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The variable-width strip packing problem
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Abstract In this paper, we focus on a generalized version of the strip packing
problem: we have several open-end strips with different widths, and we wish
to pack rectangular items into these strips without overlapping such that we
have to minimize either the makespan (i.e. the top of the topmost item), or
the total area used. We investigate the online variant of the problem, where
the items are arriving one-by-one, and we have to make irrevocable decisions
on their packing.

A similar framework was proposed by Ye and Mei in [12] for scheduling
models, and they studied the absolute competitive ratio of their algorithm.

Our contribution is to define a new objective function and several algo-
rithms by combining so-called shelf algorithms with techniques taken from the
areas of the variable-sized bin packing problem and scheduling. We analyzed
the asymptotic competitive ratio of our algorithms.

Keywords Strip packing · variable widths · online algorithms · competitive
ratio

Mathematics Subject Classification (2010) 68Q25 · 68W25 · 68W40

1 Introduction

In the area of packing, there are different kinds of problems that need to be
tackled. One of them is the strip packing problem. It was first introduced by

A. Bódis
University of Szeged, Faculty of Science and Informatics
Szeged, Hungary
Tel.: +36-30-6479688
E-mail: abodis@inf.u-szeged.hu

J. Csirik
University of Szeged, Faculty of Science and Informatics
Szeged, Hungary
E-mail: csirik@inf.u-szeged.hu
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Baker et al. in [1], and it is one of the best-known two-dimensional packing
problems of computer science. Here, we have a list of items and a unit-width
strip with infinite height, and our goal is to pack the items into this strip
without overlaps such that the top of the uppermost item is as low as possible.

In this paper, we concentrate on a generalized version of this problem,
where we have several given strips, but their widths are different (each strip has
a unique width). To the best of our knowledge, there is only one existing paper
[12] that considers a similar framework. There, the problem was formulated
as a scheduling problem, where the items are jobs, their height is the time
requirement of the job, their width is the amount of processors needed for
the job, and the strips are clusters with different amount of processors (i.e.
the width of the strip). The objective function had to minimize the maximum
height achieved in any of the strips. We will also investigate this model, and
we will define another interesting objective function based on the used area of
the strips.

In this study, we consider only the online variant of the problem, where
the algorithms know the strips and their widths beforehand, but they have
no idea about the input list of items; and even the number of the items is
unspecified. The items appear one-by-one and the algorithms have to pack
them immediately, and they are not allowed to repack the items later. As usual,
we will measure the performance of online algorithms with their competitive
ratios. For a problem instance I, let us denote the objective value of algorithm
ALG applied to I by ALG (I), and let OPT (I) stand for the offline optimal
value for this instance. Then ALG is called asymptotically C-competitive if
there exists a constant D such that ALG (I) ≤ C · OPT (I) + D for every
instance I. The smallest C, which satisfies this inequality is the asymptotic
competitive ratio of ALG. When D equals zero, ALG is called absolutely
C-competitive, and the smallest such C is the absolute competitive ratio of
ALG.

In their paper, Ye and Mei [12] proposed an online algorithm with absolute
competitive ratio of 14.2915. Here, we will analyze the asymptotic competitive
ratio of the algorithms we introduce.

The first investigation of the online strip packing problem was conducted
by Baker and Schwarz [2]. They proposed the so-called shelf algorithms: the
NextFit Shelf algorithm and the FirstFit Shelf algorithm. The former is asymp-
totically 2 ·r-competitive, while the latter is asymptotically 1.7 ·r-competitive,
where r ∈ {x ∈ R|x > 1} is a parameter of the algorithm. Csirik and Woeg-
inger [5] introduced the Harmonic Shelf algorithm that has an asymptotic
competitive ratio arbitrarily close to 1.69103 · r.

We will define several algorithms and analyze their asymptotic competi-
tiveness. Our algorithms apply ideas taken from the field of variable-sized bin
packing problem, which was first presented by Friesen and Langston [6]. In
this model, we have given a fixed collection of bin sizes and we have an infinite
number of bins of every size. The objective is to minimize the total size of the
bins, i.e. we have to minimize the wasted space. Kinnersley and Langston [8]
described two ways to adapt NextFit and FirstFit to the variable-sized bin
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packing problem: ’only with Largest bin’ and ’using Smallest possible bin’.
NextFit was adapted to the former approach, while FirstFit was adapted to
both of them. It was shown that all of these three algorithms have an asymp-
totic competitive ratio of 2. Csirik [3] defined the Variable Harmonic algorithm
with an asymptotic competitive ratio of 1.691 . . .. Han et al. [7] proposed an
algorithmic framework that can apply any Harmonic-based bin packing al-
gorithm to the online variant of the strip packing problem such that their
asymptotic competitive ratio remains the same. For a detailed overview of the
results for this problem, we refer the reader to [4].

