to pooling of the CIS/MS group 
or the inclusion of not only clinical definite MS 
patients. For example, similar as for the OCB, KFLCs 
can be elevated in inflammatory controls,28 and thus 
specificity will be lower when included. Nevertheless, 
this is a very relevant control group in differential 
diagnosis of MS. The unprecedented large number of 
patients and the large heterogeneous control group in 
this study gave us a reflection of the real-life clinical 
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situation, thus avoiding spectrum bias, and allowed us 
to give a more representative sensitivity and specific-
ity for OCB, KFLC, and LFLC indices.

Noticeable is that the sensitivity and specificity of 
OCB to discriminate MS patients from controls were 
lower in our study than previously reported.10,29,30 
However, a meta-analysis published in 201331 (13,467 
patients) showed that the diagnostic specificity of 
OCB diminished if other inflammatory etiologies 
were considered. Therefore, the lower specificities in 
our study may also be due to inclusion of various con-
trol groups.

The cut-off in this study was calculated using a data-
driven Gaussian mixture modeling approach. We 
chose a different approach compared to other studies 
that applied, for example, receiver operating charac-
teristic (ROC) curve analysis and area under the curve 
(AUC) values,9,10,18,23,27,32 because we reasoned that 
the cut-off should be defined by biological levels 
(data driven) and not based on clinical diagnosis, 
which is an imperfect golden standard. We deter-
mined a cut-off of 6.6 for abnormal KFLC indices and 
6.9 for abnormal LFLC indices. Our cut-off for KFLC 
is in line with a previous multicenter study showing a 
KFLC index cut-off of 5.9.10 This almost comparable 
cut-off for the KFLC index in two multicenter studies 
supports its robustness and implies that it can be used 
as an universal cut-off.

There are some limitations in this study. One limita-
tion was that not all patients were diagnosed based on 
the same MS criteria; most patients by McDonald 
2010 (84%) but a few with McDonald 2005, which 
may have influenced the diagnosis of CIS patients par-
ticularly. CIS patients diagnosed before 2010 may 
very well be MS patients according to McDonald 
2010, because in the 2005 criteria, MS diagnosis was 
more stringent. None of the patients were diagnosed 
by the new 2017 criteria, because of the retrospective 
setup, and thus imaging information was not collected. 
We address this problem by pooling all CIS and MS 
patients. Another reason for pooling CIS and MS is 
that we did not have the data to test CIS converting to 
MS versus non-converting CIS, because we did not 
have follow-up data. We performed several sensitivity 
analyses in CIS or MS patients separately, and by 
reclassifying and excluding specific clinical groups 
(Table 3). In these analyses, similar results were 
observed, suggesting that our results are robust for the 
total population. Another limitation is that we did not 
repeat the OCB analysis per patient centrally, but 
relied on the original local outcomes. However, we 
received the samples and OCB status from expertise 

MS centers (participating in the BioMSeu consortium) 
using standardized protocols.33 Moreover, inter-labo-
ratory agreement is reported to be good for OCB, for 
example an inter-laboratory agreement of kappa > 0.8 
between 19 participating laboratories in Spain was 
observed.34

One more important note is that the best set up for the 
study would have been if the test population should be 
suspected MS cases and not already diagnosed with 
MS. Still, as provided in Supplemental Table 2B, we 
included various INDC and quite some patients ini-
tially suspected for demyelinating disease.

Alongside the sensitivity and specificity results of the 
indices, we found significantly increased FLC con-
centrations and quotients in CSF of CIS/MS patients 
compared to the control groups. However, our main 
focus in this study was in the FLC indices and not in 
the concentrations of the FLC. To control for blood-
CSF barrier function, we used indices instead of 
concentrations.

