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Abstract. We propose an embedding-based deep learning model architecture for 

raw clickstream event sequences, which has special characteristics, such as being 

multivariate discrete-valued. We evaluate the proposed architecture on a Stanford 

University MOOC dataset, which consists of clickstream-level raw log event data 

collected during student sessions in the MOOC. We introduce empirical results 

achieved by various configurations of the architecture on the student final grade 

regression task. Apart from the regression experiments, we also propose three 

visual interpretation techniques for explaining the black-box Temporal Convolu-

tional Neural Network and Recurrent Neural Networks models. The goal is to 

provide easily applicable interpretations which can be used by domain experts 

without any Machine Learning technical expertise. Based on the visual interpre-

tations, we were able to identify student behavior patterns from raw data, in line 

with educational research literature. 

Keywords:  Event log processing, Discrete-valued sequence prediction, TCNN, 

RNN, interpretations 

1 Introduction 

User modelling based on users’ online behavior has numerous important 

applications, including recommender systems and educational data min-

ing [1,4,3,12]. In this work, we analyze the online behavior of Massive 

Online Open Course (MOOC) students. We introduce a deep learning 

architecture to predict the outcome score of the students at a MOOC. We 

analyzed a clickstream-level raw dataset which was recorded during a 

Stanford University MOOC with 142,395 students. A recorded click 

event of the clickstream-level MOOC usage data consists of four cate-

gorical/discrete-valued attributes: action type, description of events, vis-

ited link, and the students’ success on the subtask in question.  

Recently, Neural Networks have been widely used as sequence predic-

tors and time series forecasters, as they can capture complex nonlinear 

patterns. [9] The most commonly used model is the Recurrent Neural 



Network (RNN) which has outperformed statistical models, e.g., auto-

regressive and moving-average models. [13] Besides the dominance of 

RNN models, there have been Convolutional Networks (CNN) proposed 

for time-series forecasting and sequence classification, namely Temporal 

CNNs (TCNN). Whereas the majority of the time series deep learning 

models have been applied to numerical data, event logs, such as click-

stream-level MOOC data used in this instance, consists of multivariate 

discrete-valued sequences. Hence, time series deep learning techniques 

cannot be directly applied. On the other hand, most of the discrete-valued 

sequence prediction solutions have been published for Natural Language 

Processing. The raw event logs are significantly longer than natural lan-

guage sentences, with their varying length, thus NLP techniques cannot 

be applied directly. To handle these special characteristics of the given 

clickstream-level MOOC dataset, we propose an embedding-based deep 

learning model architecture. In this study, we trained state-of-art RNN 

and CNN models to predict the outcome score of the students at the 

MOOC. We conducted experiments using various embedding layers to 

represent the multivariate discrete-valued data.  

Recurrent and Temporal Convolutional Neural Networks provide accu-

rate forecasts without having any access to explicit knowledge about the 

investigated system. Yet, deep learning methods are typically considered 

as ‘black boxes’ where it is almost impossible to fully understand what, 

why, and how RNN and CNN make forecasting decisions. [13] Our re-

search aims to open the black box of RNNs and CNNs trained for time 

series regression. We propose three visualization techniques, which sup-

port domain-expert users in interpreting discrete-valued multivariate 

time series regression, neural models. 

The contributions of this paper are two-fold: 1) we present experimental 

results on various deep learning architectures and embedding strategies, 

evaluated on a MOOC clickstream event, discrete-valued time-series re-

gression task, and 2) we propose application-oriented, i.e., user-friendly 

visualizations for explaining the behavior of the machine-learned RNN 

and CNN, regression models. 

2 Related Work 

Analyzing student behaviour in MOOCs directly on the clickstream-

level is a new field of study. Li et al. [13] and Baker et al. [3] sought to 

understand student behavior using log sequence from different MOOC 



courses. They investigated and visualized behavioral patterns of student 

groups by employing statistics and classic machine learning methods 

over hand-crafted features. To the best of our knowledge, the study by 

Kőrösi and Farkas [11] is the only work to date utilizing deep learning 

techniques to exploit raw clickstream data which have been recorded 

during MOOC courses. They reported that they were able to outperform 

hand-crafted feature-based classic machine learning approaches. In our 

research, we employ deep learning techniques to solve the same goal as 

Li et al. [13] and Baker et al. [3], i.e., to analyze student behavior. We 

can draw educational conclusions similar to those presented in Li et al. 

[13] and Baker et al. [3], but since we used raw sequences directly, our 

approach did not require any feature engineering of pedagogical exper-

tise. 

Recent advances in neural architectures and their application to raw time-

series and sequences offer an end-to-end learning framework that is often 

more flexible than classic feature engineering-based approaches. [12] 

For example, Koehn et al. [10] showed that an RNN-based method could 

outperform common machine learning while using mixed continuous 

and discrete-valued time series to predict the order value.  Guo et al. [6] 

proposed the feed forward neural network and embedding layer-based 

DeepFM for multivariate partially raw discrete-valued clickstream data. 