2 Problem definition

Now, we give a formal definition of the variable-width strip packing problem
(VWSPP) and introduce the necessary notations.

For an instance of the VWSPP, we will use the notation I = (σ,W), where
σ is the list of n input items, and W is the vector of the widths of the m strips.

Every item i is represented by its width wi and its height hi. So σ is the
list of these pairs; that is, σ = [(w1, h1) , (w2, h2) , . . . , (wn, hn)]. The area of
item i is denoted by Ai. The height of the highest item will be hmax.

The vector W defines the widths of the strips such that W = 〈W1,W2, . . . ,Wm〉,
where Wj is the width of strip j. The height of the strip j, namely the top of
the uppermost item in the strip (also called ’makespan’), is denoted by Hj .

Without loss of generality, we can assume, that 0 < hmax ≤ 1, and 0 <
wi ≤ 1 holds for every item i, and 1 = W1 > W2 > . . . > Wm > 0 holds for
the strips.

Using these notations, in the VWSPP, one has to pack the items of σ
without rotations such that they never exceed the width of the given strips,
and the items never overlap each other (they can touch the boundaries of
each other). In the online variant being investigated here, the items appear
one-by-one, and repacking them is not allowed.

We will consider two objective functions for this problem. The first one,
which is based on the area being used from the strips, can be formulated as
min

∑m
j=1 (Hj ·Wj). We will denote this area-based model as VWSPP-A. The

other one is a makepsan-based objective formulated as min maxmj=1Hj , and
denoted by VWSPP-M.

The reader might think that these two objectives are equivalent, but this
is not the case, which can be demonstrated by the following example. Let
W = 〈1, 0.3〉, that is, we have a strip with a width of 1 and another with a
width of 0.3, and σ contains n items of size (0.3, 1) – that is, every item has a
width of 0.3 and height of 1. Then, for the area-based objective function, the
optimal solution is to pack every item into the 0.3-width strip, so we use an area
of 0.3 · n, and the makespan is n. However, for the makespan-based objective
function, the optimal solution would be to pack the items in a balanced way,
meaning we have to pack n

4 items into the 0.3-width strip, and 3n
4 items into

the 1-width strip, so the height of each strip (i.e. the makespan) is only n
4 .
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3 Dimension reducing algorithms

Next, we will define a class of the dimension reducing algorithms. They use
a partitioning to adapt the standard one dimensional bin packing algorithms
to the VWSPP. We will use this definition and the lemma below to make the
proofs in this paper simpler.

Definition 1 A variable-width strip packing algorithm is a dimension reduc-
ing algorithm, if it partitions the strips vertically into blocks of (possibly)
different height such that the height of the items packed into a block is at
least α times the height of the block (where 0 < α ≤ 1), and it packs the
items into these blocks horizontally using a one dimensional variable-sized bin
packing algorithm.

Let us remark that these blocks are used in a quite similar way as the bins
in the variable-sized bin packing problem, because the items are packed next
to each other such that they cannot exceed the width of the strip.

Lemma 1 Suppose we have a dimension reducing algorithm ALG for the
VWSPP, which uses the variable-sized bin packing algorithm ALG1 for the
horizontal packing inside the blocks, and ALG1 is asymptotically C-competitive
for the variable-sized bin packing problem. Then ALG is asymptotically 1

α ·C-
competitive for the VWSPP-A.

Proof Let us consider separately the groups of items packed into blocks with
the same height. The packing of such a group is equivalent to solving the
variable-sized bin packing problem where the sizes of the items are the widths
of the original items and the possible bin sizes are the widths of the strips.

Since we know that ALG1 is asymptotically C-competitive for the variable-
sized bin packing problem, we can be sure, that asymptotically OPT cannot be
more than C times better than ALG in the horizontal direction. Furthermore,
ALG uses at least α fraction of every block vertically by definition. Since,
even OPT cannot do better than completely fill every strip, thus OPT – even
by mixing items with small and large height – cannot be more than 1

α times
better than ALG vertically.