Combination of different markers (KFLC index–
OCB, LFLC index–OCB, and KFLC index–LFLC 
index) compared to the single measurement OCB, 
showed that the combination KFLC index–OCB com-
pared to single OCB gave a slightly higher sensitivity 
(0.88). However, the specificity became lower (0.83). 
The same results were seen in the combination LFLC 
index–OCB and KFLC index–LFLC index compared 
to single OCB. By definition, the sensitivity become 
higher and the specificity lower when you decide 
beforehand that the combination test will be positive 
when the test is positive in one of the two.

For clinical practice, the KFLC index is more accu-
rate in excluding CIS/MS compared to OCB but for 
ruling in a diagnosis of CIS/MS, analysis of OCB 
appears to be more accurate. If we replace OCB by 
KFLC in diagnostic practice, there is a slightly higher 
chance that a patient with a diagnosis different from 
MS will get the diagnosis of MS and maybe unneces-
sarily exposed to potential negative side effects of 
early treatment. Since the KFLC index is more sensi-
tive at the cost of a lower specificity, we should stress 
that replacement of OCB by the KFLC index is not 
optimal to arrive at high diagnostic certainty. 
However, with the higher sensitivity of KFLC, an ear-
lier treatment start may be considered. Whether it is 
an option to start treatment based on the KFLC result 
and clinical/MRI findings according to the novel 
McDonald criteria or whether the treatment may be 
adapted after a first-year evaluation is subject of fur-
ther studies and discussions.
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In conclusion, this study indicates that the KFLC 
index is a valid tool in the diagnostic process of MS. 
Since this marker is measured by a faster and rater-
independent analytical procedure, it should be consid-
ered as a potential cost-effective replacement of the 
OCB, especially when CSF analysis will regain a 
more prominent role in the 2017 revisions of the 
McDonald criteria.

Acknowledgements
Reagents for this study were provided by the Binding 
Site®. The authors would like to thank G. Oral and 
M. Atik for helping A. Altintas collecting clinical data 
and samples.

Author Contributions
C.E.L. contributed to study design, collecting all 
data, statistical analysis, interpretation of the data, 
and drafting the manuscript. H.A.M.T. contributed to 
KFLC and LFLC data analyses, interpretation of the 
data, and revising the manuscript for intellectual con-
tent. B.I.L.-W. contributed to statistical analysis of the 
data (Biostatistician). B.M.J.U., J.K., C.B., and C.T. 
contributed to study design, interpretation of the data, 
and revising the manuscript for intellectual content. 
All other authors helped by selecting and collecting 
samples and clinical information. All other authors 
helped by revising the manuscript for intellectual 
content.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of inter-
est with respect to the research, authorship, and/or 
publication of this article.

Disclosures
C.E. L. reports a grant from Stichting MS research. 
H.A.M. T., B.I.L.-W., M.C.,T.B., C.R., L.M.W., D. G., 
E.S., and P.E.H.J., and D.L.P. report no disclosures. 
V.V.P. received travel grants from Biogen, Bayer 
Schering, Genzyme, Merck, Teva, Sanofi and Roche. 
His institution receives honoraria for consultancy and 
lectures from Biogen, Bayer Schering, Sanofi, Merck, 
Roche, Teva and Novartis Pharma as well as research 
grants from Novartis Pharma, Bayer Schering, Sanofi, 
and Roche. I.D. received lecture fees and/or travel 
grants from Merck Serono, Rosche, Bayer, Medis, 
Teva, and Boehringer Ingelheim; received honoraria 
for acting as an advisor for Bayer; and was supported 
by the Ministry of Education, Science and 
Technological Development of the Republic of Serbia 
(Grant No. 175031). J.D. received honoraria for con-
sulting services, travel expenses for scientific meet-
ings, and speaking honoraria from Bayer Schering 
Pharma, Merck Serono, Medis, Rosche, and Actavis 

