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Abstract
We introduce a novel population genetic approach suitable to model the origin and relationships of populations, using new 
computation methods analyzing Hg frequency distributions. Hgs were selected into groups which show correlated frequencies 
in subsets of populations, based on the assumption that correlations were established in ancient separation, migration and 
admixture processes. Populations are defined with this universal Hg database, then using unsupervised artificial intelligence, 
central vectors (CVs) are determined from local condensations of the Hg-distribution vectors in the multidimensional point 
system. Populations are clustered according to their proximity to CVs. We show that CVs can be regarded as approximations 
of ancient populations and real populations can be modeled as weighted linear combinations of the CVs using a new linear 
combination algorithm based on a gradient search for the weights. The efficacy of the method is demonstrated by compar-
ing Copper Age populations of the Carpathian Basin to Middle Age ones and modern Hungarians. Our analysis reveals 
significant population continuity since the Middle Ages, and the presence of a substrate component since the Copper Age.

Keywords  Archaeogenetics · Haplogroups · Artificial intelligence · Self learning

Introduction

Nowadays, we witness a rapid accumulation of modern and 
ancient human DNA data, which combined with the devel-
opment of sequence analysis methods opens new perspec-
tives in studies of human prehistory (Skoglund and Mathie-
son 2018). Although full genomes undoubtedly provide the 
greatest information for studying relationships between indi-
viduals and populations, Y-chromosomal and mitochondrial 
data remain essential due to their uniparental inheritance and 
lack of recombination (Kivisild 2015). Ancient and modern 

human populations can be easily characterized by their Hg 
frequency distribution vectors, and the computational analy-
sis of these distributions may reveal hidden relationships due 
to early admixture, separation and migration processes. The 
incentive of our work was to elaborate such computational 
methods.

Comparison of the maternally inherited mitochondrial 
DNA distribution of populations is widely used in popu-
lation genetic analyses. The standard approach is fixation 
index (FST) statistics implemented in Arlequin (Excoffier 
and Lischer 2010) that measures the genetic differentiation 
between populations calculated from nucleotide diversity 
and also incorporating evolutionary distance between haplo-
types (Excoffier et al. 1992). Pairwise Fst distance matrices 
or haplogroup (Hg) frequency matrices can be visualized on 
MDS or PCA plots, where similar populations are expected 
to cluster close to each other. As distance matrices of vectors 
can easily be generated, all distance-based methods are suit-
able for clustering multidimensional vector data.

There are alternative ways to cluster multidimensional 
vector data, like k-means (Hartigan and Wong 1979), which 
is based on an essentially different principle, searching 
directly for central vectors of the local condensations of the 
multidimensional point systems defined by the vector data. 
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Thus, the primary product of vector-based methods is a set 
of central vectors (CVs) of the local condensations, and the 
clusters are determined after, as sets of data vectors being 
in the vicinity of the nearest CV. The main advantage of 
vector-based methods is the CV set, since CVs represent 
the common features characterizing all cluster members by 
their mean. CVs can be calculated with the vector-based 
“Self-Organizing Cloud” algorithm successfully applied in 
previous studies (Juhász et al. 2015).

As CVs themselves are also vectors in the vector space of 
the basal Hg set, a given CV can be interpreted as a hypo-
thetical “ancestral population” with descendants construct-
ing its own cluster. Indeed, we show here that CVs in our 
vector space model really can be well interpreted as ancient 
source populations of prehistorical migrations. However, the 
Hg-distribution vectors in our database construct a rather 
fuzzy point system in the space of the basal Hg set; there-
fore, an interpretation of a population as the descendant of 
the nearest CV may be an extreme simplification. Instead, 
the mathematical model describing the data vectors as linear 
combinations of all of the CVs with different weights is a 
more adequate representation. In this model, populations 
are interpreted as admixtures of the hypothetical ancestor 
populations represented by the CVs. We show in this paper 
a new gradient search algorithm determining the weights 
constructing the optimal models of the data vectors as linear 
combinations of the CVs.

To study the relationships of ancient and modern human 
populations, we generated a new mitogenome database from 
published data, then defined a reduced set of Hgs playing 
the most conspicuous roles in early migration and admix-
ture processes. The selection of this set was based on the 
hypothesis that the footprints of the most important early 
migration processes are found in associations of Hgs whose 
frequencies show correlated variations in several groups of 
populations. The “iterative rank correlation” method has 
been based on this hypothesis and successfully applied in 
several previous works (Juhász et al. 2018[7]. Therefore, we 
assume that the set of Hs showing correlated propagation 
with other Hgs provides a common basis for determining 
Hg frequency distribution vectors in a common vector space.

Methods

Construction of a common Hg basis for universal 
description of populations in the database

Our database contains the mitogenome Hgs of 15,919 indi-
viduals belonging to 62 modern and 115 ancient populations 
(Supplementary Table 1). The Hgs appearing in the data-
base are classified into 4159 sub-Hgs which are labeled by 
1–17 characters. Thus, each population can be described by 

distribution vectors containing the frequencies of their own 
Hgs, but the sizes and Hg contents of Hg sets characterizing 
different populations are necessarily different. To make a 
mathematically sound basement to reveal genetic relations 
between populations, we selected a common subset of the 
4159 Hgs which occur in multiple populations with a sig-
nificant frequency.

