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Abstract: Background: Migraine is a highly prevalent primary headache with an unclear path-
omechanism. During the last 40 years, numerous hypotheses have arisen; among them, the theory
of the trigeminovascular system is the primary one. It serves as a skeleton in successful preclinical
studies and in the development of effective therapeutic options for migraine headache.

Objective: The brain prize (awarded annually by the Lundbeck Foundation) is the most prestigious
tribute  in  neuroscience.  The  winners  in  2021  were  Lars  Edvinsson,  Peter  Goadsby,  Michael
Moskowitz and Jes Olesen. They are the fathers of migraine pathomechanism, which led to revolu-
tionary new treatments. This review summarizes their landmark findings.

Methods: Data related to this topic were reviewed from PubMed records published between 1979
and May 2021. Searches were based on preclinical and clinical studies in the covered field. The
findings were listed in chronological order. From a therapeutic perspective, only randomized con-
trolled trials and meta-analysis were discussed.

Results: The calcitonin gene-related peptide-related pathogenesis of migraine is based on the acti-
vation of the trigeminovascular system. The therapeutic triad for migraine is triptans, gepants, and
calcitonin gene-related peptide-targeted monoclonal antibodies.

Conclusion: In the past 40 years, the systematic work of leading headache scientists has resulted in
robust theoretical and therapeutic knowledge in the preclinical and clinical study of migraine.
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1. INTRODUCTION
Migraine, as a common and complex primary headache

disorder, is a devastating neurovascular disease with high so-
cio-economic and personal impact, although its pathomech-
anism  is  still  enigmatic.  The  global  age-standardized  mi-
graine prevalence is overall 14.4% (in women: 18.9% and in
men:  9.8%) [1,  2],  with  disability  continuously  increasing
with the progression of years. The Global Burden of Disease
Study 2016 revealed that the global disability-adjusted life-
years of migraine ranked in the 2nd position among all neu-
rological disorders [3, 4].

The leading theory of the pathomechanism of migraine
was  developed  in  1979  when  Moskowitz  proposed  the
trigeminovascular  hypothesis,  which was later  renamed as
the Trigeminovascular System (TS) [5, 6]. Hyperexcitability

* Address correspondence to this author at the Department of Neurology,
Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of
Szeged, Semmelweis St. 6., Szeged, Hungary, H-6725; Tel: +3662545348;
Fax: +3662545597; E-mail: vecsei.laszlo@med.u-szeged.hu

and  sensitization  of  the  TS are  due  to  different  neuropep-
tides (e.g, calcitonin gene-related peptide-CGRP and pitui-
tary  adenylate  cyclase-activating  peptide-PACAP)  [7].
CGRP plays an essential role in the pathomechanism of mi-
graine, both in the peripheral and central sensitization and
hyperexcitability of the TS [8-10]. Peripheral sensitization
produces  the  throbbing  and  pulsating  features  of  the  hea-
dache. Additionally, it plays a crucial role in the worsening
of pain with routine physical activities. Central sensitization
is behind the cephalic and extracephalic allodynia during a
migraine attack [11-16]. The hyperexcitability and sensitiza-
tion of the TS are strongly associated with CGRP, as remark-
able clinical findings of the group of Goadsby and Edvins-
son showed. CGRP plasma levels are elevated in cranial ve-
nous outflow during migraine attacks [17]. The development
of the aura phase of a migraine attack and the stimulation of
the peripheral branch of the TS, revealed by Olesen and his
group, are due to the process of Cortical Spreading Depres-
sion (CSD) [18]. Chemically-induced animal migraine mod-
els and human clinical data revealed that Nitric Oxide (NO)
can upregulate CGRP release in the TS [19, 20]. The gold
standard acute migraine treatment, triptans, also work on the
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modification  of  CGRP  release,  both  in  the  peripheral  and
central arms of the TS [21, 22]. The new view of the path-
omechanism  of  migraine  spots  the  connection  between
kynurenine metabolism, PACAP, and CGRP in the TS [23,
24].

CGRP, as a focus of migraine research, has led to novel
therapeutic  options,  both  for  acute  and  preventative  treat-
ment  of  Episodic  (EM)  and  Chronic  Migraine  (CM),  like
CGRP receptor antagonists (gepants and erenumab) and an-
ti-CGRP monoclonal antibodies (mAbs) (eptinezumab, fre-
manezumab and galcanezumab) [25-28]. mAbs targeting the
CGRP  pathway  are  recently  licensed,  high-cost  migraine
drugs,  which  are  real  game-changers,  have  revolutionized
the prophylactic treatment of migraine (Nagaraj et al. Neu-
rol  India  2021).  All  are  approved  by  the  FDA  (Food  and
Drug  Administration),  while  at  present  (during  the
manuscript preparation) eptinezumab is not approved by the
EMA (European Medicine Agency).

Our strategy was to search PubMed’s computer-based lit-
erature using the following search phrases: ‘migraine’ and
‘CGRP’ ‘monoclonal antibody’ ‘gepants’ ‘NO’ ‘TS’ ‘TRIG’
‘CSD’ ‘triptans’ ‘kynurenines’ ‘PACAP’ ‘meta-analysis’.

The present review intends to offer an updated summary
of  the  results,  focusing  on  the  pathomechanism and  latest
therapeutic options associated with CGRP in migraines. Our
aim was to order the remarkable statements and milestone
findings of the related works of Brain Prize winners 2021:
Lars  Edvinsson,  Peter  Goadsby,  Michael  Moskowitz,  and
Jes Olesen.

2. CLINICAL FEATURES OF MIGRAINE
Based on the latest classification of the International Hea-

dache Society (International Classification of Headache Dis-
orders 3rd edition- ICHD-3), migraine is one of the primary
headache disorders [29]. The main types of migraine are mi-
graine with and without aura. CM is a separate subtype of
migraine, which is marked by 15 or more headache days per
month for more than 3 months, and at least 8 days per month
are migraine with or without aura attacks [29]. EM is divid-
ed into low-frequency (1-4 headache days per month) and
high-frequency (5-14 days per month) subgroups.

Migraine consists of recurring paroxysmal headpain at-
tacks  with  concomitant  non-painful  symptoms.  Migraine,
which can be considered as a cycling brain disorder, consists
of different phases, like prodrome (premonitory phase), au-
ra, headache and reconvalescence (postdrome) [30].

2.1. Prodrome (Premonitory phase)
It is defined by ICHD-3 as the period up to 48 hours be-

fore  the  onset  of  headache  [29].  Its  prevalence  ranges  be-
tween 71-87% [31]. Typical features of this preictal phase of
migraine are the following: appetite changes, thirst, yawn-
ing, polyuria, fatigue, light and sound sensitivity, elated or
depressed mood [29, 30, 32, 33].

2.2. Aura
Migraine  with  aura,  which  appears  in  approximately

20% of migraine patients, can be described as recurrent at-
tacks which are preceded by unilateral fully reversible visu-
al, sensory, speech, motor, brainstem or retinal neurological
symptoms  that  last  5-60  minutes  and  are  followed  by  mi-
graine type head pain and associated symptoms [29].

2.3. Headache
Migraine without aura is characterized by a recurrent uni-

lateral, pulsating, moderate-to-severe intensity headache last-
ing 4-72 hours. It is aggravated by modest physical activity:
Nausea and/or vomiting, photophobia and phonophobia fre-
quently occur [29].