and was supported by the Republic of Serbia Ministry 
of Education, Science and Technological Development 
grant support (No. 175031). M.P. participated in 
Advisory Board Meetings of Bayer Schering and 
Genzyme, and received travel or speaker honoraria 
from Almirall, Bayer Schering, Biogen Idec, Genzyme, 
Merck Serono, Novartis, Sanofi-Aventis, and Teva 
Neurosciences. J.K.’s institution (University Hospital 
Basel) received and used, exclusively for research 
support, consulting fees from Biogen, Novartis, 
Protagen AG, Roche, Teva; speaker fees from the 
Swiss MS Society, Biogen, Novartis, Roche, Genzyme; 
travel expenses from Merck Serono, Novartis,  
Roche; and grants from ECTRIMS Research 
Fellowship Program, University of Basel, Swiss MS 
Society, Swiss National Research Foundation 
(320030_160221), Bayer AG, Biogen, Genzyme, 
Merck, Novartis, Roche. L.M.V. received payment for 
lecturing, travel expenses, or research grants from 
Sanofi-Genzyme, Merck, Biogen, Novartis, Teva, 
Binding Site. J.C.A.-C. received payment for lectur-
ing, travel expenses, or research grants from Bayer, 
Roche, Sanofi-Genzyme, Merck, Biogen, Novartis, 
Teva. R. A.-L. reported grants and personal fees from 
MercK Serono, personal fees, and non-financial sup-
port from Biogen Idec, grants, personal fees, and non-
financial support from Novartis Pharmaceuticals S.A., 
grants and personal fees from Genzyme, non-financial 
support from Teva Pharma, S.L., non-financial support 
from Roche. H.H. has participated in meetings spon-
sored by and received speaker honoraria or travel 
funding from Bayer Schering, Biogen, Merck Serono, 
and Novartis, and received honoraria for acting as con-
sultant for Teva Pharmaceuticals Europe. F.D. has par-
ticipated in meetings sponsored by or received 
honoraria for acting as an advisor/speaker for Biogen 
Idec, Genzyme-Sanofi, Merck, Novartis Pharma, 
Roche, and TEVA ratiopharm. E.T. has participated in 
meetings sponsored by or received honoraria for act-
ing as an advisor/speaker for Biogen Idec, Genzyme-
Sanofi, Merck, Novartis, Roche, and TEVA. M.C. has 
received compensation for consulting services and 
speaking honoraria from Bayer Schering Pharma, 
Merk Serono, Biogen Idec, Teva Pharmaceuticals, 
Sanofi-Aventis, Genzyme, and Novartis. X.M. has 
received speaking honoraria and travel expenses for 
scientific meetings, has been a steering committee 
member of clinical trials or participated in advisory 
boards of clinical trials in the past years with Bayer 
Schering Pharma, Biogen Idec, EMD Merck Serono, 
Genentech, Genzyme, Novartis, Sanofi-Aventis,  
Teva Phramaceuticals, Almirall and Roche. L.V.gave 
invited lectures and was the chair of symposia  
by Biogen, Genzyme, Teva, Roche, Merck, and 
Novartis. A.A. has received personal fees from 

https://journals.sagepub.com/home/msj


CE Leurs, HAM Twaalfhoven et al.