Apart from the recurrent approaches, convolutional models capable of 

considering the temporal dimension have recently been proposed. 

Sadouk [14] proposed an exhaustive study of Convolutional Neural Net-

works where convolutions were applied in the sequence recognition 

tasks. Our work was motivated by these studies, thus we experimentally 

compared CNN and RNN models on discrete-valued sequences. 

The embedding of discrete-valued sequences was successfully applied in 

user behavior analysis[10]. An et al. [2], for instance, presented their 

neural user embedding approach which was capable of learning informa-

tive user embeddings by using the unlabeled browsing-behavior. Cheng 

et al. [4] introduced the Wide and Deep feature representation method. 

In our work, we embed our discrete-valued attributes for enhancing the 

generalization capability of our neural networks. 

Karpathy et al. [7] analyzed the interpretability of RNNs for language 

modeling, demonstrating the existence of interpretable neurons which 

were able to focus on specific language structures. Siddiqui et al. [15] 

explored the visualization techniques including input saliency by means 

of occlusion and derivatives, class mode visualization, and temporal 



outputs. In Section 5, we applied an approach to interpret our multivari-

ate discrete-valued sequence forecasting model. 

3 Dataset 

The time-series dataset is made up of raw loglines which have been rec-

orded during the Computer Science 101 online course at Stanford La-

gunita University in the summer of 2014. It contains video lectures, op-

tional homework assignments, discussion forums, and quizzes.  

Table 1. The Stanford Lagunita’s Science 101 dataset 

Feature Examples No. unique 

value 

Links 'courseware/z187/z172/', 'courseware/z187/z184/' 243 

Events 'load_video', 'login', 'problem_check' 34 

Resource ‘Q1’, 'Week 2 Course Survey' 35 

Success 0,1,-1*   (* missing value) 2 

 

The raw data sequence includes 39.6 million loglines created by 142,395 

students. Of these, only 13,574 students completed the course, so we 

only used the data of these students in our work. On the filtered data each 

logline is made up of five attributes describing a clickstream level event: 

event type (categorical variable), visited URL (categorical variable), re-

source name (categorical variable), and quiz success (binary variable). 

Table 1 lists some of these examples. 

Table 2. Number of logged events in the different progress sections of the course 

Event type/progress 20% 40% 60% 80% 

Video Load 34999 67411 97070 127552 

Play 61003 123338 182821 238408 

Seek 18862 41574 61490 80236 

Speed change 3442 5668 7600 9516 

Quiz Quiz 1 20283 42655 73102 110348 

Quiz 2 14581 33294 61091 96684 

Quiz 3 8281 21760 48636 81614 

Quiz 4 46 648 5365 9261 

 

The aim of this research is to predict the student’s final scores (from 0 to 

100) achieved in the four quizzes based on the raw log sequence. The 

user could take the quizzes multiple times, but the final score is the sum 

of the first attempts. To gain a better understanding regarding the users’ 

learning behavior and the predictive power of raw log data, we split the 



time series into progress sections, namely 20%, 40%, 60%, 80% of the 

course progress. Table 2 displays the counts of a few event types.   

4 Embedding-based Multivariate Sequence Regression 

The focus of this study is on multivariate discrete-valued sequence neu-

ral regression. We propose a deep learning architecture in our MOOC 

scenario, which is depicted in Fig. 1-2.  

 

Fig. 1. A unified deep learning framework for discrete sequence forecasting. A DL architecture, 

where the Embedding layers are designed to encode each categorical attribute separately. Then 

the TCNN and RNN networks learn the hierarchical representations of the sequenced data. 

 

Fig. 2. Overview of the configurations for multivariate sequence prediction. TCNN architecture 

is seen on the left, RNN (GRU and LSTM) on the right. The numbers in boxes refers to layer 

sizes, i.e. number of hidden units. 

Embedding layers are designed to encode each categorical attribute sep-

arately. Then the TCNN and RNN networks learn the hierarchical repre-

sentations of the sequenced data. Recurrent and Temporal Convolutional 

Neural Networks proved their ability to discover patterns in multivariate 

time-series, giving forecasts without explicit knowledge of the inspected 

system.[12,25]  

Our research aims to create an accurate way to use the same methodology 

on discrete-valued sequences in RNN and TCNN. Our framework for 

discrete-valued sequence prediction is depicted in Fig. 2. We propose a 

representation of discrete sequence in the form of a vector embedding. 