As the label system of the Hgs mirrors the tree struc-
ture of the subclades and deep subclades with long labels 
seldom occur in many populations, it is obvious to define 
a maximal depth of the Hgs specificators to be added to 
the common set. Defining this maximal number as 3 (see 
Results), we obtained 654 Hgs with depth of one to three 
characters (e.g., H, H1, H1a, H13a, H11ab). By eliminat-
ing the Hgs with very low prevalence, (frequency of 0.0005 
within the total database), this value was further reduced to 
224. Considering the resulting set of Hgs as a common basis 
for the whole dataset, an Hg distribution can be generated by 
classifying each member of a given population into one of its 
best matching group present in the common 224 Hg set. This 
way, we can preserve the information contained in the phylo-
genetically deeply classified Hgs with longer sizes of labels. 
For example, let the common Hg set be A, B, A1, B2a, and 
the Hgs appearing in a population A2a1, A1b, B2a3, B. In 
this case, Hg A2a1 is ordered to Hg A, Hg A1b to Hg A1, 
Hg B2a3 to Hg B2a, and, obviously, Hg B to Hg B.

The next step in the construction of an optimal common 
basis of Hgs is based on the assumption that the frequen-
cies of Hgs jointly taking part in the most important early 
migration processes show correlated propagation in ancient 
and modern populations. The relevance of this assumption 
has been discussed and validated in earlier publications [7]. 
The correlated propagation of Hgs can be indicated using 
a rank correlation analysis [8] as follows: considering the 
224 Hgs as a common basis, we can determine the Hg dis-
tributions of our 172 populations one by one. Being in pos-
session of these 224-dimensional (224D) Hg distributions, 
we can determine the rank list of, e.g., Hg A by ordering 
the 172 populations according to their frequencies of Hg A. 
We can construct such rank lists for all of the 224 Hgs and 
calculate the rank correlations for each Hg pair. Selecting 
the Hgs having at least one pair with a rank correlation value 
exceeding 0.8, we obtain an Hg collection reduced to the 
most important jointly spreading Hgs, suitable for studying 
migration processes. Obviously, correlations over 0.8 cannot 
be expected in the whole set of the 172 Eurasian popula-
tions because of the dynamic population processes of the 
past 10,000 years. We used our “iterative rank correlation 
algorithm” to accomplish a systematic search for subsets 
of populations in which high correlation can be detected 
between Hg pairs, and we accepted correlations over 0.8 
if these were detected in at least ten populations. In this 
way, we finally obtained a 74-element basis of correlating 
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Hgs with maximum depths of three phylogenetic labellings 
(Table 1). Correlation values exceeding 0.8 and/or critical 
population number above 10 resulted in a radical reduction 
of the number of suitable Hgs. For example, increasing the 
critical number of populations to 15, the number of suitable 
Hgs decreased by ~ 40%.

Determination of the set of local condensation 
centres of the 74‑dimensional Hg‑distribution 
vectors representing our 172 populations

The 172, 74-dimensional Hg-distribution vectors represent-
ing 172 populations create a point distribution in a com-
mon 74-dimensional vector space, where groups of similar 
Hg-distribution vectors—representing genetically similar 
populations—form condensations. Our next purpose was to 
determine the central vectors of all of these condensations. 
Our tool for this purpose is the unsupervised learning sys-
tem “Self-Organizing Cloud” (SOC) algorithm described in 
several past publications [6]. In our case, the training (input) 
vectors of the SOC are the 172 Hg distributions, while the 
learning (output) vectors are the condensation centres. The 
SOC algorithm also determines a sufficient number of the 
learning vectors N, for describing the clusters of the given 
vector system with an appropriate significance. The SOC 
algorithm automatically increases the number of the learning 
vectors until the significance of the clustering exceeds a pre-
defined critical value. In our case, this was formulated in the 
condition that the average distance of a cluster centre from 
the cluster members (the “radius” of the cloud constructed 
by the cluster) should be less than 1/3 of the distance from 
the nearest neighbouring cluster centre. Thus, the set of the 
resulting local condensation central vectors (CVs) provides 
an optimal and adequate model for the basic structure of the 
172 Hg distributions. Being in possession of these CVs, the 
original Hg distribution can be arranged into independent 
clusters by ordering each Hg distribution to its nearest CV.

Modeling the Hg distributions as weighted 
admixtures of local condensation central vectors

Although the above approach attributes each Hg distribu-
tion to one cluster unambiguously, the fuzzy structure of the 
point system makes it possible to relate an Hg distribution to 
more CVs simultaneously, with different weights depending 
on the distances of the CVs from the given Hg distribution. 
The mathematical problem can be formulated as follows. We 
approximate the given D-dimensional vector h as a weighted 
sum of the set of N given D-dimensional vectors v

1
...v

N
:

where h is the Hg-distribution vector to be approximated by 
the CVs v

1
...v

N
 , N = 74 is the number of the CVs and � is the 

error vector of the approximation. Our aim is to find the opti-
mal set of the weights a1...aN , minimizing the power of the 
error vector � (the squared sum of the D error components):

(1)h = a1v1
+ a2v2

+…+ a
N
v
N
+ �,

Table 1   The 74 Hgs linking populations and constituting the com-
mon basis for the 172 Hg-distribution vectors in our study

1 character 2 characters 3 characters

C4a, C4b
D4b, D4e, D4j
D5a
F1b
G2a

H H1 H1a, H1b, H1c, H1e
H2a

H3 H3h
H4a

H5 H5a, H5b
H6a

H7 H7b
H11a
H13a

HV HV0a, HV1a, HV2a
I1a

I2
I4a, I5a
J1b, J1c, J1d
J2a, J2b
K1a, K1b, K1c
K2a
L2a
M1a
N1a, N1b, N9a
R0a, R1a
T1a

T2 T2a, T2b, T2c, T2e, T2f
U1a
U2e
U3a, U3b
U4a, U4b, U4c, U4d
U5a, U5b
U8a, U8b

V
X2b, X2c, X2e
W3a
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where H is the power of the error to be minimized and �1...�D 
are the coordinates of the D-dimensional error vector � . Note 
that the CVs v

1
...v

N
 are usually not orthogonal; therefore, 

the weights a1...aN cannot be interpreted as independent 
coordinates.