These two results lead us to confirm the lemma. ut

4 NextFit algorithm

The NextFit algorithm is one of the most widely known online algorithms of
the bin packing problem. It keeps only one bin open at a time, and it tries to
pack the upcoming item into this bin. When the item does not fit into the bin,
NextFit closes this bin and opens a new one. A closed bin is never used again
for a later item.

Now, we will introduce a version of the NextFit algorithm for the VWSPP.
We will start with the definition of the NextFit Shelf algorithm, which is a well-
known variant of NextFit for the strip packing problem. Then, we will modify
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this algorithm such that it is able to handle variable-widths. This modification
will be similar to the one made in [8] for adapting NextFit to the variable-sized
bin packing problem.

The Shelf algorithms pack the items of a strip packing problem such that
every item is assigned to a shelf based on its height, and a standard bin packing
algorithm is applied to choose among the shelves with the same height. More
formally, let h (p) = 1

rk
denote the height of the shelf p, where k ∈ Z+ ∪ {0}

and r ∈ {x ∈ R|x > 1} is a parameter of the algorithm. Then the item i with
size (wi, hi) is assigned to shelf p, iff h (p) = 1

rk
and 1

rk+1 < hi ≤ 1
rk

.
The NextFit Shelf (NFS) algorithm is a Shelf algorithm, which uses NextFit

to choose among the shelves with the same height; that is, NFS checks to see
if there is any shelf with the desired height. If there is not, or the current item
does not fit into this shelf, then a new shelf is opened with this height, the
item is packed into this and the earlier shelf with this height is closed (if there
is any).

In [8], NextFit was adapted to the variable-sized bin packing problem such
that it uses only the largest bins, and it never opens a smaller one. This
algorithm was called NFL (Next Fit, only with Largest bins). It was proven
that NFL is asymptotically 2-competitive for the variable-sized bin packing
problem.

Applying the idea of NFL to the NextFit Shelf algorithm, we can define
the NFSL (Next Fit Shelf, only with Largest strip) algorithm for the
VWSPP. This algorithm packs every item into the largest strip (which has the
width of 1), and uses the NextFit Shelf algorithm to pack the items inside this
strip.

In the next lemma for the VWSPP-A, we will state a result generalised
to a whole class of algorithms. Then, we will present our result for the NFSL
algorithm in the VWSPP-A.

Lemma 2 For the VWSPP-A, the asymptotic competitive ratio is at least 2 ·r
for every (online and offline) Shelf algorithm using just the largest strip.

Proof The proof is based on the following problem instance. Let W =
〈
1, 12 + ε

〉
and let σ contain items only with size

(
1
2 + ε, 1r + ε

)
. Then these algorithms

pack every item into the 1-width strip on a 1-height shelf, and only one item
goes into each shelf. OPT can pack every item into the other strip exactly
onto each other, so OPT can pack without any wasted area. This immediately
gives us the lower-bound.

ut

Theorem 1 The NFSL algorithm is asymptotically 2 · r-competitive for the
VWSPP-A, and this ratio is tight.

Proof For the lower-bound, we can apply Lemma 2 for NFSL by definition.
We know that NFL is asymptotically 2-competitive for the variable-sized

bin packing problem [8]. Since NFSL is a dimension reducing algorithm using
NFL with α = 1

r , we can apply Lemma 1 to get the upper-bound.
ut
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In the next lemma, we will state a general result for the VWSPP-M.

Lemma 3 Suppose we have a Shelf algorithm ALG which is asymptotically
C-competitive for the standard strip packing problem. Let us define ALGL as
ALG, adapted to the VWSPP, such that only the largest strip is used. For the
VWSPP-M, ALGL is asymptotically C ·m-competitive.

Proof Let us define the OPTL algorithm such that it uses only the 1-width
strip, but it packs the items inside this strip in an optimal way.

Then, we get the following inequality from the competitive ratio of ALG
in the standard strip packing problem: ALGL

OPTL ≤ C.
Furthermore, OPT can use the other strips as well, and it can pack the

items into the same height in every strip (if this is possible). This means that
OPTL
m ≤ OPT holds.
When we combine these two inequalities, we get the upper-bound of the

theorem:
ALGL

OPT
≤ ALGL

OPTL
m

=
ALGL

OPTL
·m ≤ C ·m

.
ut

Theorem 2 The NFSL algorithm is asymptotically 2 · r · m-competitive for
the VWSPP-M, and this ratio is tight.