journals.sagepub.com/home/msj 921

received honoraria for giving educational presenta-
tions on multiple sclerosis and neuroimmunology at 
several national congresses or symposia from Teva 
Turkey, Merck Serono, Biogen Idec-Gen Pharma of 
Turkey, Novartis, Bayer, and Sanofi-Genzyme. She 
has received travel and registration coverage for 
attending several national and international congresses 
or symposia from Teva Turkey, Merck Serono, Biogen 
Idec-Gen Pharma of Turkey, Bayer, Sanofi-Genzyme. 
K.R. has received honoraria for consulting services 
and lecturing from Bayer Schering Pharma, Merk 
Serono, Biogen Idec, Teva Pharmaceuticals, Sanofi-
Aventis, Genzyme, and Novartis. J. L.F. has no fund-
ing to support the presented work, but has served on 
scientific advisory boards for and received funding for 
travel related to these activities as well as honoraria 
from Biogen Idec, Merck Serono, Sanofi-Aventis, 
Teva, Novartis, and Almirall. She has received speaker 
honoraria from Biogen Idec, Teva, and Novartis. She 
has served as advisor on preclinical development for 
Takeda. G.P.-J. has no funding to support the presented 
work, but has received support from Biogen Idec for a 
study in optic neuritis and has received support for 
travel expenses to conferences from Genzyme, 
Novartis, Merck Serono, Roche, Teva, and Biogen. 
M.K. has received funding for travel and speaker hon-
oraria from Bayer Schering Pharma, Novartis, 
Genzyme, Merck, Shire, Biogen Idec, and Teva 
Pharmaceutical Industries. M.M.V. received funding 
from the Austrian Federal Ministry of Science, 
Research and Economics and was trained within the 
frame of the PhD Program Molecular Medicine of the 
Medical University of Graz. F.F. served on scientific 
advisory boards for Biogen Idec, Genzyme, Merck, 
Novartis, Roche and Teva Pharmaceutical Industries 
Ltd.; serves on the editorial boards of Multiple 
Sclerosis, the Polish Journal of Neurology and 
Neurosurgery, Neurology and the Swiss Archives of 
Neurology and Psychiatry; provides services for 
Actelion and Parexel and has received speaker hono-
raria and support from Merck, Roche and Teva 
Pharmaceutical Industries Ltd. A.S. has received com-
pensation for consulting services and speaker hono-
raria from Bayer Schering, Merck Serono, Biogen 
Idec, Sanofi-Aventis, Teva Pharmaceutical Industries 
Ltd, and Novartis. M.J.V. has received travel grants 
from the Binding Site and consumables from the 
Binding site, Siemens and Euroimmun. L.V. has 
received speaking honoraria and travel expenses for 
scientific meetings, has been a steering committee 
member of clinical trials or participated in advisory 
boards by Biogen, Genzyme, Novartis, Merck, Roche. 
B.M.J.U. has received personal compensation for con-
sulting from Biogen Idec, Genzyme, Merck Serono, 
Novartis, Roche, and TEVA. J.K. has accepted speaker 

and consulting fees from Merck Serono, Biogen Idec, 
Teva, Genzyme, and Novartis. C.B. reported a grant 
from the Swiss MS Society. C.T. served on the advi-
sory board of Fujirebio and Roche, received research 
consumables from Euroimmun, IBL, Fujirebio, 
Invitrogen and Mesoscale Discovery, performed con-
tract research for IBL, Shire, Boehringer, Roche and 
Probiodrug, and received grants from the European 
Commission, the Dutch Research Council (ZonMW), 
Association of Frontotemporal Dementia/Alzheimer’s 
Drug Discovery Foundation, ISAO and the 
Alzheimer’s Drug Discovery Foundation.

Funding
The author(s) received no financial support for the 
research, authorship, and/or publication of this article.

Supplemental Material
Supplemental material for this article is available 
online.

ORCID iDs
M Castellazzi  https://orcid.org/0000-0001-6555 
-6075
R Alvarez-Lafuente  https://orcid.org/0000-0002 
-3132-1486
F Deisenhammer  https://orcid.org/0000-0003 
-4541-8841
M Khalil  https://orcid.org/0000-0002-5350-3328
MM Voortman  https://orcid.org/0000-0001-7357 
-2868
A Saiz  https://orcid.org/0000-0002-5793-8791

References
 1. Thompson AJ, Banwell BL, Barkhof F, et al. 

Diagnosis of multiple sclerosis: 2017 revisions of 
the McDonald criteria. Lancet Neurol 2017; 17(2): 
162–173.

 2. Polman CH, Reingold SC, Banwell B, et al. 
Diagnostic criteria for multiple sclerosis: 2010 
revisions to the McDonald criteria. Ann Neurol 2011; 
69(2): 292–302.

 3. Arrambide G, Tintoré M, Espejo C, et al. The added 
value of oligoclonal bands in the multiple sclerosis 
diagnostic criteria. ECTRIMS 2017; 2017: 202450.