Instead of any data preparations, we insert the label encoded univariate 

sequences themself into the embedding layer which could autonomously 

transform the categorical labels into a continuous space. This has the 



following advantages: it does not contain any artificial “human-based” 

parameters which could affect the behavior of the model; while the em-

bedding layer learns without human intervention, it does not strongly de-

pend on how many data points are available; it is suitable for the time-

based discrete sequence from high-dimensional attractors. 

5 Regression results 

We randomly split our student dataset into training- (9502 sequences) 

and evaluation (4072 sequences) datasets. The mean absolute error 

(MAE) of final student scores is taken as an evaluation metric. 

We calibrated the size of our neural networks on a development set (ran-

dom subset of the training dataset).  

 

Fig. 3. Mean Absolute Errors achieved by various models at different progress state of the 

course 

We use embedding layers of length 30 (the sizes of other layers are 

shown in Fig 2). We employ tangent activation function in the GRU and 

LSTM experiments, while ReLU in the CNN ones. As the optimizer we 

used Adam with the default 0.0001 learning rate and early stopping cri-

teria. Sequences were post padded to lengths varied in function of student 

progress datasets (lengths: 20%: 220, 40%: 520, 60%: 720, 80%: 920).  

In our baseline model, the user’s behavior in the course is encoded as a 

28-dimensional feature vector. These cumulated features consist of the 

number of video interactions (play, stop, pause), quiz success (quiz 1, 2, 

3, 4), etc. We conduct LightGMB regression [8] on the cumulated fea-

tures as a baseline. Fig. 3 shows that there is no significant difference 

among the models at 20% progress. The CNN architecture yields either 

the best, or the second-best performance in most of the data sets.  



Table 3. Real (x axis) vs predicted (y axis) final student scores results from LightGMB, CNN, 

GRU, and LSTM models in different progress point of the course. 

20% progress 40% progress 60% progress 80% progress 

CNN - 4 features with embedding 

    

MAE 11.24 MAE 9.47 MAE 8.70 MAE 7.40 

CNN - 4 features without embedding 

    

MAE 13.13 MAE 12.84 MAE 12.92 MAE 12.92 

GRU - 4 features with embedding 

    

MAE 11.42 MAE 9.81 MAE 8.33 MAE 6.89 

GRU – 4 features without embedding 

    

MAE 13.04 MAE 12.96 MAE 13.00 MAE 12.99 

LightGMB – 27 (cumulated) feature 

    

MAE 11.34 MAE 10.50 MAE 9.62 MAE 8.82 

Table 3 shows that GRU and CNN with embedding has ‘captured’ the 

patterns in data better and provided a much better forecast than other 

implementations. We tested the LSTM with embedding but it generated 

unmeasurable results. This could be explained by the amount of data be-

cause LSTM is sensitive to long sequences, and we have an average of 

720 time-steps. 

6 Interpretations 

Recurrent and Convolutional neural network models have recently ob-

tained state-of-the-art sequence prediction accuracy. However, for data 

analysis, it remains unclear what the models learned, how these 



approaches identify patterns and meaningful segments from time-series. 

This section aims to explore this black box to gain better understanding 

of the behavior of categorical time series prediction DNN models. 

 

Fig. 4. T-Distributed Stochastic Neighbor Embedding (t-SNE) results for EVENT feature em-

bedding layer. Arrows of different colors represent general groups of different event types. 

6.1 Embedding spaces 

The MOOC dataset contains four attributes, including three discrete-val-

ued variables. We transfer those three attributes to three parallel embed-

ding layers (See Fig. 1.) to learn and transform discrete-valued values 

into an nth dimension continuous space.  

To understand the trained embedding layers behavior, we used the output 

of trained embedding layers which was trained on the event attributes, 

further, we employed t-Distributed Stochastic Neighbor Embedding (t-

SNE) so as to map the 30-dimensional embedding space to 2D. Embed-

ding with the t-SNE method is useful because embeddings are learned, 

thus events, links, or resources that are more similar in the context of our 

problem are closer to one another in the embedding. The general idea is 

to group each event type according to its “location” of the curriculum. 

For example, play, stop, pause would be in the group of video interac-

tions, problem_check, problem_reset, save_problem_succ-es in the quiz 

group. However, the embedding layer processes this differently. Fig. 4 

highlights that both video and forum-based events are coming closer to 

each other, yet more peculiar is the fact that the save and play video 

events seem to be similar. The trained embedding layer was able to 



significantly improve our forecasting results (GRU-based model average 

increase ~ 8%, CNN-based model average increase ~ 10%), proving to 

be an effective aid in preprocessing discrete-sequence.  

6.2 Temporal saliency 

The temporal activity of students during the MOOC is a fascinating ped-

agogical area to explore. The visualization below indicates how strongly 

the different temporal segments relate with the deep learning prediction. 

We also aim to detect whether students with various outcome scores dis-

play different temporal behavior. 