Proof For the upper-bound, we can apply Lemma 3 for NFSL by definition,
because NFS is asymptotically 2 · r competitive for the standard strip packing
problem. [2]

To prove the tightness of this bound, let us examine the following problem
instance. Let W = 〈1, 1− ε, 1− 2 · ε, . . . , 1− (m− 1) · ε〉, and let σ contain
n = 2 · k items such that each height is 1

r + ε and each width comes from the
following list: [

1

2
− (m− 1) · ε

2
,

(m− 1) · ε
2

+ ε

]k
NFSL packs these items with a total height of k into the 1-width strip,

because, after each pair, a new shelf is opened with a height of 1.
Meanwhile, OPT packs the first items of each iteration in an equally bal-

anced way among all the strips, because two such items fit next to each other
in any strip. If ε is small enough, then all the narrow items can be packed
next to each other into the 1-width strip. So, OPT can pack these items into
a height of k

2·m ·
(
1
r + ε

)
+ 1

r + ε.
Comparing the performance of NFSL and OPT for this input, we get the

following ratio:

lim
k→∞
ε→0

k
k

2·m ·
(
1
r + ε

)
+ 1

r + ε
= lim
k→∞

k
k

2·m ·
1
r + 1

r

=
1
1

2·m·r
= 2 ·m · r

.
ut
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5 FirstFit algorithm

The FirstFit (FF) algorithm is also a well-known online bin packing algorithm.
The key difference to NextFit is that FirsFit keeps all the bins open at the
same time. If an item fits into any of the bins, it will choose the earliest
opened one. For the strip packing problem, FirstFit was adapted to FirstFit
Shelf (FFshelf), which uses FirstFit to choose the appropriate shelf to pack
the item. This means that it maintains a list of shelves and it packs the item
into the first opened shelf with the desired height. [2]

FirstFit was adapted in two ways for the variable-sized bin packing problem
in the paper by Kinnersley et al. [8]: FFL (FirstFit, only with Largest bin) and
FFS (FirstFit, using Smallest possible bin). In this section, we will describe
these algorithms and adapt them to the VWSPP as we did for the NFS case.

5.1 FFSL

The FFSL (FirstFit Shelf, only with Largest strip) algorithm differs
from NFSL only by using FirstFit instead of NextFit; that is, we pack every
item into the largest strip, and use the FirstFit Shelf algoritm inside this strip.

For the VWSPP-A, FFSL has exactly the same competitive ratio as NFSL
has.

Theorem 3 The FFSL algorithm is asymptotically 2 · r-competitive for the
VWSPP-A, and this ratio is tight.

Proof For the lower-bound, we can apply Lemma 2 to FFSL by using the
definition.

We know that FFL is asymptotically 2-competitive for the variable-sized
bin packing problem [8]. Since FFSL is a dimension reducing algorithm using
FFL with α = 1

r , we can apply Lemma 1 for the upper-bound.

ut

Theorem 4 The FFSL algorithm is asymptotically 1.7 · r ·m-competitive for
the VWSPP-M.

Proof For this upper-bound, we can apply Lemma 3 for FFSL by definiton,
because FirstFit Shelf is asymptotically 1.7 · r competitive for the standard
strip packing problem. [2] ut

Theorem 5 The FFSL algorithm is asymptotically not better than 10
6 · r ·m-

competitive for the VWSPP-M.

Proof For this lower-bound, let us examine the following problem instance.
Let W = 〈1, 1− ε, 1− 2 · ε, . . . , 1− (m− 1) · ε〉, and let σ contain n = 18 · k
items such that each height is 1

r + ε and each width comes from the following
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list: [
1− (m− 1) · ε

6
− 2 · ε2

]6k
,[

1− (m− 1) · ε
3

+ ε2

]6k
,[

1− (m− 1) · ε
2

+ ε2

]6k
,

where ε2 >
(m−1)·ε

2 .
These items are packed by FFSL into the largest strip in the following

way. From the first block, 6 items are packed into the same shelf. The second
block is packed pairwise. The items of the third block are packed into separate
shelves one-by-one. So, k + 3k + 6k shelves are opened with the height of 1.
This means that FFSL packs these items into a height of 10 · k.

However, OPT can pack one item from every block next to each other, and
it can pack these

(
1− (m− 1) · ε, 1r + ε

)
size items in a balanced way among

the strips. So, OPT packs with a height of 6k
m ·

(
1
r + ε

)
.