The accuracy of an estimation is indicated by the error 
power H normalized by the total power of the vector to be 
estimated h:

where the accuracy J is 0 when the estimation is totally 
perfect and 1 if the estimation is unsuccessful, i.e. all the 
weights a1...aN equal 0.

The partial derivatives of the error power can be analyti-
cally formulated as

The numerical solution and the algorithm can be based on 
the gradient search principle, as detailed in Supplementary 
text1.

Thus, substituting a real Hg-distribution vector into h , our 
algorithm determines the optimal weights a1...aN for inter-
preting the corresponding population as an admixture of N 
CVs or “hypothetical ancestral populations” representing 
N clusters of inherently similar real populations. Assuming 
that the N clusters characterized by their central vectors can 
be well explained from an archaeogenetic point of view, the 
interpretation of real populations as their weighted admix-
tures may provide instructive consequences.

Results

Generation of Hg‑distribution vectors 
of the populations

Using the method described in Chapter 3.1, we have iden-
tified 74 Hgs, constituting the final 74 -element common 
basis for our analysis. The Hg content of this basis is listed 
in Table 1 and Supplementary Table 2 and their frequencies 
in the 172 populations are given in Supplementary Table 3.

Obviously, members of our mitogenome database not 
belonging to any of the Hgs or their subclades in Table 1 
are eliminated from our analysis. (For example, Hg B and 
its subclades are totally absent in our set.) Moreover, the 

(2)H = �
2

1
+ �

2

2
+…+ �

2

D
=

D
∑

k=1

�
2

k
= min,

(3)J = H∕

D
∑

k=1

h
2

k
,

(4)�H

�a
m

=

D
∑

k=1

2�
k

��
k

�a
m

= 2

D
∑

k=1

�
k
(−v

m,k).

specific Hgs of the three populations (Com, Gil, Pal_As) 
could not be assigned to any of the 74 basal Hgs; there-
fore, we could not classify them (Com, Gil, Pal_As). One 
of the reasons for this is certainly the incompleteness of the 
available mitogenome dataset, as Hgs missing from Table 1 
were described from few populations. In spite of our effort 
to collect all available mitogenome data, the eliminated Hgs 
are not yet informative enough to identify the population 
relations and main migration processes we wish to study. 
Independently of the incomplete representation, any defini-
tion of a universal Hg basis as a subset of the total Hg set 
causes more or less distortion of the original distributions. 
We will show in the next chapter that our correlation-based 
method provides a sub-optimal definition providing a good 
correlation with Fst distances in general.

The Hg distributions of the 172 populations deter-
mined by this 74-element Hg set can be considered as 172, 
74-dimensional vectors in a 74-dimensional orthogonal vec-
tor space, where the coordinate axes correspond to the 74 
Hgs, and the coordinates of the Hg-distribution vectors are 
defined as the frequencies of the 74 Hgs in the correspond-
ing population.

Performance test

To test the suitability of our approach, we compared 
genetic distances of real ancient populations, measured as 
unweighted Euclidean distances of our 74-dimensional Hg-
distribution vectors to the corresponding Fst distances. For 
this end, we selected 74 ancient populations from our data-
base, for which both Euclidean and Fst distances could be 
determined: the test populations are listed in Supplementary 
Table 4.

Next, we calculated the Euclidean distances of the 
mtDNA Hg distributions as follows:

where dm,n is the distance of populations denoted by their 
serial numbers m and n, D = 74 is the size of the set of the 
Hg basis, and h

m,k and h
n,k are the kth coordinates of the mth 

and nth Hg distributions.
We represented the distances of the above 74 test popula-

tions, calculated from Eq. 5 in a symmetric distance matrix 
of size of 74*74.

Another distance matrix—the “reference matrix” of the 
test—was constructed from the Fst distance data of the same 
74 populations. Both distance matrices are given in Sup-
plementary Table 5.

We obtained 0.68 correlation value of the two matrices, 
while the Mantel test [9] showed that a random permutation 
of the rows of a distance matrix resulted in an increase of 

(5)d
m,n

= (

D
∑

k=1

(h
m,k − h

n,k)
2)1∕2,
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correlation with a probability below 0.0001. These results 
verify that our Hg distribution-based method may repro-
duce the results of the standard Fst distance calculation with 
a good significance; thus, our abridged, jointly spreading 
74-element common Hg basis is a suitable representation 
of the original population. Consequently, the comparison 
of Hg distribution-based and Fst-based distance data of the 
test populations has validated our common 74-dimensional 
Hg basis described in Table 1.

Although the selection of the common Hg basis has been 
successfully validated by the performance test, its compila-
tion poses several questions. We restricted the common Hg 
basis to Hgs with label depths of 1–3, even though using 
deeper phylogenetic subclades with long labels should be 
clearly favorable in any analysis. Truncating longer Hgs 
inevitably leads to information loss, which could be reduced 
by applying higher maximal label lengths in the common 
Hg basis. On the other hand, using too deep phylogenetic 
subclades may obscure population relations, as deep Hg sub-
clades are seldom present in numerous populations. This 
problem is especially obvious when comparing Hg distri-
butions of ancient and modern populations, as most young 
subclades (with long Hg labels) were not yet present in the 
ancient populations. Thus, the optimal Hg phylogenetic 
depth of the common Hg basis needs to be determined.