Patients experiencing a migraine, with or without aura,
also exhibit cranial autonomic symptoms, like lacrimation,
conjunctival injection, eyelid edema, nasal congestion, dur-
ing  the  headache  phase.  They  can  occur  unilaterally
(27-46% of the patients) or bilaterally (52-73%) [34-36]. It
was an interesting finding that photophobia is more common
in migraineurs with autonomic symptoms [36]. Cranial auto-
nomic symptoms are frequent not only in Caucasians but al-
so in Asian migraine patients [37]. Dizziness and vertigo al-
so not rare concomitant signs during the prodromal and hea-
dache phases of migraine. Based on a recent systematic re-
view and meta-analysis, dizziness (6.7-59.6%) and vertigo
(6.4-44.7%) frequentlyoccurred during the course of the hea-
dache stage [38]. Allodynia, which is a painful response to
an  innoxious  stimulus,  can  occur  frequently  (ranged
42-68%) during a migraine attack [39]. Allodynia is a sign
of  hyperexcitability  and  central  sensitization  of  the  TS.  It
can be localized as cephalic (on face and scalp) or general-
ized as extracephalic (mainly in the lower arm) [12, 13, 40].

2.4. Postdrome
The non-headache symptom phase, lasting up to 24-48

hours following migraine attacks (with or without aura), is
common, affecting around 80% of patients [41]. Its charac-
teristics  are  fatigue,  tiredness,  dizziness,  hunger,  mood
changes, sensory sensitivities, inability to concentrate, and
cognitive difficulties [29, 30]. The symptoms of this postdro-
mal phase are similar to those of the premonitory phase of
migraine [42].

3.  THE  ROLE  OF  CALCITONIN-GENE  RELATED
PEPTIDES  IN  THE  PATHOMECHANISM  OF  MI-
GRAINE

CGRP, a 37-amino acid neuropeptide, was identified in
the early 1980s [43, 44]. In humans, it has two isoforms: α-
CGRP  and  β-CGRP.  α  -CGRP  appears  widely  in  the  pe-
ripheral and central nervous systems, while β-CGRP is ex-
pressed mainly in the enteric nervous system. CGRP acts on
its functional receptor complex with seven transmembrane
domains, which contain three elements: Calcitonin-Recep-
tor-Like Receptor (CRLR), receptor-activity-modifying pro-
tein-1  (RAMP-1),  and  receptor-component  protein  (RCP)
[45].
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3.1. Preclinical and Clinical CGRP-related Studies in Mi-
graine

3.1.1. Trigeminovascular System and CGRP
Historically, there was a long debate about intracranial

pain-sensitive structures. Wolff and Ray, and later Edvins-
son, then Keller & Marfurt revealed that the innervation of
the  cerebral  and  meningeal  vasculature  mainly  originated
from the trigeminal ganglion (TRIG) and it has peptidergic
content [46-51].

Moskowitz and his research group proposed a pathophysi-
ological link between migraine and the trigeminal innerva-
tion of the meninges -  that was the first  description of the
trigeminovascular hypothesis [5]. Later on, they proposed a
new  functional  connection  named  the  Trigeminovascular
System (TS), which mirrors the relationship between the pe-
ripheral (meningeal) afferents and the central (trigeminocer-
vical complex) arm of the perikarya of TRIG [52]. The elec-
trical  stimulation  model  of  the  TS  revealed  that  after  the
TRIG activation, structural alterations (swelling of club-like
terminals)  of  CGRP  immunoreactive  perivascular  sensory
nerve  terminals  in  rat  cerebral  dura  mater  were  observed
[53]. In the same model, the authors found that CGRP- im-
munoreactivity was depleted in the trigeminal nucleus cau-
dalis (TNC), which suggested the role of CGRP in the cen-
tral  part  of  the TS [54].  It  has  been confirmed that  CGRP
does not just have a second messenger function but also po-
tent vasoactive action - vasodilation in the TS [55, 56]. Mod-
ern, precise histochemical studies have characterized the dis-
tribution of different  neuropeptides in the TS. CGRP-con-
taining neurons, sensory fibers and CGRP-receptor elements
occur in high numbers [57-63]. The first remarkable functio-
nal studies by Goadsby demonstrated that activation of the
TRIG, in humans by thermocoagulation and in cats by elec-
trical stimulation produced elevated plasma CGRP concen-
trations in the extracranial venous outflow [64]. The miles-
tone observation was that plasma CGRP concentration was
highly elevated in the external jugular vein during a sponta-
neous migraine attack in patients, while other neuropeptides
(vasoactive  intestinal  peptide-VIP,  substance  P-SP,  neu-
ropeptide  Y-NPY)  remained  unchanged  [17].  It  has  been
proved in a double-blind cross-over study that intravenous
(IV) infusion of CGRP initiated delayed migraine-like hea-
daches in migraineurs [65, 66]. Results of a preclinical hu-
man  study  suggest  a  possible  sensory  influence  from  the
TRIG in the parasympathetic sphenopalatine ganglion guid-
ed by CGRP as a background for the occurrence of autonom-
ic symptoms during a spontaneous migraine attack [67].

3.1.2. Cortical Spreading Depression and CGRP
One of the unique phenomena of the cerebral cortex is

CSD,  which  is  a  slow  propagation  wave  of  neuronal  and
glial depolarization [68]. The first suggestion that CSD oc-
curs in migraineurs during the aura phase of a migraine at-
tack originated with Olesen  and his colleagues [18]. Later
on it was confirmed, using modern imaging techniques, that
bilateral spreading of cerebral hypoperfusion existed during

spontaneous migraine attacks [69]. Functional magnetic reso-
nance imaging (MRI) studies demonstrated that  in the hu-
man visual cortex spreading suppression of cortical activa-
tion was detected during migraine aura [70]. Some in vitro
and in vivo animal experimental data support the hypothesis
that CSD could induce CGRP activity in the TS. It has been
proved that CSD could initiate cortical CGRP release, fur-
thermore, CGRP antagonism could modulate CSD on corti-
cal slices in vitro. In vivo experiments demonstrated that ol-
cegepant,  as  a  CGRP  receptor  blocker,  could  inhibit  the
repetitive CSD events in mice. Additionally, CSD could in-
crease  CGRP  synthesis  in  the  cerebral  cortex  and  CGRP
gene upregulation in rat brains [71]. Based on these observa-
tions, it can be proposed that through this process CGRP is
released from both the peripheral and central branches of the
TS [71-75].

3.1.3. Nitric Oxide and CGRP
Nitric oxide (NO) is formed from the terminal guanidino

nitrogen of L-arginine in a catalyzed process of nitric oxide
synthases (endothelial NOS-eNOS, neuronal NOS-nNOS, in-
ducible NOS-iNOS) [20, 76, 77]. Clinical studies demons-
trated that  administration of glyceryl  trinitrate (GTN) as a
NO-donor  can  induce  migraine  pain  of  both  types  of  mi-
graine (migraine with and without aura) [20, 66, 78]. Preclin-
ical  studies  showed  that  in  GTN-treated  rats  nNOS  and
CGRP increased in cerebral dura mater, while in the TNC-
only  group,  CGRP was  elevated  by  immunohistochemical
techniques [19]. In GTN-treated ovariectomized female rats,
the area innervated by CGRP immunoreactive afferents de-
creased significantly, while estradiol-pretreatment inhibited
the GTN effect [79].