Consolidating these results, we get the following:

lim
n→∞

FFSL

OPT
= lim
k→∞

10k
6k
m ·

(
1
r + ε

) =
10
6
m·r

=
10

6
·m · r

.
ut

5.2 FFSS

In Kinnersley’s and Langston’s paper [8], the other adaptation of FirstFit to
the variable-sized bin packing was FFS (FirstFit, using Smallest possible bin),
which opens the new bins with the smallest size the current item fits into. Using
the basic idea of this algorithm, we will define the FFSS (First Fit Shelf,
using Smallest possible strip) algorithm such that, if an item does not
fit into any of the open shelves, it will open a new shelf in the smallest strip
the item fits into.

Theorem 6 The FFSS algorithm is asymptotically 2 · r-competitive for the
VWSPP-A, and this ratio is tight.

Proof We know that FFS is asymptotically 2-competitive for the variable-sized
bin packing problem [8]. Since FFSS is a dimension reducing algorithm using
FFS with α = 1

r , we can apply Lemma 1 to get the upper-bound.
To prove the tightness of this upper-bound, let us look at the following

problem instance. Let W = 〈1, 1− ε〉, and let σ contain items with a width of
1
2 and a height of 1

r + ε. FFSS packs these items one-by-one into the smaller
strip, while OPT fills the space completely by packing them into the larger
strip pairwise. ut
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Theorem 7 The FFSS algorithm is asymptotically not constant competitive
for the VWSPP-M.

Proof Let W =
〈
1, 1

n

〉
, and let σ contain n items with a width of 1

n and a
height of 1.

FFSS packs these items into the smaller strip, and produces a makepsan
of n, while OPT packs every item into the 1-width strip and its makepsan is
just 1. ut

6 Variable Harmonic Shelf algorithm

The Harmonic algorithm was defined for the standard bin packing problem by
Lee and Lee [9]. The basic idea is to classify the items based on their sizes,
and pack the classes separately into bins. The classification is implemented
by partitioning the interval (0, 1] into subintervals Ik(k = 1 . . .M), where

Ik =
(

1
k+1 ,

1
k

]
for 1 ≤ k < M , and IM =

(
0, 1

M

]
. M is a positive integer

parameter of the algorithm.

The asymptotic competitive ratio of this algorithm can be described with
the harmonic sequence of numbers. In [9], the harmonic sequence has a recur-
sive definition: π1 = 1, πi = πi−1 · (πi−1 + 1). Then the competitive ratio of
the Harmonic algorithm is the limit of the sum of the reciprocals of the first
n values; that is, Π∞ = limn→∞Πn = limn→∞

∑n
i=1

1
πi

= 1.691 . . . .

Csirik and Woeginger [5] defined the Harmonic Shelf algorithm for the
strip packing problem, which uses the partitioning of the Harmonic algorithm
to classify the items based on their widths. It packs the items into the shelves
such that each shelf only contains items with the same width-class. It was
proven that the asymptotic competitive ratio of this algorithm is Π∞ · r.

For the variable-sized bin packing problem, Csirik introduced the Variable
Harmonic (VH) algorithm [3] with the asymptotic competitive ratio of Π∞. It
was proven by Seiden [10] to be an optimal online algorithm for the bounded
space variant of the problem.

Here, we propose an adapted version of VH for the VWSPP: the Variable
Harmonic Shelf (VHS) algorithm.

The height-classification of the items is the usual classification of the shelf
algorithms.

The width-classification of the items is based on the definition given in
[10]. First, we have to define the set T :

Ti =

{
Wi

j

∣∣∣∣ j ∈ N+,Wi > j · ε
}
, T =

m⋃
i=1

Ti,

where ε ∈ (0, 1] is a parameter of the algorithm and N+ is the set of the
positive natural numbers. The numbers in T are denoted by t1, t2, . . . , tv such
that 1 = t1 > t2 > . . . > tv. Furthermore, tv+1 = ε and tv+2 = 0.
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The type of the items is defined by the intervals Ik = (tk+1, tk], where
k = 1, 2, . . . , v + 1. Then, an item i is of type k if wi ∈ Ik. The interval Ik is
of class γ and order j, if tk =

Wγ

j (we can break ties arbitrarily).
The VHS algorithm packs items into the same shelf only if they are of the

same type. When the item i arrives, we specify its type and the proper height
of its shelf. From the type, we also get the class; that is, the strip to be packed
into, and the order; that is, the number of items packed next to each other.
If there is a shelf for the current type, where item i fits into, then item i is
packed into it. If there is no proper open shelf, then the new shelf is opened in
the strip corresponding to the class of this type. The items of type v+ 1, that
is, the ones with a width falling into (0, ε], are packed using NextFit Shelf into
the 1-width strip.