Another related problem we should consider is how to 
handle phylogenetically deeply identified Hgs, which are 
longer than the predefined common Hg set. In our previ-
ous analysis, we added these to their nearest Hg present in 
the common set—which we term “cumulating method”—
though in many cases phylogenetic subclades may show 
independent population genetic dynamics from their paren-
tal clades.

Another alternative possibility would be to completely 
eliminate all subclades over the predefined phylogenetic 
depth, which we call “cutting method”. While applying the 
“cutting method” the information contained in the Hgs of 
the neglected individuals is totally lost, it is at least partly 
utilized in the former “cumulating method”. It follows that 
next to determining the optimal phylogenetic depth, we also 
need to consider the optimal way to handle deeper subclades 
with longer labels than the selected optimum length for our 
analysis.

We designed an experiment in which both of the above 
problems could be tested. To find the optimal Hg length, we 
reassembled the common Hg set with different predefined 
Hg label depths and repeated the performance test with each, 
both with the “cumulating” and “cutting” methods, then we 
determined the correlations of the corresponding distance 
matrices with the Fst distance matrix as follows:

1.	 Most frequent Hgs (all Hgs with database frequency 
above 0.0005) having maximal depth of 3, the frequency 
calculated with the cumulative method:

	   N = 224. Correlation with Fst distance matrix: 0.63, 
p(Mantel) <  = 0.00001).

2.	 Correlating Hgs (selected as described in Methods 3.1), 
having maximal depth of 3, the frequency calculated 
with the cumulative method (this has been shown in the 
performance test):

	   N = 74. Correlation with Fst distance matrix: 0.68, 
p(Mantel) <  = 0.00001).

3.	 Most frequent Hgs having maximal depth of 3, fre-
quency calculated with the cutting method:

	   N = 236. Correlation with Fst distance matrix: 0.28, 
p(Mantel) <  = 0.00001).

4.	 Correlating Hgs having maximal depth of 3, frequency 
calculated with the cutting method:

	   N = 16. Correlation analysis was eliminated due to the 
low size of the Hg set.

5.	 Most frequent Hgs having maximal depth of 4, fre-
quency calculated with the cumulativeg method:

	   N = 223. Correlation with Fst distance matrix: 0.49, 
p(Mantel) <  = 0.00001).

6.	 Correlating Hgs having maximal depth of 4, frequency 
calculated with the cumulative method:

N = 80. Correlation with Fst distance matrix: 0.68, p 
p(Mantel) <  = 0.00001).

The low correlations and set size in Experiments 3 and 
4 reveal that the cutting method results in lower correlation 
with the Fst data than any of the cumulative methods, thus 
we did not test the cutting method in other combinations.

We endeavored to keep the number of the “most frequent 
Hgs” defined by frequency threshold 0.0005 comparable in 
experiments 1, 3 and 5. Experiments 1 and 5 reveal that 
the maximal depth of 3 is preferable than 4 when using the 
cumulative method.

As Experiments 2 and 6 led to the highest correlations 
with Fst, thus the selection of correlating Hgs subset proved 
to be the most effective approach with maximal depths of 
3 and 4. Increasing the depth to 5 or above, we obtained a 
radical loss of correlations.

It is remarkable that the correlating 74 and 80 Hgs in 
experiments 2 and 6 comprise subsets of the “most frequent 
Hgs” in experiments 1 and 5, respectively, nevertheless gave 
better results.

Thus, we can conclude that the best choice for our study 
is Experiment 2, the reduction of the Hg set to correlating 
Hgs and applying the cumulative method with maximal Hg 
depth of 3.
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Clustering of the Hg distributions

As we have mentioned in Methods 3.2, the SOC algorithm 
automatically increases the number of learning vectors until 
the significance of the clustering exceeds a predefined criti-
cal value. To satisfy this requirement for our dataset, the 
algorithm increased the number of CVs up to 35. Using the 
Student’s t test, we found that the probability that the nearest 
CV does not belong to the studied cluster is more than 0.99 
for all cases. The correlation between the inherence matrix 
and the distance matrix of the 172 populations is 0.4. (As 
the element (i,j) of the inherence matrix is 1 if the ith and 
jth elements of the data set belong to the same cluster and 0 
otherwise, negative correlations with the distances indicate 
good correspondence here.) The populations constructing 
the 35 clusters are listed in Supplementary Table 6. The 
list shows that the SOC attributed “own” clusters to certain 
populations having very specific Hg distributions.

Demonstrating the biological relevance of CVs

We represented the relationships of the 35 CVs on the MDS 
plot, which revealed that 20 CVs form a genetic network 
connected by significantly close genetic distances, while the 
remaining 15 CVs are outliers, which do not seem to be part 
of this network. The main relationships of the 20 CVs are 
represented by the MDS map in Fig. 1, with the exclusion 
of 15 outliers.

The tree-like structure of Fig. 1 has an inner network 
with three main protruding branches. Next, we will show 
that CVs have well interpretable genetic relations, as the 
branches correspond to well-defined ancient populations, 

while the inner network represents populations with vari-
ous admixture events from the branches.