An in vitro  cell  culture study demonstrated that a NO-
donor triggered CGRP release from cultured primary TRIG
neurons. Based on this finding, NO up-regulates migraine-re-
lated CGRP release in TRIG neurons. CGRP can stimulate
NO  release  from  satellite  glial  cells,  while  NO  promotes
CGRP release from them [80]. In experimental migraine ani-
mal models, it was revealed that a selective nNOS inhibitor
could inhibit CGRP release from cerebral dura mater in rats
[81].  Another  experiment,  in  active,  freely  moving  rats,
showed that GTN pretreatment increased nNOS and CGRP
in dura mater, but only CGRP in TNC [19]. A strong work-
ing hypothesis suggests that there is cross-talk signaling in
TRIG cells (neurons and satellite glial cells). The CGRP, PA-
CAP, and NO released from the neurons and glial cells can
signal to neighbouring neurons and vice versa [82].

3.1.4. Triptans and CGRP
The  discovery  of  triptans  as  5-hydroxytryptamin

(HT)1B/1D  receptor agonists was a real breakthrough for the
acute medication of migraine attacks [83, 84]. Interestingly,
it has been proved that triptans act not only by influencing
the serotonergic system, but also act on CGRP release in the
animal model of trigeminal activation and during migraine
attacks  in  humans  [85-87].  Histochemical  studies  have
shown that 5-HT1B/1D receptors are co-localized with CGRP
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in TRIG neurons and sensory fibers [88, 89]. It has been re-
vealed that rizatriptan can block secretions of CGRP from
cultured  TRIG neurons  [90].  Our  research  group  revealed
that  sumatriptan  pretreatment  of  electrical  stimulation  of
TRIG prevented the disintegration of perivascular nerve ter-
minals and elicited the accumulation of CGRP, which indi-
cated  that  sumatriptan  could  prevent  the  release  of  CGRP
from the perivascular sensory nerve terminals in the cerebral
dura mater in rats [21]. We also demonstrated that eletriptan
could block the perikarya and peripheral and central axon ter-
minals of primary sensory neurons in TRIG after electrical
stimulation  in  rats  [22].  Naratriptan  did  not  block  cap-
saicin-induced CGRP release from peripheral terminals inn-
ervating the dura mater, but it stopped the release from brain-
stem slices in mice [91]. Sumatriptan, used for nitroglycer-
in-induced  migraine  attack  in  female  migraine  patients,
caused a parallel reduction in plasma CGRP concentration
and pain intensity [92].

3.1.5. Kynurenine Metabolism and CGRP
The essence of tryptophan metabolism is the kynurenine

pathway, where the main factor is L-kynurenine (L-KYN),
an endogenous antagonist of excitatory amino acid receptors
[23, 93]. Kynurenic acid (KYNA) is synthesized by the en-
zyme kynurenine aminotransferase (KAT). The stimulation
of TRIG decreased KAT-immunoreactivity in the Schwann
cells in the cerebral dura mater. This was the first observa-
tion that indicated the importance of the kynurenine system
in the pathomechanism of migraine [94].

A preclinical animal model of migraine revealed that L-
KYN and a kynurenic acid derivative attenuated CGRP ex-
pression in nitroglycerin-induced activation of the TS in the
upper cervical spinal cord of rats [95]. Capsaicin-stimulated
CGRP release was not altered by KYNA in the peripheral
part of the TS, while it was significantly reduced in the brain-
stem as a central part of the TS in mice [91]. Immunohisto-
chemical data proved that CGRP receptor components (CLR
and RAMP1) co-localized in rat and rhesus TRIG [96]. An
experimental model of chemically-induced inflammation of
TRIG revealed co-expression of nuclear

factor kappa B (NF-κB) and CGRP in TRIG neurons in
rats, while KYNA has the capability to reduce this inflamma-
tion in TRIG [97]. In an animal model, GTN administration
induced increased mRNA expression of CGRP in the TRIG
and  TNC,  and  also  elicited  hyperalgesia.  Both  processes
were diminished by KYNA analogue 1 [98]. Novel results
indicated that the topical application of inflammatory soup
on rat cerebral dura mater increased CGRP in rat TNC, com-
pared to the placebo, and it was attenuated by KYNA. This
suggests  N-methyl-D-aspartate (NMDA) receptor involve-
ment in neurogenic inflammation in the TS [99]. Preclinical
data suggest that elements of the kynurenine pathway may
play a role in migraines and other neurological disorders.

A remarkable  clinical  study  in  this  field  examined  the
serum level of kynurenine pathway metabolites in chronic
migraine  patients.  It  should  be  emphasized  that  the  serum
level  of  KYNA  was  reduced,  while  anthranilic  acid  was

largely increased compared to healthy controls [100, 101].
Recently, our research lab detected alterations in triptophan
catabolism during ictal and interictal periods in migraine pa-
tients. We found that, interictally, the plasma concentration
of  triptophan,  L-KYN,  KYNA,  anthranilic  acid,  picolinic
acid, 5-hydroxy-indoleacetic acid and melatonin were signifi-
cantly decreased compared to healthy controls. In the ictal
phase, antranilic acid, 5-hydroxy-indoleacetic acid and mela-
tonin  were  significantly  elevated.  These  results  suggest  a
widespread metabolic  imbalance of  tryptophan catabolism
in migraineurs [102] (Tuka et al. J Headache Pain 2021). A
first-in-human phase 1 open-label study demonstrated that
L-KYN administered intravenously was safe and well-toler-
ated in healthy volunteers [103]. These pivotal results open
up a new field of research into kynurenine in migraine path-
omechanisms and treatments.

3.1.6. PACAP and CGRP
PACAP is the second migraine-related vasodilator neu-

ropeptide [104]. PACAP is strongly expressed in elements
of the TS, like TRIG and TNC neurons and fibers [58, 59,
105]. The significant role of PACAP in the initiation of the
migraine attack has been confirmed. One of the PACAP iso-
forms,  namely  PACAP1-38,  can  induce  migraine-like  at-
tacks in patients with migraine without aura when infused in-
travenously  [106].  During  a  spontaneous  migraine  attack,
PACAP and CGRP plasma levels  are  altered [24].  During
the interictal phase of migraine, plasma PACAP concentra-
tion was lower compared to the healthy controls; conversely
elevated PACAP levels were detected during the ictal period
[24]. Another preclinical study revealed that PACAP1-38 in-
duced CGRP release from TNC, but not from TRIG in rats
[107]. A chemically-induced model of the peripheral branch
of the TS resulted in significant CGRP and prepro PACAP
release in the TNC [108].

4. CGRP-TARGETED MIGRAINE TREATMENT

4.1. CGRP Receptor Antagonists - gepants
During the early 2000s, innovative pharmacology target-

ed the suppression of CGRP signaling in the TS, and devel-
oped  CGRP-based  small  molecules,  which,  moreover,  do
not cause vasoconstriction as triptans do [14, 109] (Table 1).

The first small molecule selective CGRP receptor antag-
onist (first-generation gepants), a dipeptide, BIBN4096BS,
was  developed  [110].  The  first  proof-of-concept  study  re-
vealed that intravenous (IV) olcegepant was effective in mi-
graine attack treatment [111]. Unfortunately, its IV adminis-
tration limited its widespread use in everyday clinical prac-
tice. The first oral gepant was telcagepant (MK-0974), and,
later on, several other orally administered gepants were de-
veloped, but long-term and frequent use resulted in elevated
gamma-glutamyl aminotransferase, thus discontinuing their
administration [14, 109, 112, 113].