Theorem 8 VHS is asymptotically r ·Π∞ = r · 1.691 . . .-competitive for the
VWSPP-A.

Proof We know that VH is Π∞-competitive for the variable-sized bin packing
problem [3]. Since VHS is a dimension reducing algorithm using VH with
α = 1

r , we can apply Lemma 1 to get the upper-bound. ut

Theorem 9 VHS is asymptotically not competitive for the VWSPP-M.

Proof Let W =
〈
1, 1

n − ε
〉
, and let σ contain n items with a width of 1

n − ε
and a height of 1.

VHS packs all the items into the smaller strip, so the makespan is n. In the
meantime, OPT can pack each item into the larger strip next to each other,
so the makespan is only 1. ut

7 Greedy Variable Harmonic Shelf algorithm

Now, we will combine the VHS algorithm with the well-known greedy schedul-
ing algorithm to get a constant competitive ratio for the makespan model. This
is called the Greedy Variable Harmonic Shelf (GVHS) algorithm.

GVHS uses the same types as VHS, and works in a similar way. The only
difference is that when we need to open a new shelf, GVHS (as opposed to
VHS) can do this for any strip, where the item fits into. GVHS chooses the
strip based on a greedy decision: the new shelf is opened in the lowest strip
(i.e. where the top of the uppermost shelf is the lowest), where i fits into.

Theorem 10 GVHS is asymptotically 2 · r-competitive for the VWSPP-A.

Proof The definition of the shelves implies that GVHS fills the shelves to a
level of at least 1

r vertically.
Let us look at the horizontal direction. GVHS opens a new shelf for an

item only, if this item does not fit into any open shelf with appropriate height
and type. This can happen iff, each such shelf is filled half horizontally. We
can prove this statement indirectly. Let us suppose that there is a shelf with
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appropriate height and type, which is not filled half horizontally. Since the
current item does not fit into this shelf, it must be wider than the half of the
strip of this shelf. This means that the type has both wider and thinner items,
than the half of the strip. However, this is not possible from the definition of
the types. So, this is a contradiction. Therefore, almost every shelf is filled half
horizontally (except possibly the last shelves for each height and type).

ut

Theorem 11 GVHS is asymptotically 4 · r-competitive for the VWSPP-M.

Proof Let us denote the total area of the shelves of GVHS by A (GVHS (σ)).
Based on Theorem 10, the following inequality holds:

A (GVHS (σ)) ≤ 2 · r ·
∑
i∈σ

Ai.

For every type k, let S≥k and S<k denote the set of strips where an item
of type k does and does not fit into, respectively. With a similar notation, σ≥k
and σ<k will be the set of items fitting into (at least) one of the strips in S≥k
and S<k, respectively. We should remark that σ<k ⊆ σ≥k ≡ σ.

Now, we can define a lower-bound αk for the top of the topmost item of
type k in any solution, because we know that in the strips of S≥k one cannot
do better than pack those items, that do not fit into any other strip, in a fully
balanced way. This gives the following inequality:

αk ≥
∑
i∈σ Ai −

∑
i∈σ<k Ai∑

j∈S≥k
Wj

=

∑
i∈σ\σ<k Ai∑
j∈S≥k

Wj

Then, the following holds for OPT:

OPT (σ) ≥ max
1≤k≤v+1

αk ≥ max
1≤k≤v+1

∑
i∈σ\σ<k Ai∑
j∈S≥k

Wj

Furthermore, OPT cannot do better than pack the items completely bal-
anced among the strips. This is stated in the next inequality:

OPT (σ) ≥
∑
i∈σ Ai∑m
j=1Wj

Now, let us investigate GVHS. Let us denote by g the item defining the
makespan; that is, g has the highest top of all the items. Let k and p be the
type and the shelf of g, and B the bottom of p. The area of p will be denoted
by A (p). Then GVHS (σ) = B + hmax ≤ B + 1.