European hunter–gatherers, upper left branch  The left 
upper branch ion Fig. 1 includes CVs 5, 17, and 9, and their 
Hg distributions are shown in Fig. 2a. All of the populations 
in these clusters are European Mesolithic hunter–gather-
ers (Supplementary Table 6) belonging to Hgs U2e, U4a, 
U4b, U4d, U5a and U5b, with the dominance of U5a and 
U5b. The closest Hg distributions to CVs 5 and 9 belong to 
Western hunter–gatherers (WHG) and Ukrainian Neolithic 
(Ukr_N).

CV 30 and 31 connect the hunter–gatherer branch to 
the inner network suggesting that these CVs may contain 
populations with additional elements on an HG layer and 
indeed these CVs include European and steppe Bronze 
Age–Iron Age populations besides modern Eastern Euro-
peans (Supplementary Table 6) in which this admixture 
has been documented [10–12]. The similarity between 
Figs. 2a, b is conspicuous, four of the five Hgs (U5a, U2e, 
U5b, U4a) are common, but in CV30 (Fig. 2b blue line) 
the hunter–gatherer substrate is completed by H6a, T1a 
and H13a. We will show below that Hgs T1a and H13a 
play the most important role in Caucasian and Near East-
ern populations, so CV30 may mirror a contribution of 
ancient Near Eastern, and/or Caucasian populations to a 
hunter–gatherer substrate as has been shown before [13]. 
As the closest ancient populations to CV30 are Baltic Iron 
Age (Balt_IA) and Mierzanowice Bronze Age (Mrz_BA), 
CV30 may be attributed to an ancient North-Eastern Euro-
pean Bronze Age population.

CV31 is also dominated by the hunter–gatherer U5a, 
and U5b Hgs (Fig. 2b red line), but in this group further 
Western Eurasian and Asian components are represented 
by Hgs H, H5a, H6a, I4a, as well as D4j and D4b. As both 
Yamnaya–Afanasievo (YamAf) and Karasuk (Kar) belong to 
CV31, this may refer to the contribution of the East Euro-
pean Yamnaya to the South Siberian Karasuk population 
[14].

Asian populations, upper right branch  The upper right 
branch on Fig.  1 includes CVs 21, 14, 19, 29 and 35, all 
of which represent Asian populations (Supplementary 
Table  6). CV21 corresponds to modern Siberians: even 
Nganasan and Yukaghir. CV19 contains modern East-
Asians: Japanese, Chinese and Tuvinian, CV14 Bronze Age 
Siberians and CV35 modern and ancient East-Inner Asian 
populations, while CV29 links these groups to the rest of the 
tree. We analyze here CVs 29 to show that it represents Hgs 
with European links and CV35, as an example of the Asian 
groups with no Western Eurasian contacts.

Hg distribution of CVs 29 and 35 are shown in Fig. 2c.

Fig. 1   MDS map mirroring the relationships of the most related 20 
CVs from the total 35-element CV set. Outlier CVs not related to 
the main cluster are not represented. Thin edges connect CVs with 
Euclidean distances below 35% of the maximal value, while the thick 
edges indicate the minimal spanning tree of the system, connecting 
the 20 populations with minimal sum of distances
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The hunter–gatherer component indicated by U2e, 
U4a and U5a is also detectable in CV29 (Fig. 2c red line) 
together with low prevalence European Hgs H, H1, HV, 
T1a and I1a. However, the dominant components are here 
Asian Hgs C4a, C4b, D4b, D4j, F1b and G2a. This refers 

to a stable Asian substrate with European contribution and, 
accordingly, CV29 also contains Scytho-Siberians, Saka, 
TienShan Huns and Xiongnus, all of which are known to be 
Steppe_MLBA–Siberian admixed populations with consid-
erable European elements [11, 15, 16]. That is why CV29 

Fig. 2   Hg distributions of selected CVs. a CV5 (blue), CV9 (red), 
CV17 (yellow); b CV30 (blue), CV31 (red); c CV14 (blue), CV29 
(red), CV35 (yellow); d CV20 (bue), CV23 (red). The horizontal axis 

shows Hg serial numbers, according to Supplementary Table 2. The 
vertical axis shows Hg frequencies. Most frequent Hgs are labelled at 
the peaks (colour figure online)
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links Siberian and Western Eurasian populations. Population 
with the closest Hg distribution to CV29 is Baikal Neolithic 
(Baik_N), indicating a substantial contribution of Baik_N to 
the above populations in agreement with the cited genomic 
results.

CV35 (Fig. 2b yellow line) represents another Asian 
group with predominance of Hgs C4a, C4b, D4b, D4j, D5a, 
F1b, and G2a, without Western Eurasian component. The 
closest populations to CV35 are Inner-East Asia Neolithic 
(IEA_N,) including samples from China, Mongolia and 
Far Eastern Russia (DevilsCave) as well as modern Yakuts 
and Tibetians. It has been shown that DevilsCave (IEA_N) 
genomes contributed significantly to Baikal Neolithic (Sha-
manka, Lokomotiv, Ust'-Ida [17], which may provide the 
direct link between CV35 and CV29.

Central Asian–South Siberian groups, upper middle 
branch  CVs 20 and 23 are located in the intermediate area 
between the two upper branches in Fig. 1, and the edges link 
these groups both to European (CV30) and Asian (CV29) 
nodes, which refer to an admixture of Western and East-
ern Eurasian components in these Hg distributions. CVs 
20 and 23 contain Central Asian–South Siberian Bronze–
Iron Age–Medieval populations—Kazakhstan Kangju, Iron 
Age-Medieval Nomads, Wusun, Sintashta, Tagar, Mongo-
lian Uyuk (Supplementary Table 6), which have been shown 
to contain these east–west admixtures [11, 16]. We analyze 
here the Hg distribution of CV23 in detail.