The RNN and CNN methodology uses the output of embedding layers 

and one binary attribute to train the models (see Fig. 2). As a result of 

the training process, we use the output of CNN and RNN layers with the 

absolute value of the derivative of the loss function with respect to each 

dimension of all sequence inputs. Each row in Fig. 5. corresponds to the 

predicted student outcome group. Since very few users made up the first 

group (0-10 final student scores) and the last group (80-90 final student 

scores), this interpretation was omitted. The columns in the figure repre-

sent the output of CNN and GRU layers as the mean of the loss values. 

By visual inspection of the mean of the loss function values, we can see 

from the heat map (Fig 5.) that CNNs tend to focus on short contiguous 

subsequences (“windows/boxes”) when predicting the outcomes, 

whereas GRU uses the whole sequence for the same task. In other words, 

CNN’s model finds “motifs” that are important for prediction, by com-

parison, GRU apparently gives a different gradient for each time step. 

The results are almost the same as seen in Lanchantin et. Al. (2017), in 

their research about using CNN and RNN to understand DNA sequence. 

They found that the recurrent neural network tends to be spread out more 

across the entire sequence, indicating that they focus on all sequences 

together, and infer relationships among them. They also mentioned that, 

when using convolutional and recurrent networks for sequence forecast, 

those tended to have strong heat points around motifs, where one could 

see that there were other steps further away from the motifs that were 

significant for the model results. Both CNN and GRU have a considera-

bly wide range of steps, moreover, for the low outcome final student 

scores (0-40) the RNN model uses the entire sequence, while for high 

final student scores it uses only the first part of the dataset. CNN uses 

windows of almost the same size as all outcome classes, and although 



the distribution of weights is different, it learns from the middle of se-

quences which is completely different from RNN. 

 

 

Fig. 5. Representations over time from CNNs and GRUs layers. Each row corresponds to the 

predicted student result group from CNN and GRU at each time-step. Each grid from the column 

corresponds to each dimension of the current sequence step representation. We observed only 

that part of the heatmap, where the data is not constant, or not too uniformly distributed. The 

brighter color means high activation at the output of the layer of our neural network, even the 

dark means weak activation. 

6.3 User behavior clustering 

In order to identify the different learning strategies and examine whether 

they appear in the data sequence, we conducted further studies. We in-

vestigated the best and worst 20% of student groups. We conducted a 

cluster analysis (Kmeans, n_clusters = 2, algorithm=Elkan), utilizing the 

hidden vector representation learned by our CNN and GRU models. The 

clustering is based on the cosine similarity of the output 50-dimensional 

vectors of the CNN and the GRU layers. As an interpretation of the clus-

ters, the features introduced in Section 3 were accumulated from the clus-

ter members. Fig. 6 shows the boxplots of the key features by clusters. 

The results of the best and worst 20% clustering show that there are two 

different clusters among both top and worst-performing students. The 

first group (marked in blue) watch significantly fewer videos (rdn/Video) 

than the others do while achieving the same result. The feature values 

describing the interaction between the users and videos 

(numoplay_video, numostop_video, numopause_video, numoseek_vi 

deo) also underpin this observation. Our click-stream level raw data-

driven results are in line with educational/pedagogical results. For exam-

ple, Galine et. al. [5] sought to understand the behavior patterns of learn-

ers in MOOC courses and they found that at the very base level, there 

were “All-rounders” and “Viewers”, the terminology being similar to the 



results of our unsupervised clustering analysis: users marked blue seem 

to be “All-rounders”. 

 

Fig. 6.   Cluster analysis of the group of 20% -20% students who achieved best (left) and worst 

(right) final student scores during the course. The blue and orange colors are show the different  

clusters in the observed group. 

The blue cluster members complete most assignments, watch all video 

lectures, and have numerous interactions with video, while “Viewers” 

(brown cluster) watch almost all video lectures but hardly ever make 

more effort than absolutely necessary to complete the course. This data-

driven interpretation of MOOC log data is a promising direction for ed-

ucational data mining, as we were able to show sociological-pedagogical 

results using only raw logline data, which has not been seen before. 

7 Conclusion 

Our literature review established that the existing deep learning-based 

time-series prediction models could handle both continuous and discrete-

valued sequences. In this work we proposed RNN and CNN based meth-

ods with embedding-based deep learning model architecture which is 

able to make a prediction from multivariate discrete-valued, variable-

length sequences. The models were tested on a Stanford University 

MOOC dataset, which consisted of clickstream-level raw log event data 

collected during student sessions in the MOOC. Our results confirmed 

that RNNs and CNNs provided a better forecast than conventional meth-

ods. The interpretation section outlined that the embedding method was 

able to significantly improve our forecasting results and provide an ef-

fective aid in unsupervised pre-processing of discrete-valued se-

quence.Besides creating accurate methods, we also proposed three useful 

visualization of the learnt deep neural networks. 
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