We will consider the items of the sets σ \ σ<k and σ<k separately in the
result of GVHS. The former items are packed into the strips of S≥k as much
balanced as GVHS is able to. The latter items can be packed into the strips
of S<k, so the total height of the shelves with such items in the strips of S≥k
cannot be more than the height of any strip in S<k, because otherwise GVHS
would pack those items into this lower strip of S<k.
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Putting these two observations together, using Theorem 10, and noticing
that p was opened on the lowest strip at the moment, we get the following:

B ≤ A (GVHS (σ \ σ<k))−A (p)∑
j∈S≥k

Wj
+
A (GVHS (σ<k))∑m

j=1Wj

≤
2 · r ·

∑
i∈σ\σ<k Ai −A (p)∑
j∈S≥k

Wj
+

2 · r ·
∑
i∈σ<k Ai∑m

j=1Wj

≤ 2 · r ·

(∑
i∈σ\σ<k Ai∑
j∈S≥k

Wj
+

∑
i∈σ<k Ai∑m
j=1Wj

)

≤ 2 · r ·

(∑
i∈σ\σ<k Ai∑
j∈S≥k

Wj
+

∑
i∈σ Ai∑m
j=1Wj

)
≤ 2 · r · (OPT +OPT )

≤ 4 · r ·OPT

Now, we apply this to the objective value of GVHS

GVHS (σ) ≤ B + 1

≤ 4 · r ·OPT + 1

.

ut

8 Improved Variable Harmonic Strip algorithm

In this section, we will introduce the Improved Variable Harmonic Strip
(IVHS) algorithm based on the results of Han et al. [7]. They proposed a
grouping and packing framework (G&PA) for strip packing using any so-called,
Super Harmonic algorithm A, and they proved that the asymptotic compet-
itive ratio of the original algorithm does not change with this method. Here,
we will define the IVHS algorithm by applying this framework for the VHS
algorithm.

The Super Harmonic algorithms were introduced by Seiden in [11]. This
class includes the bin packing algorithms based on classifying the items into
intervals by their sizes, such as: Harmonic, Refined Harmonic, Modified
Harmonic, Modified Harmonic 2, Harmonic+1 and Harmonic++.

One can readily see that the Variable Harmonic algorithm defined by Csirik
[3] is also a Super Harmonic algorithm, which uses the types described as
width-classification in Section 6, and it does not pack multiple types into the
same bin.

Now, we can define the IVHS algorithm with the G&PA framework.
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Grouping The items are grouped based on their widths according to the width-
classification described in Section 6. This means that this grouping is equiva-
lent to the classification by the types in VHS. The items of type v + 1 (i.e. if
their width is less than ε) are called narrow items, and all the other ones are
called wide items.

Packing The narrow items are packed using the VHS algorithm. We pack the
wide items with a two-level packing: the first level is packing these items into
so-called slips, the second level is packing these slips into so-called bins.

Items are packed into the same slip only if they are of the same type. If a
slip contains the items of type i, then its size is considered to be (ti, c), where
c is a constant parameter such that c = o (OPT (σ)) > 1.

Slips are packed into the same bin only if they contain items of the same
type, that is, every item of any bin has the same type. If the type of the items
in a bin is of the class j, then this bin is packed into the Wj-width strip, and
its size is (Wj , c).

When an item with type i arrives then we check to see whether there is a
slip of type i with a total height of items at most c− 1. If there is such a slip,
then the item is packed into it; otherwise a new slip is opened with size (ti, c).
When a new slip is created we pack it into a bin. If there is a bin for the type
of this slip, then it is packed into that bin; otherwise a new bin is opened for
this type on the strip corresponding to the class of the type.

Theorem 12 IVHS is asymptotically Π∞ = 1.691 . . .-competitive for the VWSPP-
A.

Proof We can treat IVHS as a dimension reduction algorithm packing items
of at least c−1

c height (i.e. the slips); that is, α = c−1
c , into c-height blocks

using VH. So we can apply Lemma 1 for an upper-bound of c
c−1 ·Π∞. Since c

is a sufficiently large constant by definition, this leads us immediately to the
statement of the theorem.

ut

Theorem 13 IVHS is asymptotically not competitive for the VWSPP-M.

Proof We can use the same input as in the proof of Theorem 9. IVHS will also
use just the smaller strip for the items, while OPT can pack everything into
the 1-width strip. ut

9 Greedy Improved Variable Harmonic Strip algorithm

Now, we will define the Greedy Improved Variable Harmonic Strip
(GIVHS) algorithm, which is a combination of IVHS and the greedy scheduling
algorithm.

GIVHS works in a very similar way to IVHS. The only difference is how
one chooses the strips for the new bins. While IVHS always opens the new
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bins in the strip defined by the class of the item-type, GIVHS chooses from
any strip, where the item fits into, in a greedy way: the lowest strip is chosen
(i.e. the one where the top of the uppermost bin is the lowest).