The closest populations to CV23 are the Bronze Sintashta 
(Steppe_MLBA) and Iron Age Tagar (Scytho-Siberian) pop-
ulations. The Hgs constructing CV23 (Fig. 2d red line) can 
be divided into four groups as follows:

1)	 U2e, U4a, U4d, and U5b which were also found in CVs 
5, 9, 17 and 30, mainly attributed to Mesolithic–Neo-
lithic hunter–gatherers.

2)	 C4a, C4b and F1b were also found in CVs 29, 35 with 
the closest populations Baik_N and IEA_N, attributed 
mainly to the South Siberian substrate population.

3)	 HV, J1c, and N1a which were also found in CVs 13, 
16, 25, 33 and 34 will be attributed mainly to Neolithic 
farmer, as well as Caucasian-Near Eastern populations 
below.

4)	 H6a was also found in CV31 Poland Bronze Age 
(BellB_Pol, Str_BA) dominated by Western Eurasian 
Hgs arising from Central and Eastern Europe, as well 
as from the Near East and the Caucasus.

These data altogether indicate that populations belong-
ing to CV23 could be derived from admixtures of the 
listed components. European farmer, Caucasus, and East-
ern hunter–gatherer components of Sintashta genomes 
have been documented [14], while Scytho-Siberian Tagar 

genomes were also shown to be admixtures from major 
Sintashta MLBA and minor Siberian elements [11].

Anatolian–European Neolithic, lower branch  CV16 repre-
sents the lower extreme of the tree, containing Anatolian 
and European Neolithic populations (Supplement), while 
CV22 and CV33 are their closest related groups containing 
ancient and modern Southern European as well as European 
Bronze Age groups.

We begin the interpretation with CVs 16 and 33 
(Fig. 3a). The Hg set H, H1, HV, J1c, K1a and T2b is 
totally common in both CVs, while N1a and H1b are 
specific for CV16 and CV33, respectively. Hgs U5a and 
U5b also appear simultaneously in both CVs, but their 
low frequencies may refer merely to a weak influence of 
Mesolithic–Neolithic hunter–gatherers to the populations 
represented by CVs 16 and 33. The closest Hg distribu-
tions to CV16 belong to Anatolia Chalcolithic (An_CA), 
Anatolia Neolithic (AN_N), Near-East Neolithic (NE_N) 
and Great Bitain Neolithic (GB_N), so CV16 can be attrib-
uted to European Neolithic farmer populations. The near-
est populations to CV33 are Iberian Bronze Age (Ibe_BA) 
and Hungarian Bronze Age (HU_BA), so CV33 may be 
considered as the Bronze Age derivative of CV16, modi-
fied by genetic drift, bottleneck effect or admixture. Note 
that Hgs HV, J1c and N1a were also identified in CV23 
above, as contributions of a Neolithic farmer gene flow to 
South Siberia.

The Hg distributions of CVs 25 and 34 (Fig. 3b) dis-
play obvious similarities to those of CV16 and CV33. For 
example, the Hg set of H, H1, HV, J1c, K1a and T2b identi-
fied above as common components of CVs 16 and 33 are 
also present with dominant frequencies in CVs 25 and 34. 
The main difference between Figs. 3a and 3b are the high 
frequencies of Hgs U5a and U5b in CVs 25 and 34. This 
can be interpreted as a balanced admixture of a Mesolithic 
hunter–gatherer and a Neolithic farmer population. Most 
similar populations to CV25 are European farmers (EU_
LBK), Hungarian Chalcolithic (HU_CA), and Near-East 
Chalcolithic (NE_CA), whereas modern populations are 
totally missing from its cluster. At the same time, the clos-
est ancient populations to CV34 are Hungarian Bronze Age 
Bell-Baker (BellB_HU), Bulgarian Bronze Age (Thr_BA) 
and Poland Iron Age, (Pol_IA), as well as Baltic Medieval 
(Balt_Med), Baltic post-Medieval (Balt_PM), and European 
Medieval (Eu_Med). Thus, CVs 25 and 34 can be identified 
as earlier and later versions of a population originating from 
an admixture of a Mesolithic–Neolithic hunter–gatherer and 
a Neolithic farmer population corresponding to previous 
data [18]. In addition, very similar modern populations to 
CV34 are also found in Western and Northern Europe (Ire, 
Nor, Dan), whereas non-European populations are missing.
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Caucasus–Near East, lower middle part of the tree  Figure 1 
indicates close Euclidean distance of CV13 from CV34 
and, indeed, the high prevalence of the Hg set of H, H1, 
HV, J1c, K1a and T2b links these populations. At the same 
time Hgs T2, J1b, J1d, M1a, R0a, T1a, HV2a, and H13a 

provide the particularity of CV13. Most similar ancient 
populations to CV13 are Near East–Caucasus Neolithic–
Chalcolithic–Bronze Age populations (NE_N, NE_CA, 
NE_BA, Ar_CBA, Ar_IA) clearly showing the geographic 
roots of CV13. In addition, very close modern populations, 

Fig. 3   Hg distributions of a CVs 16 (blue), CV33 (red); b CV25 
(blue), CV34 (red); c CV13 (blue); and d CV27 (blue). Horizontal 
axis: Hg serial numbers, according to OR Hg-list-74.xls. Vertical 

axis: Hg frequency. Most frequent Hgs are labeled near the peaks rep-
resenting their frequencies (colour figure online)
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modern Iranian (Ira) and Pakistan–Afghanistan (Paf) refer 
to the same area. Note also that Hgs T1a and H13a were 
mentioned as Near Eastern–Caucasian contributions to the 
North-East European CV30-dominated by hunter–gatherer 
Hgs.