The  second  generation  of  orally  administered  gepants
(ubrogepant, rimegepant, atogepant) were designed to avoid
the liver enzyme elevation [114].
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Table 1. CGRP-targeted therapies – gepants

CGRP Receptor
Antagonist

Indications Route of
Administration

Dosing Efficacy Side Effects Refs.

First Generation Gepants

Olcegepant EM
Acute treament

IV 2.5 mg a response rate of 66 percent, as
compared with 27 percent for

placebo

paraesthesia [111, 114,
136]

Telcagepant EM
Acute treatment

Oral 150 mg pain freedom at 2 hrs was 23.2%
compared to placebo 10.7%

dry mouth, fatigue, somno-
lence,

long-term and frequent use re-
sulted in elevated GGT

serum level

[112, 114,
136]

Second Generation Gepants

Ubrogepant
(UBRELVYTM)

EM
Acute treatment

Oral 50 mg
100 mg

pain freedom at 2 hrs was 20.8%
compared to placebo 12.6%

nausea, somnolence, dry
mouth

[114, 123,
136]

Rimegepant
(NURTECTM)

EM
Acute treatment

__________
Preventive treatment

Oral (ODT)
_____________

Oral (standard tablet)

75 mg
_______
75 mg

pain freedom at 2 hrs 21% versus
11% (placebo)

_________
LSM baseline change in mean

MMDs was -4.3 days versus -3.5
days (placebo)

nausea, urinary tract infec-
tion

_____________
nasopharyngitis, nausea

[114, 129,
130, 136]

Atogepant EM
Preventive treatment

Oral 10 mg, 30 mg,
60 mg (once

daily)
_______

30 mg and 60
mg (twice dai-

ly)

LSM baseline change in mean
MMDs was

at 10 mg once daily
-4.0 days,

at 30 mg once daily
-3.8 days,

at 60 mg once daily
-3.6 days

_________
at 30 mg twice daily

-4.2 days
at 60 mg twice daily

-4.1 days versus placebo -2.9 days

nausea, fatigue [114, 133,
136]

Third Generation Gepants

Vazegepant EM
Acute treatment

Intranasal 10 mg, 20 mg vazogepant was more effective
than placebo:

at 10 mg (22.5%),
at 20 mg (23.1%)

versus placebo (15.5%) (details are
not applicable)

dysgeusia, nasal dyscomfort [114, 135,
136]

Abbreviations: CGRP (Calcitonin Gene-Related Peptide), IV (Intravenously), EM (Episodic Migraine), GGT (Gamma-Glutamyltransferase) LSM (Least Square Mean), MMDs
(Monthly Migraine Days) ODT (Orally Disintegrating Tablet).

A phase 2b randomized double-blind placebo-controlled
dose-ranging (1 mg, 10 mg, 25 mg, 50 mg, 100 mg) study re-
vealed that 100 mg ubrogepant (MK-1602) for acute treat-
ment of migraine exhibited 2 hours post-dose pain freedom
of 25.5% compared to the placebo (8.9%). The most com-
mon adverse events (AEs) were dry mouth (100 mg ubroge-
pant  4.9% versus  placebo 3.9%),  nausea  (100 mg ubroge-
pant 6.9% versus placebo 3.5%) and fatigue (100 mg ubroge-
pant 2.9% versus placebo 2.7%) [115]. The ACHIEVE-I ran-
domized  controlled  trial  (RCT)  for  efficacy  and  safety  of

ubrogepant in acute migraine treatment showed that ubroge-
pant at doses of 50 mg and 100 mg achieved headache free-
dom at 2 hours after the initial dose (19.2% at 50 mg dose
and 21.2% at 100 mg versus 11.8% placebo). The frequent
AEs  were  nausea,  somnolence  and  dry  mouth  (0.4%  to
4.1%) [116]. ACHIEVE-II, a multicenter randomized dou-
ble-blind placebo-controlled single migraine attack phase 3
trial, revealed that the pain freedom at 2 hours was 21.8%
(ubrogepant  50  mg)  and  20.7% (ubrogepant  25  mg)  com-
pared to 14.3% (placebo): The most common AEs were nau-
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sea (2.0% at 50 mg dose; 2.5% at 25 mg dose versus 2.0%
placebo) and dizziness (1.4% at 50 mg dose, 2.1% at 25 mg
dose versus 1.6% placebo) [117]. A post hoc pooled analysis
(ubrogepant 50 mg) of ACHIEVE-I and -II double-blind sin-
gle attack phase 3 trials concerning time course of efficacy
of  ubrogepant  for  acute  migraine  treatment  demonstrated
that the pain-relief at 1 hour was 43% (ubrogepant) versus
37% (placebo), and pain-freedom at 2 hours was 20% (ubro-
gepant) versus 13% (placebo). Ubrogepant exerted a long-
lasting effect [118]. A post hoc analysis of pooled data from
the ACHIEVE-I and -II studies demonstrated that the effica-
cy and tolerability of ubrogepant did not change in migraine
patients who were historically treated with triptans [119]. A
long-term  (52-week)  phase  3,  multicenter,  randomized,
open-label extension trial evaluating the safety of intermit-
tent use of ubrogepant (50 mg or 100 mg) for the acute treat-
ment of migraine (1 or 2 doses per attack) with or without
aura demonstrated that treatment-related AEs were 10% for
a 50 mg dose of ubrogepant and 11% for a 100 mg dose of
ubrogepant [120].

A  phase  1  single  center  open-label  randomized  3-way
cross-over single-dose pharmacokinetic interaction study of
ubrogepant in healthy participants did not show treatment-e-
mergent AEs (TEAEs) after co-administration of ubrogepant
(100 mg) and sumatriptan (100 mg) (Jakate et al. Headache
2020).  The  pooled  safety  data  from  ACHIEVE-I  and  -II
trials using ubrogepant alone or ubrogepant and sumatriptan
treatment  together  revealed  that  treatment-related  TEAEs
were  14.9%  in  the  ubrogepant  100  mg  group,  while  only
12.8% in ubrogepant plus triptan group [121]. A randomized
phase 1b drug-drug interaction two-arm, multicenter, open-
label,  study revealed  that  the  pharmacokinetics  and safety
profile  of  ubrogepant,  when  it  was  co-administered  with
erenumab and galcanezumab did not change [122].

A meta-analysis  of  three RCTs evaluating the efficacy
and safety of ubrogepant for the acute treatment of EM re-
vealed that the effect of ubrogepant with pain-freedom at 2
hours  post-dose  was  significantly  higher  compared  to  the
placebo (ubogepant 20.8% versus placebo 12.6%). The eval-
uation of treatment-related AEs within 48 hours or 30 days
for ubrogepant versus the placebo revealed that the risk ratio
(RR) was 1.07 at 48 hours and 1.03 at 30 days [123]. A re-
cent  meta-analysis  of  five  RCTs  of  ubrogepant  as  a  treat-
ment for acute migraine demonstrated that the 2 hours post-
dose pain-relief was significantly higher in the verum group,
than in the placebo group (odds ratio: 1.71). The safety pro-
files of ubrogepant and the placebo were similar. The com-
mon  AEs  between  the  ubrogepant-treated  group  and  the
placebo group showed that  the incidence of headache was
7.89% (ubrogepant group) versus 8.68% (placebo group), of
oropharyngeal  pain  was  9.18% (ubrogepant  group)  versus
3.47%  (placebo  group),  while  of  nasopharyngitis  it  was
4.58%  (ubrogepant  group)  versus  6.25%  (placebo  group)
[124].