Theorem 14 GIVHS is asymptotically 2-competitive for the VWSPP-A.

Proof Since GIVHS, like IVHS, packs items of at least c−1
c in height (i.e. the

slips) into c-height bins, GIVHS has an asymptotic vertical area-usage of 1.
Looking at the horizontal direction, we can make a similar assertion as

that for GVHS in the proof of Theorem 10. GIVHS opens a new bin for a slip
only, if it does not fit into any bin with appropriate type. This can happen iff,
each such bin is filled at least half horizontally. The proof of this statement
is also similar to that in the proof of Theorem 10. If there were a bin which
is not filled half horizontally, then the corresponding type would have both
wider and thinner items than the strip of the bin. Thus, almost every bin is
filled half horizontally (except possibly the last bin for each type).

ut

Theorem 15 GIVHS is asymptotically 4-competitive for the VWSPP-M.

Proof We notice that the bins of GIVHS are similar containers inside the strips
as the shelves of GVHS. So, this theorem can be proven similarly to the one
for Theorem 11. We will present only the differing parts here.

Let us denote the total area of the bins of GIVHS by A (GIV HS (σ)).
From Theorem 14, the following inequality holds:

A (GIV HS (σ)) ≤ 2 ·
∑
i∈σ

Ai.

Let us denote by g the item defining the makespan, that is, g has the
highest top of all the items. Let b be the bin of g, and B the bottom of b. The
area of b will be denoted by A (b). Then GIV HS (σ) ≤ B + c.

With the same considerations as in the proof of Theorem 11 and the fact
that b was opened on the lowest strip at the moment, we get the following:

B ≤ A (GIV HS (σ \ σ<k))−A (b)∑
j∈S≥k

Wj
+
A (GIV HS (σ<k))∑m

j=1Wj
≤ 4 ·OPT (σ)

Now, we apply this to the objective value of GIVHS:

GIV HS (σ) ≤ B + c ≤ 4 ·OPT (σ) + c.

Next, we can compare the objective value of GIVHS and OPT, and we can
use the fact that c = o (OPT (σ)) :

lim
OPT→∞

GIV HS (σ)

OPT (σ)
≤ lim
OPT→∞

4 ·OPT (σ) + c

OPT (σ)
= 4

ut
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10 Conclusion

In this paper, we investigated online algorithms for a variant of the strip
packing problem, where we have multiple strips with different widths. This
model was investigated earlier by Ye and Mei in [12], where the makespan-
based objective model and the absolute competitive ratios of algorithms were
studied.

Here, we introduced a new objective function based on the area used from
the strips. For both objective functions, we examined the asymptotic compet-
itive ratios of several classical algorithms adapted for this problem.

First, we adapted NextFit and FirstFit such that they use only the largest
strip all the time. Then we presented an adaptation of FirstFit using the
smallest possible strip. We defined the Variable Harmonic Strip algorithm,
and we also combined this with greedy scheduling. Finally, we introduced the
improved variants of these latter two algorithms. The results obtained are
summarized in Table 1.

Area-based model (VWSPP-A) Makespan-based model (VWSPP-M)
Lower-bound Upper-bound Lower-bound Upper-bound

NFSL 2 · r 2 · r ·m
FFSL 2 · r 10

6
· r ·m 1.7 · r ·m

FFSS 2 · r ∞ -
VHS ? r · 1.691 . . . ∞ -

GVHS ? 2 · r ? 4 · r
IVHS ? 1.691 . . . ∞ -

GIVHS ? 2 ? 4

Table 1 The asymptotic competitive ratios of the online algorithms investigated. Recall
that m denotes the number of the strips and r ∈ {x ∈ R|x > 1} is a parameter of the Shelf
algorithms.

We have several open questions in connection with the VWSPP and the
above-listed algorithms. One can probably prove the tightness of the 1.7 · r ·m
upper-bound for FFSL with a more sophisticated list of items. And it would
be nice to find appropriate lower-bounds for the harmonic algorithms de-
scribed here. Since the Variable Harmonic algorithm was proved to be optimal
bounded-space algorithm for the variable-size bin packing problem [10], we
believe IVHS is also an optimal bounded-space algorithm for the area-based
model, but this conjecture has yet to be proved. The off-line version of the
problem is also exciting and worth thorough analysis.
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