 4. Kuhle J, Disanto G, Dobson R, et al. Conversion from 
clinically isolated syndrome to multiple sclerosis: 
A large multicentre study. Mult Scler 2015; 21(8): 
1013–1024.

 5. Tintore M, Rovira A, Rio J, et al. Do oligoclonal 
bands add information to MRI in first attacks of 
multiple sclerosis. Neurology 2008; 70(13 Pt. 2): 
1079–1083.

https://journals.sagepub.com/home/msj
https://orcid.org/0000-0001-6555-6075
https://orcid.org/0000-0001-6555-6075
https://orcid.org/0000-0002-3132-1486
https://orcid.org/0000-0002-3132-1486
https://orcid.org/0000-0003-4541-8841
https://orcid.org/0000-0003-4541-8841
https://orcid.org/0000-0002-5350-3328
https://orcid.org/0000-0002-5350-3328
https://orcid.org/0000-0002-5350-3328
https://orcid.org/0000-0002-5793-8791


Multiple Sclerosis Journal 26(8)

922 journals.sagepub.com/home/msj

 6. Kaplan B, Golderman S, Yahalom G, et al. Free light 
chain monomer-dimer patterns in the diagnosis of 
multiple sclerosis. J Immunol Methods 2013; 390(1-
2): 74–80.

 7. Kaplan B, Aizenbud BM, Golderman S, et al. Free 
light chain monomers in the diagnosis of multiple 
sclerosis. J Neuroimmunol 2010; 229(1-2): 263–271.

 8. Senel M, Tumani H, Lauda F, et al. Cerebrospinal 
fluid immunoglobulin kappa light chain in clinically 
isolated syndrome and multiple sclerosis. PLoS ONE 
2014; 9(4): e88680.

 9. Desplat-Jego S, Feuillet L, Pelletier J, et al. 
Quantification of immunoglobulin free light chains in 
cerebrospinal fluid by nephelometry. J Clin Immunol 
2005; 25(4): 338–345.

 10. Presslauer S, Milosavljevic D, Brücke T, et al. 
Elevated levels of kappa free light chains in CSF 
support the diagnosis of multiple sclerosis. J Neurol 
2008; 255(10): 1508–1514.

 11. Rudick RA, Peter DR, Bidlack JM, et al. Multiple 
sclerosis: Free light chains in cerebrospinal fluid. 
Neurology 1985; 35: 1443–1449.

 12. Bracco F, Gallo P, Menna R, et al. Free light chains 
in the CSF in multiple sclerosis. Journal of Neurology 
1987; 234: 303–307.

 13. DeCarli C, Menegus MA and Rudick RA. Free light 
chains in multiple sclerosis and infections of the CNS. 
Neurology 1987; 37(8): 1334–1338.

 14. Presslauer S, Milosavljevic D, Huebl W, et al. 
Validation of kappa free light chains as a diagnostic 
biomarker in multiple sclerosis and clinically isolated 
syndrome: A multicenter study. Mult Scler 2016; 22: 
102–110.

 15. Solling K. Free light chains of immunoglobulins 
in normal serum and urine determined by 
radioimmunoassay. Scand J Clin Lab Invest 1975; 
35(5): 407–412.

 16. Rudick RA, Pallant A, Bidlack JM, et al. Free kappa 
light chains in multiple sclerosis spinal fluid. Ann 
Neurol 1986; 20(1): 63–69.

 17. Makshakov G, Nazarov V, Kochetova O, et al. 
Diagnostic and prognostic value of the cerebrospinal 
fluid concentration of immunoglobulin free light 
chains in clinically isolated syndrome with conversion 
to multiple sclerosis. PLoS ONE 2015; 10(11): 
e0143375.

 18. Duranti F, Pieri M, Centonze D, et al. Determination 
of κFLC and κ Index in cerebrospinal fluid: A valid 
alternative to assess intrathecal immunoglobulin 
synthesis. J Neuroimmunol 2013; 263: 116–120.