Demonstrating the efficacy of central vector 
modeled admixture

Let us assume that the CVs determined by the SOC algo-
rithm represent Hg distributions of 35 hypothetical ancient 
populations and any of the 172 populations in our study can 
be modeled as admixtures of these. Based on this assump-
tion, the Hg distribution of an actual population can be mod-
eled as the linear combination of the 35 CVs. The weights of 
the 35 CVs (hypothetical ancient populations) in the given 

real population are determined by the admixture algorithm 
as the coordinates a1...aN in Eq. 1 (Supplementary Table 7).

Being in possession of the weights determined for a given 
population, its “CV-modeled” Hg distribution also can be 
calculated using Eq. 1. By comparing the “CV-modeled” 
Hg distribution to the real one, we can test the accuracy of 
the admixture model.

To demonstrate the efficacy of the method we chose to 
analyze historical populations of the Carpathian Basin as 
examples.

We show three examples of the original and the mod-
eled Hg distributions on Fig. 4, for Hungarian Copper Age 
(Hu_CA), ninth to eleventh century Conqueror commoner 
(ConqC) and modern Hungarian (Hun) populations from 
our dataset. Figure 4 illustrates that the original frequencies 
of the most important Hgs are modeled with an appropriate 
accuracy by the linear combinations of central vectors. The 

Fig. 4   Hg distributions of a: Hungarian Copper Age (Hu_CA), b: Conqueror commoner (ninth to eleventh century ConqC) and c: modern Hun-
garian (Hun) populations. Red lines indicate original Hg distributions, while blue lines show CV modeled distributions (colour figure online)
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normalized error of the estimation calculated using Eq. 3 
were 0.455, 0.46 and 0.512, respectively, while the average 
error was 0.515. These values indicate medium or better 
than medium quality models. For instance, the coincidences 
of the peaks of the sample and model distributions of Hgs 
H, H1, HV, J1c, K1a, T2b, U5a, U5b on Figs. 4a–c desig-
nate that the performance of the modeling was optimal. The 
deviances may be explained by the possible lack of certain 
important ancient populations in the database or bias of the 
Hg distributions.

In addition, a prominent similarity can be observed 
between the Hg distributions of Fig. 4a–c. The association 
of Hgs H, H1, HV, J1c, K1a, T2b completed by Hgs U5a 
and U5b is totally uniform in all Fig. 4a–c, indicating con-
tinuity of a determinant hunter–gatherer–Neolithic farmer 
component in the Carpathian Basin since the Copper Age. 
From the early Middle Ages, this stable substrate is com-
plemented by Hgs H3, H1c, and H13a (Fig. 4b), refer-
ring to a Caucasian–Near Eastern contribution in CVs 13 
and 27 (see Fig. 3b, c). In the ninth and eleventh century 
Hungarian commoners, this basic layer was enriched by 
further Hgs of Caucasian–Near Eastern origin H5 and T1a, 
(Fig. 4b) in the in the ninth century (see also Fig. 3b, c). 
Figure 4c shows that the resulting ninth to eleventh cen-
tury complex Hg set also dominates the modern Hungarian 
population. Besides, we should point at the convincing 
overlap between Hg distributions of the three Hungarian 
populations with those of CVs 25 and 34, the former con-
taining Hungarian Neolithic–Bronze Age population in its 
cluster (see Fig. 3b and OR Clusters-35.dat).

The 35-dimensional weight vectors (coordinates a1...aN 
in Eq. 1), calculated for the three Hg distributions above 
and summarized in Fig. 5, provide more insight into the 
early admixture processes in Hungary. It is worth men-
tioning here that the weights providing approximations of 
biased Hg distributions with minimal error power are not 
necessarily normalized to one and also can exceed one, as 
discussed in Supplementary text1.

The most conspicuous phenomena in Fig. 5 are the 
decreasing weights of CV25 and increasing weights of 

CV34 with time. We have shown in Chapter 4.3.1 that CVs 
25 and 34 have highly similar Hg distributions with shifted 
frequencies, which can be regarded as Neolithic–Chalco-
lithic and later Bronze Age versions of European popu-
lations with a determinant genetic layer composed of an 
admixture of Mesolithic hunter–gatherers and Neolithic 
farmers. Indeed, the gradual decrease of the weights of 
CV25 and the simultaneous increase of those of CV 34 
clearly show the transition between these versions in the 
substrate population of the Carpathian Basin. The high 
weight of CV34 in modern Hungarian population shows 
that this transition is the most important process that deter-
mines the genetic structure of recent Hungarians.

A further, Caucasian–Near Eastern–Inner Asian contribu-
tion of early Medieval migrations are indicated by the sig-
nificant weights of CVs 13 and 27, also showing the strong 
impact of these migrations on modern Hungarians.

Very faint signs of East Eurasian impact from the con-
quering Hungarians are discernible in the ConqC popula-
tion; CV35 (Inner-East Asia Late Neolithic Bronze Age), 
CV29 (Altai–Central Asia Iron Age–Medieval), CV23 
(Sintashta Tagar), CV18 (Okunevo), CV7 (Chukchi).