A real-world cohort study evaluating the efficacy, tolera-
bility and safety of ubrogepant both in EM and CM revealed
that headache freedom at 2 hours after taking the drug was

achieved  in  19%  of  the  patients,  while  headache  relief
(>75% of all treated attacks) at 2 hours after taking ubroge-
pant was observed in 47.6% of the migraineurs.  The most
common AEs were fatigue (27.4%), dry mouth (7.5%) and
nausea/vomiting (6.6%) [125, 126].

A dose-ranging (10, 25, 75, 150, 300 or 600 mg), ran-
domized,  double-blind,  placebo-controlled  study  of  BM-
S-927711 (later called rimegepant) for the acute treatment of
migraine  revealed  that  the  pain-freedom  at  2  hours  post-
dose  was  31.4%  (75  mg  verum),  32.9%  (150  mg  verum),
29.7% (300 mg verum) and 24.4% (600 mg verum) versus
15.3% (placebo). The commonly occuring AEs were nausea
(3%-75 mg, 3%-150 mg, 4%-300 mg and 8%-600 mg), dizzi-
ness (1%-75 mg, 2%-150 mg, 0%-300 mg and 4%-600 mg)
and  vomiting  (2%-75  mg,  0%-150  mg,  0%-300  mg  and
2%-600  mg)  [127].  A  multicenter,  double-blind,  ran-
domized, placebo-controlled phase 3 trial investigating the
efficacy  and  safety  of  rimegepant  (BMS-927711)  (75  mg
oral standard tablet) in the acute treatment of low-frequency
EM revealed that in a modified intention-to-treat analysis of
patients  at  2  hours  post-dose  pain-freedom  was  19.6%
(rimegepant)  versus  12.0%  (placebo).  The  most  common
AEs  were  nausea  (1.8%-rimegepant  versus  1.1%-placebo)
and urinary tract infection (1.5%-rimegepant versus  1.1%-
placebo)  [128].  A  multicenter,  double-blind,  randomized,
placebo-controlled phase 3 trial was conducted to compare
the  efficacy  and  safety  of  an  Orally  Disintegrating  Tablet
(ODT) formulation of rimegepant (75 mg single dose) in the
acute treatment of migraine. The results demonstrated that
rimegepant  ODT  was  superior  to  the  placebo  at  2  hours
post-dose pain-freedom (21% versus 11%). The most com-
mon  AEs  were  nausea  (2%  in  rimegepant  group  versus.
<1% in the placebo group) and urinary tract infection (1% in
verum group versus  1% in placebo group),  and no serious
AEs were reported [129]. A multicenter, randomized, dou-
ble-blind,  placebo-controlled  phase  2/3  trial  investigating
the standard oral rimegepant 75 mg tablet every other day
for preventive treatment of migraine with and without aura
or CM patients (at least 4 and not more than 18 migraine at-
tacks per month) revealed that rimegepant had superior effi-
cacy to the placebo. The least-square mean (LSM) change
was -4.3 days for rimegepant and -3.5 days for the placebo
in mean number of monthly migraine days (MMDs) during
weeks 9-12. The most common AEs were nasopharyngitis
(4%-rimegepant versus 2%-placebo) and nausea (3%-rimege-
pant versus 1%-placebo) [130].

A meta-analysis of 65 clinical trials of gepants (telcage-
pant, rimegepant, ubrogepant) for the acute treatment of nau-
sea-freedom after  2  hours  in  EM revealed  that  the  overall
combined effect size with an odds ratio was 1.29, which sup-
ported the efficacy of gepants for the treatment of the most
bothersome symptom (eg, nausea) of migraine attacks [131].
A  subgroup  meta-analysis  of  the  comparative  efficacy  of
FDA-approved oral CGRP receptor antagonists (ubrogepant
and rimegepant) versus the placebo in the treatment of acute
migraine demonstrated that the analysed gepants were signif-
icantly more effective than the placebo (odds ratio of pain-
freedom at 2 hours post-dose was 1.83) [132].
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For prevention of EM, atogepant, as an orally adminis-
tered  pharmacon,  was  investigated  in  a  double-blind  ran-
domized  phase  2b/3  trial  examining  a  range  of  oral  doses
(10 mg to 60 mg once or twice daily). It showed a signifi-
cant  decrease in MMDs in all  five atogepant dose groups,
and it was safe and well-tolerated. Across the 12-week treat-
ment period, the LSM baseline change in mean MMDs com-
pared  to  the  placebo  was  the  following:  atogepant  10  mg
once  daily  -4.0  days,  30  mg  once  daily  -3.8  days,  60  mg
once daily -3.6 days, 30 mg twice daily -4.2 days and 60 mg
twice  daily  -4.1  days  versus  placebo  -2.9  days.  The  most
common TEAEs were nausea (at 10 mg once a day atoge-
pant - 5% to 60 mg once a day atogepant - 12% versus place-
bo - 5%) and fatigue (at 10 mg once day atogepant - 1% to
60 mg twice  a  day atogepant  -  10% versus  placebo -  3%)
[133]. A recent open-label randomized five-way cross-over
single-center phase 1 drug-drug interaction trial investigat-
ing the safety of single dose (60 mg) atogepant co-adminis-
tered with acetaminophen (100 mg) or naproxen (500 mg) in
healthy persons revealed that this combination was safe and
well-tolerated, and no drug-drug interactions were reported
[134].

The third generation,  intranasally administered gepant,
vazegepant, is now referred to as zavegepant [135]. Vazege-
pant is a high affinity and structurally unique (distinct from
rimegepant) small molecule CGRP receptors antagonist. At
the time of writing, the results of the clinical study of vezage-
pant had been announced but were not yet published. A ran-
domized, dose-ranging (5-20 mg), placebo-controlled pivo-
tal phase 2/3 clinical trial (BHV3500-201) investigating the
efficacy and safety of vazegepant in the acute treatment of
migraine showed promising results. Doses of 10 mg and 20
mg vazegepant were more effective than the placebo (10 mg
vazegepant - 22.5%, 20 mg vezagepant - 23.1% versus place-
bo - 15.5%). The reported AEs, dysgeusia, and nasal discom-
fort were mild [136].

Overall, the clinical importance of gepants in the acute
treatment of migraine is that these drugs can be used as se-
cond-line therapy in the triptan non-responder group of the
patients (30-40% of migraineurs) [137]. Moreover, the ge-
pants have a place in the therapeutic palette among migraine
patients who are intolerant to triptans or fear their cardiovas-
cular  side  effects  [138].  Until  now,  ubrogepant  (Dec  23,
2019) and rimegepant (Feb 27, 2020) have been approved
by the FDA for the acute treatment of migraine, while the ap-
plication of atogepant for migraine prevention has been ac-
cepted (March 30, 2021) by the FDA [109].

4.2. CGRP-targeted Monoclonal Antibodies (mAbs)
In the last couple of decades, migraine-specific prophy-

lactic treatment was not available. The widely used and rec-
ommended preventive drugs for migraines are beta-adrenerg-
ic  receptor  blockers,  calcium  ion  channel  blockers,  an-
tiepileptics and antidepressants [139, 140]. The novel phar-
macological technique which can produce humanized or ful-
ly human mAbs against CGRP and CGRP receptors opened
up a new option for patients. Consistent preclinical and clini-

cal research targeting the crucial role of CGRP in the path-
omechanism of migraine has led to the first phase 1 clinical
study of mAbs in migraine prophylaxis.

The  currently  available  antibody-based  antimigraine
drugs are eptinezumab (humanized IgG1), erenumab (fully
human  IgG2),  fremanezumab  (humanized  IgG2)  and  gal-
canezumab (humanized IgG4) [109, 141] (Table 2).