 19. Bradwell AR, Carr-Smith HD, Mead GP, et al. 
Highly sensitive, automated immunoassay for 

immunoglobulin free light chains in serum and urine. 
Clin Chem 2001; 47(4): 673–680.

 20. Presslauer S, Milosavljevic D, Huebl W, et al. Kappa 
free light chains: Diagnostic and prognostic relevance 
in MS and CIS. PLoS ONE 2014; 9(2): e89945.

 21. Voortman MM, Stojakovic T, Pirpamer L, et al. 
Prognostic value of free light chains lambda and 
kappa in early multiple sclerosis. Mult Scler 2016; 23: 
1496–1505.

 22. Passerini G, Dalla Costa G, Sangalli F, et al. Free 
light chains and intrathecal B cells activity in multiple 
sclerosis: A prospective study and meta-analysis. 
Mult Scler Int 2016; 2016: 2303857.

 23. Pieri M, Storto M, Pignalosa S, et al. KFLC Index 
utility in multiple sclerosis diagnosis: Further 
confirmation. J Neuroimmunol 2017; 309: 31–33.

 24. Teunissen C, Menge T, Altintas A, et al. Consensus 
definitions and application guidelines for control 
groups in cerebrospinal fluid biomarker studies in 
multiple sclerosis. Mult Scler 2013; 19(13): 1802–
1809.

 25. Polman CH, Reingold SC, Edan G, et al. Diagnostic 
criteria for multiple sclerosis: 2005 revisions to 
the “McDonald Criteria.” Ann Neurol 2005; 58(6): 
840–846.

 26. Susse M, Hannich M, Petersmann A, et al. Kappa free 
light chains in cerebrospinal fluid to identify patients 
with oligoclonal bands. Eur J Neurol 2018; 25(9): 
1134–1139.

 27. Vasilj M, Kes VB, Vrkic N, et al. Relevance of KFLC 
quantification to differentiate clinically isolated 
syndrome from multiple sclerosis at clinical onset. 
Clin Neurol Neurosurg 2018; 174: 220–229.

 28. Van der Heijden M, Kraneveld A and Redegeld F. 
Free immunoglobulin light chains as target in the 
treatment of chronic inflammatory diseases. Eur J 
Pharmacol 2006; 533(1-3): 319–326.

 29. Villar LM, Masjuan J, Sadaba MC, et al. Early 
differential diagnosis of multiple sclerosis using a 
new oligoclonal band test. Arch Neurol 2005; 62(4): 
574–577.

 30. Petzold A. Markers for different glial cell responses 
in multiple sclerosis: Clinical and pathological 
correlations. Brain 2002; 125(Pt. 7): 1462–1473.

 31. Petzold A. Intrathecal oligoclonal IgG synthesis in 
multiple sclerosis. J Neuroimmunol 2013; 262: 1–10.

 32. Valencia-Vera E, Martinez-Escribano Garcia-
Ripoll A, Enguix A, et al. Application of kappa free 
light chains in cerebrospinal fluid as a biomarker 
in multiple sclerosis diagnosis: Development of a 
diagnosis algorithm. Clin Chem Lab Med 2018; 
56(4): 609–613.

https://journals.sagepub.com/home/msj


CE Leurs, HAM Twaalfhoven et al.

journals.sagepub.com/home/msj 923

 33. Gnanapavan S, Hegen H, Khalil M, et al. Guidelines 
for uniform reporting of body fluid biomarker studies 
in neurologic disorders. Neurology 2014; 83(13): 
1210–1216.

 34. Abraira V, Alvarez-Cermeno JC, Arroyo R, et al. 
Utility of oligoclonal IgG band detection for MS 
diagnosis in daily clinical practice. J Immunol 
Methods 2011; 371(1–2): 170–173.

Visit SAGE journals online 
journals.sagepub.com/
home/msj

 SAGE journals

https://journals.sagepub.com/home/msj
https://journals.sagepub.com/home/msj
https://journals.sagepub.com/home/msj