Discussion

The main goal of our study was to develop a new popula-
tion genetic approach focusing on jointly propagated Hgs to 
unravel population histories. Conventional nomenclature of 
mitochondrial Hgs deduced from sequence data reveal phy-
logenetic relations, in which closely related Hgs are labeled 
with similar letter codes reflecting evolutionary geneaology 
[19]. This consequent nomenclature enables an Hg-based 
population genetic approach, besides the sequence-based 
methods. Hg-based population comparison is best applied 
from deeply classified Hg data determined from full mitog-
enome sequences; therefore, we first assembled a Eurasian 
mitogenome database from published data.

Next, we transformed this database by focusing on jointly 
propagating Hgs which link multiple populations with the 

Fig. 5.   35-dimensional weight 
vectors of populations in 
Hungary Hu_CA (blue), ConqC 
(brown) and modern Hu (yel-
low). Horizontal axis: serial 
numbers of CVs. Vertical axis: 
weights of CVs (colour figure 
online)
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objective to reveal their past relationships, as these could 
have derived only from common ancestry or admixture. 
Genetic drift and bottleneck effects may distort the foot-
prints of such prehistoric processes, but detectable relations 
in recently available ancient and modern Hg distributions 
still may be detected by correlation analysis as shown before 
[20].

Drift becomes even a dominant factor for isolated popu-
lations, leading to the elimination of low frequency Hgs 
and the emergence of population specific sub-branches. 
However, these populations typically seldom contributed 
to major migration and admixture events, which our cer-
tainly limited approach is able to detect. As a consequence, 
these populations typically were absent or underrepre-
sented in our reconstructed common Hg basis, or if such 
populations appeared, they typically formed their own 
cluster like Chukchis and Koryaks.

As ancient population relations supposedly involved 
older phylogenetic subclades these should be taken into 
account with priority. These considerations led us to 
model the original Hg distribution of populations by cor-
related major subclades. As this simplification implicates 
distortion of the original data we optimized this approach 
to minimize the bias and demonstrated that this transfor-
mation preserved population distances with acceptable 
accuracy. It follows from our correlation-based selection 
that an Hg distribution calculated over our 74-dimen-
sional basis represents merely a subset of the real popula-
tion, derived from ancestors who took part in significant 
migration processes, whereas region specific Hgs may be 
eliminated. However, this is not an essential problem when 
studying major genetic contacts and not peculiarities of 
populations.

Our algorithm detects all Hg correlations, independently 
of the date of the process standing in the background of 
the correlation. For instance, we know from ancient DNA 
papers, that Hgs arising from the migration of Neolithic 
farmers to Europe later also took part in the migration of 
Europeans to South Siberia in the Bronze Age. Our analysis 
did detect these multiple migration and admixture processes 
despite the fact, that in reality different derivatives of these 
Hgs took part in the different steps. Unfortunately, at present 
we do not yet have enough Hg data from ancient popula-
tions, for the complete reconstruction of detailed migration 
and admixture histories of the more terminal sublineages.

Next, we grouped the populations according to similar-
ity by determining the set of local condensation centre of 
the Hg-distribution vectors using the SOC algorithm. Pro-
viding that the Hg-distribution vectors of our populations 
construct an appropriately clustered structure, the task of 
drawing a comprehensive picture of the 172 populations can 
be reached by representing the groups of similar Hg distribu-
tions by their common averaged CVs.

We have shown in Figs. 2 and 3 that many of the 35 CVs 
found by our search algorithm SOC can be arranged into 
pairs or triads by their particular similarity. This suggests 
that the number of CVs could be reduced from 35 to 15–20. 
Indeed, the algorithm indicates similarly good significance 
for such amount of CVs, and most of these CVs are really 
the averaged versions of the pairs and triads shown in Figs. 2 
and 3. However, we have shown for the pairs of CVs 30–31, 
16–33, 25–34, and 35–29 that the fine differences between 
them may reveal important geographical and historical 
particularities.

The closest populations to nearly all CVs are ancient 
populations. This is indicated by weights of CVs approach-
ing 1 in the linear-combination models of the correspond-
ing nearest ancient populations. We have shown that the 
CVs can be well interpreted in most cases from archaeo-
genetic point of view as statistically more credible vari-
ants of the nearest ancient Hg distributions. Therefore, 
the study of the huge number of possible genetic contacts 
among our 172 populations could be reduced to the study 
of the impacts of the 35 CVs to any of the populations. In 
other words, the main genetic features of a given popula-
tion could be modeled by a 35-dimensional vector contain-
ing the weights of the 35 hypothetical genetic “archetypes” 
optimally modeling its Hg distribution. As the CVs are 
essentially averages of several similar Hg distributions, 
they may be considered as statistically more relevant rep-
resentatives of the wholeness of the populations belonging 
to their clusters. This may be of particular importance in 
cases of numerous ancient populations where the small set 
sizes may cause large bias of the Hg frequencies.

The above interpretations of CVs prompted us to model 
the populations as linear combinations of CVs, a major 
novelty of our approach. First, we have shown that original 
Hg distributions can be adequately modeled by linear com-
binations of CVs, next we applied this modeling to real 
populations of the Copper Age, ninth to tenth century and 
modern Hungarian populations. The models indicate that 
descendants of Mesolithic hunter–gatherers and Neolithic 
farmers played dominant roles throughout the history of 
the Carpathian Basin, while immigrations from the eastern 
steppe region appear to have minor and temporary impacts 
on the tenth to eleventh century population.

We have shown that our approach can provide useful 
insights into the main relationships of the fuzzy structure 
of archaeogenetic data. We have also shown on ancient 
and modern data from the Carpathian Basin that the lin-
ear combination models of CVs are well interpretable. 
We think, in the future, this method can reveal important 
new information from more complete databases, including 
Y-chromosomal Hgs.
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