4.2.1. Eptinezumab
Eptinezumab (humanized IgG1kappa mAb) selectively

binds to the CGRP ligand. It is administered intravenously.
It was approved by the FDA on Feb 21. 2020.

A  phase  2b  parallel  group  double-blind,  randomized,
placebo-controlled,  dose-ranging  clinical  trial  of  eptine-
zumab  for  the  prevention  of  CM  revealed  that  300  mg
(33.3%),  100  mg  (31.4%,  30  mg  (28.2%)  and  10  mg
(26.8%) of eptinezumab resulted in a decrease of more than
75% in migraine responder rates over weeks 1-12 versus the
placebo (20.7%). TEAEs were similar to the placebo, includ-
ing upper respiratory tract infection (300 mg - 10.7%, 100
mg  -  6.6%,  30  mg  -  5.7%,  10  mg  -  6.9%  versus  placebo
5.0%), dizziness (300 mg - 1.7%, 100 mg - 9.8%, 30 mg -
2.5%, 10 mg - 8.5% versus placebo 7.4%) and nausea (300
mg - 6.6%, 100 mg - 7.4%, 30 mg - 3.3%, 10 mg - 4.6% ver-
sus  placebo 7.4%) [142].  The PROMISE-1 (Prevention of
Migraine via Intravenous Eptinezumab Safety and Efficacy)
trial, a multicenter, randomized, double-blind, placebo-con-
trolled, parallel-group phase 3 study of eptinezumab in pre-
vention of EM, revealed that 300-mg (-4.3 days) and 100-
mg doses (-3.9 days) of eptinezumab significantly reduced
MMDs  over  weeks  1-12  compared  to  the  placebo  (-3.2
days).  The  most  common  TEAEs  were  upper  respiratory
tract infection (300 mg - 10.3%; 100 mg - 9.9% versus place-
bo - 7.2%) and nasopharyngitis (300 mg - 6.3%; 100 mg -
7.6% and placebo - 5.4%) [143].

The PROMISE-2 trial, a multicenter, randomized, dou-
ble-blind, placebo-controlled, parallel-group phase 3 study
of eptinezumab in the prevention of CM, demonstrated that
the  reduced  MMDs  over  weeks  1-12  at  100  mg  dose  of
eptinezumab  was  -7.7  days  (vs.  placebo  -5.6  days)  and  at
300 mg dose of it was -8.2 versus placebo (-5.6 days). The
most  common  TEAEs  were  nasopharyngitis  (300  mg  -
9.4%; 100 mg - 5.3% versus placebo - 6.0%) and upper res-
piratory tract infection (300 mg - 5.4%; 100 mg - 4.2% and
placebo - 5.5%) [144].

The PROMISE-2 through 24 weeks of eptinezumab treat-
ment for the prevention of CM was performed as follows:
the  first  dose  was  given  at  day  0  and  the  second  dose  at
week 12. The reduction of mean MMDs after the first dose:
300 mg: -8.2 days, 100 mg: -7.7 days versus the placebo: 5.6
days. The decrease of mean MMDs after an additional dose
of eptinezumab was at 300 mg dose -8.8 days and at 100 mg
dose, -8.2 days compared to the placebo (-6.2%). The most
frequent TEAEs were nasopharyngitis (eptinezumab 300 mg
after both doses: 9.4%; 100 mg: 5.3% versus placebo: 6.0%)
and upper respiratory tract infection (eptinezumab 300 mg
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Table 2. CGRP-targeted therapies - monoclonal antibodies.

Antibody Against
CGRP Receptor

Type Indications Route of
Admin

Dosing Efficacy Side Effects Refs.

Erenumab
(AIMOVIG®)

Fully human
IgG2

EM and CM
Preventive

SC 70 mg or 140 mg
monthly

EM:
LHH (AE/50%): 3
(STRIVE study);

LHH (AE/50%): 1.6
(ARISE study)

CM:
decrease of MMDs -6.6

days compared to -4.2 days
of placebo

EM:
STRIVE study:

nasopharyngitis, upper respira-
tory tract infection

ARISE study:
upper respiratory tract infec-
tion, injection site pain, na-

sopharyngitis
CM:

constipation, injection site
pain, upper respiratory tract in-

fection, nausea

[114, 141,
170, 180,

186]

Eptinezumab
(VYEPTITM)

Humanized Ig-
G1 kappa

EM and CM
Preventive

IV 100 mg or 300 mg
quarterly

EM:
LHH (AE/50%): 3.4
(PROMISE-1 study)

CM:
LHH (AE/50%): 5.1
(PROMISE-2 study)

EM:
PROMISE-1 study:

upper respiratory tract infec-
tion, nasopharyngitis

CM:
PROMISE-2:

upper respiratory tract infec-
tion, nasopharyngitis

[114, 141,
148, 186]

Fremanezumab
(AJOVY®)

Humanized Ig-
G2A

EM and CM
Preventive

SC 225 mg monthly
or 675 mg quar-

terly

EM:
LHH (AE/50%): 2.6
(HALO-EM study);

CM:
LHH (AE/50%): 2.8
(HALO-CM study)

HALO-EM study:
injection site reaction (pain,

erythema, induration)
HALO-CM study:

injection site reaction (pain,
erythema, induration)

[114, 141,
157, 186]

Galcanezumab
(EMGALITY®)

Humanized
IgG4

EM and CM
Preventive

SC 120 mg monthly
with 240 mg load-

ing dose

EM:
LHH (AE/50%):

4.0 (EVOLVE-1 study);
7.2 (EVOLVE-2 study)

CM:
LHH (AE/50%): 1.4 (RE-

GAIN study)

EM:
EVOLVE-1 study:
injection site pain
EVOLVE-2 study:
injection site pain

CM:
REGAIN study:

injection site pain

[114, 141,
166, 186]

Abbreviations: AE (Adverse Event), CGRP (Calcitonin Gene-Related Peptide), CM (Chronic Migraine), EM (Episodic Migraine), LHH (Likelihood to Help versus Harm: ratio of
NNTH/NNTB), NNTH/NNTB (the number of patients needed to be treated to harm / the number needed to be treated for a specific beneficial outcome), Ig (Immunoglobulin), IV (In-
travenously), MMDs (Monthly Migraine Days), SC (Subcutaneously).

after both doses: 5.4%; 100 mg: 4.2% versus placebo: 5.5%)
[145]. The subgroup analysis of the PROMISE-2 trial with a
dual diagnosis of CM and medication overuse headache pa-
tients  revealed  that  eptinezumab  decreased  the  MMDs  at
300 mg dose -8.6 days and at 100 mg dose -8.4 days com-
pared to placebo -5.4 days. The most frequent drug-related
TEAEs  were  nasopharyngitis  (10.2%  -  300  mg  dose  of
eptinezumab and 5.0% - 100 mg dose versus 6.9% - place-
bo)  and  upper  respiratory  tract  infection  (5.4%  -  300  mg
dose of eptinezumab and 3.6% - 100 mg dose versus 5.5% -
placebo) [146]. The PREVAIL study, a long-term (2-year),
open-label phase 3 trial for evaluating safety and tolerability
of IV eptinezumab given in repeated 300 mg doses (every
12 weeks for up to 8 doses) in CM patients, revealed that the
most common TEAEs were nasopharyngitis (14.1%), upper

respiratory tract infection (7.8%), sinusitis (7.8%) and bron-
chitis (5.5%) [147]. The pooled analysis of the above clini-
cal trials concerning the comprehensive safety and tolerabili-
ty of IV eptinezumab in migraineurs demonstrated that the
most common drug-related TEAEs were mild-to-moderate
in intensity, such as upper respiratory tract infection (at all
doses  7.6%  versus  placebo  6.1%),  nasopharyngitis  (at  all
doses 6.7% versus placebo 5.2%) and dizziness (at all doses
3.3% versus placebo 2.7%) [148].
4.2.2. Fremanezumab

Fremanezumab (humanized IgG isotype 2A) selectively
targets CGRP as a ligand. Its route of administration is sub-
cutaneously (SC). It was approved by the FDA on Septem-
ber 14. 2018.
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A multicenter randomized placebo-controlled phase 2b
study for TEV-48125 for preventive treatment in high-fre-
quency EM demonstrated that the LSM difference in the re-
duction  of  MMDs  focusing  on  placebo  versus  fre-
manezumab  was  -281  days  (225  mg  fremanezumab)  and
-2.64 days (675 mg fremanezumab). AEs occurred in 46%
of patients (at 225 mg dose of fremanezumab) and 59% of
migraineurs (at 675 mg dose of fremanezumab) compared to
56%  (in  placebo  group)  [149].  In  a  randomized,  dou-
ble-blind,  placebo-controlled,  parallel-group  trial  (HALO-
EM  study)  fremanezumab  was  administered  quarterly  or
monthly for prophylaxis of EM. It revealed a significant de-
crease  of  mean  MMDs  (8.9-4.9  days  for  fremanezumab
monthly,  9.2-5.3  days  for  the  single,  higher  dose  of  fre-
manezumab versus 9.1-6.5 days for the placebo group). The
most common AEs in the fremanezumab groups were injec-
tion  site  reactions,  such  as  pain  (29.6-30%),  erythema
(17.9-18.9%)  and  induration  (09.6-24.5%)  [150].  Fre-
manezumab administered quarterly or monthly for prophy-
laxis of CM in a phase 3 trial (HALO-CM study) demonstrat-
ed that it was effective and well-tolerated. The LSM (+SE-s-
tandard error) decrease of the average number of headache
days per month was 4.3+0.3 (quarterly fremanezumab) and
4.6+0.3  (monthly  fremanezumab)  compared  to  2.5+0.3
(placebo). The main AEs in fremanezumab groups were in-
jection site reactions (pain: 26-30%, induration: 20-24%, ery-
thema: 20-21%) [151]. A subanalysis of long-term (12-mon-
th) phase 3 RCT from HALO-EM and HALO-CM studies re-
vealed that the mean weekly number of migraine days de-
creased substantially, 30-42%, during the first 2 weeks and
it remained stable for at least 2 weeks of the first and second
quarter. The migraine patients receiving monthly or quaterly
fremanezumab did  not  experience  a  wearing-off  effect  to-
ward  the  end  of  the  dosing  interval  [152].  A  randomized,
double-blind,  placebo-controlled,  parallel-group  phase  3b
(FOCUS) study was performed in EM and CM patients who
previously failed to react with up to four migraine preven-
tive medication classes. This FOCUS study revealed a reduc-
tion in average MMDs versus the placebo. The LSM (+SE)
difference  versus  placebo  was  -3.1  with  quarterly  fre-
manezumab and -3.5 with monthly fremanezumab. The AEs
were  similar  to  the  placebo (pain:  3-4% in  fremanezumab
groups vs. 3% in the placebo group, induration: 4-4% in fre-
manezumab groups vs. 5% in placebo group, erythema 5-7%
in fremanezeumab groups vs. 6% in placebo group) [153].

A recent subgroup analysis by country (Czech Republic,
USA and Finland) of the FOCUS study investigated the effi-
cacy and safety of monthly and quarterly administration of
fremanezumab.  It  revealed  that  the  average  number  of
MMDs was reduced compared to the placebo regardless of
country  and  continent.  The  LSM difference  of  efficacy  of
fremanezumab was -1.9 days (quarterly fremanezumab) and
-3.0 days (monthly fremanezumab) in the Czech Republic,
-3.7 days (quarterly fremanezumab) and -4.2 days (monthly
fremazenumab)  in  the  USA  and  -3.0  days  (quarterly  fre-
manezumab) and -3.9 days (monthly fremanezumab) in Fin-
land. The AEs were comparable across countries [154].

A  long-term  52-week,  multicenter  randomized,  dou-
ble-blind, parallel-group study revealed the long-term safe-
ty, tolerability and efficacy of fremanezumab administered

monthly or quarterly in EM or CM patients. MMDs were re-
duced by -7.2  days  (quarterly)  and -8.0  days  (monthly)  in
CM patients, while -5.2 days (quarterly) and -5.1 (monthly)
in  EM  patients  from  the  baseline  to  52  weeks.  Regarding
AEs in CM patients, injection site induration was 30% (quar-
terly) and 35% (monthly), injection site pain was 29% (quar-
terly)  and 33% (monthly)  and injection site  erythema was
25% (quarterly) and 31% (monthly). In EM patients, injec-
tion site induration was 29% (quarterly) and 38% (monthly),
injection site pain was 30% (quarterly) and 32% (monthly)
and  injection  site  erythema was  25% (quarterly)  and  27%
(monthly) [155]. The meta-analyses of RCTs concerning ef-
ficacy,  safety  and  optimal  treatment  strategy  of  fre-
manezumab in migraine prevention revealed that the pharma-
con  showed  good  efficacy  with  mild  AEs,  and  the  single
high dose of 675 mg and 225 mg fremanezumab adminis-
tered monthly demonstrated the optimal balance between ef-
ficacy  and safety  at  12  weeks  [156,  157].  There  are  some
new data from fremanezumab dose selection phase 1 trial in
children planning to design a phase 3 clinical study in pedia-
tric migraineurs, which has suggested a dose of 120 mg of
fremanezumab in patients weighing <45 kg [158].

4.2.3. Galcanezumab
Galcanezumab (humanized IgG isotype 4) binds CGRP

as  a  ligand.  Its  route  of  administration  is  SC.  It  was  ap-
proved by the FDA on September 27, 2018.

The EVOLVE-1 (Evaluation of LY2951742 in the Pre-
vention  of  Episodic  Migraine)  randomized,  double-blind,
placebo-controlled phase 3 trial in EM demonstrated that re-
duced  MMDs  were  4.7  days  (120  mg  galcanezumab)  and
4.6 days (240 mg galcanezumab) versus 2.8 days (placebo).
The  common  (TEAE)  was  injection  site  pain,  which  was
16.0% at 120 mg dose of galcanezumab, 20.5% at 240 mg
dose  of  galcanezumab  and  17.4%  in  the  placebo  group
[159].

EVOLVE-2,  a  global  double-blind  6-month  phase  3
RCT evaluating efficacy and safety of galcanezumab in EM,
revealed  that  the  mean  MMDs  were  reduced  by  4.3  days
(120  mg  galcanezumab  group),  4.2  days  (240  mg  gal-
canezumab  group)  versus  2.3  days  (placebo  group).  Mi-
graine Disability Assessment (MIDAS), Migraine-Specific
Quality of Life Questionnaire Role Function-Restrictive and
Patient Global Impression of Severity as key secondary end-
points were superior to placebo in both doses (120 mg and
240 mg) of galcanezumab. TEAEs as injection site pain was
9.3%  (galcanezumab  120  mg),  8.8%  (galcanezumab  240
mg) and 8.5% (placebo). Injection site erythema occurred in
2.7%  (galcanezumab  120  mg),  3.1%  (galcanezumab  240
mg)  and  0.9%  (placebo).  Injection  site  pruritus  existed  in
2.7%  (galcanezumab  120  mg),  3.1%  (galcanezumab  240
mg)  and  0.0%  (placebo)  [160].

The  REGAIN  randomized,  double-blind,  placebo-con-
trolled phase 3 study, which involved a 3-month long dou-
ble-blind  placebo-controlled  treatment  phase  and  9-month
long open-label extension, revealed that the mean number of
MMDs were decreased by -4.8 days (galcanezumab 120 mg)
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and  -4.6  days  (galcanezumab  240  mg)  versus  -2.7  days
(placebo). The most common TEAE was injection site pain
(6% at 120 mg galcanezumab, 7% at 240 mg galcanezumab
versus 4% at placebo group) [161]. A long-term (12 months)
multicenter,  randomized,  open-label  phase  3  two  gal-
canezumab dosing (120 mg and 240 mg) regimen study re-
vealed that, from an efficacy point of view, the mean reduc-
tion in  MMDs was -5.6 days (120 mg galcanezumab) and
-6.5 days (240 mg galcanezumab). The most frequent TEAE
was  injection  site  pain  (17.1%  in  120  mg  dose  gal-
canezumab and 19.9% in 240 mg dose galcanezumab group)
[162].

The CONQUER study, a multicenter, randomized, dou-
ble-blind, placebo-controlled, phase 3b trial focused on the
efficacy  and  safety  of  galcanezumab  (120  mg  SC)  in  mi-
graine patients in whom prophylactic medication from two
to four categories had failed. The reduction of the number of
MMDs  was  significantly  greater  in  the  verum  group  (4.1
days compared with baseline 13.4 days) versus placebo (1.0
day compared with baseline 13.0 days). The rate of TEAEs
was similar to the placebo (galcanezumab 51% versus place-
bo  53%).  The  most  common AEs were  injection  site  pain
(25% in galcanezumab 120 mg group versus 6% in placebo
group)  and erythema (3% in  galcanezumab 120 mg group
versus 3% in placebo group) [163].The post-hoc analysis of
the CONQUER study showed early onset of effect of gal-
canezumab beginning the first day after treatment initiation
and  maintained  all  subsequent  weeks  and  months  in  mi-
graine patients who had failed previous preventive drug treat-
ments [164]. A recently published, phase 2 RCT from Japan
focused on treatment  satisfaction with galcanezumab (120
mg and 240 mg) for 6 months in EM patients, revealed that
the  Patient  Global  Impression  of  Improvement  response
rates  and  Patient  Satisfaction  with  Medication  Question-
naire-modified scale response rates were significantly higher
compared  with  the  placebo  [165].  The  meta-analysis  of
EVOLVE-1,  EVOLVE-2 and REGAIN phase 3  RCTs de-
monstrated that galcanezumab was effective and well-tolerat-
ed in prophylactic treatment for migraine patients [166]. A
systematic review and meta-analysis of six clinical studies
revealed that  the overall  effect  size of  galcanezumab (120
mg and 240 mg) over the placebo in mean difference in the
number of  MMDs was 2.22 days.  The safety outcome de-
monstrated that RR of injection site pain between both dose
groups of galcanezumab (120 mg and 240 mg) compared to
the placebo was 1.35, while RR of nasopharyngitis was 0.93
and of upper respiratory tract infection was 1.61 [167].

A real-life multicenter prospective observational cohort
study (the GARLIT study: GAlcanezumab in Real Life mi-
graine  patients  in  ITaly)  for  galcanezumab  SC  (120  mg
monthly with the first loading dose of 240 mg) for the pre-
vention of high-frequency EM and CM revealed that MMDs
were reduced by 8 days in high-frequency EM and monthly
headache days were decreased by 13 days in CM patients af-
ter  6  months  of  therapy.  After  6  months  of  galcanezumab
treatment,  77.2%  of  CM  patients  converted  to  EM.  AEs
were observed in up to 10.3% of migraineurs. The most com-
mon AEs at 6 months were gastro-intestinal signs (e.g., nau-

sea, constipation) (2.5%) and arthralgia, skin reaction, and
dizziness (0.6%, respectively). Galcanezumab showed high-
er effectiveness in real-life settings than in RCTs [168].

4.2.4. Erenumab
Erenumab (fully human IgG2) competitively and reversi-

bly binds to CGRP receptor components (CLRL and RAM-
P1), and it is administered SC. It was approved by the FDA
on May 17, 2018.

A  multicenter  randomized  double-blind  placebo-con-
trolled phase 2 dose-ranging trial of efficacy and safety of
AMG334 (7  mg,  21  mg and 70  mg)  for  the  prevention  of
EM demonstrated that a dose of 70 mg significantly reduced
the MMDs at week 12 (-2.3 days of 70 mg versus -1.1 days
of placebo). The most common AEs were nasopharyngitis (7
mg - 9%, 21 mg - 5%, 70 mg - 6%, placebo - 8%), fatigue (7
mg - 5%, 21 mg - 2%, 70 mg - 4%, placebo - 2%) and hea-
dache (7 mg - 4%, 21 mg - 1%, 70 mg - 3%, placebo - 1%)
[169]. A multicenter randomized double-blind placebo-con-
trolled phase 2 study investigating the efficacy and safety of
erenumab (70 mg and 140 mg) for the prevention of CM re-
vealed that both doses of erenumab reduced the MMDs (-6.6
days compared to -4.2 days of placebo). The reported AEs
were  39%  in  the  placebo  group,  44%  in  the  70  mg-dose
group  and  47%  in  140  mg-dose  erenumab  treated  group.
The  most  frequent  AEs  were  injection  site  pain  (70  mg  -
4%, 140 mg - 4%, placebo - 1%), upper respiratory tract in-
fection (70 mg - 3%, 140 mg - 3%, placebo - 1%) and nau-
sea (70 mg - 2%, 140 mg - 3%, placebo - 2%) [170].  The
STRIVE trial (Study to Evaluate the Efficacy and Safety of
Erenumab  in  Migraine  Prevention),  a  phase  3  RCT  of
erenumab at doses of 70 mg and 140 mg for a 6 month-peri-
od in patients with EM, revealed that the mean number of
MMDs was reduced by -3.2 days in 70 mg-dose group and
-3.7 days in 140 mg-dose group compared to -1.8 days in the
placebo  group.  The  physical  impairment  scores  and  every
day-activities scores were improved in borh verum groups
compared  to  the  placebo.  AEs  were  similar  between  the
erenumab and placebo groups. The most common ones were
nasopharyngitis  (70  mg  -  9.9%,  140  mg  -  11%,  placebo  -
10%) and upper respiratory tract  infection (70 mg - 6.7%,
140 mg - 47%, placebo - 5.6%) [171]. A post-doc analysis
of the data from the STRIVE study noticed that the reduc-
tion  of  the  frequency  of  monthly  migraine  attacks  (LSM
change from baseline to -1.99 at 70 mg and -2.22 at 140 mg
erenumab compared  to  -1.32  for  the  placebo)  led  to  a  de-
crease of MMDs (LSM change from baseline to -3.23 at 70
mg and -3.67 at 140 mg erenumab versus -1.83 for the place-
bo), and the duration of migraine attacks was decreased by a
lesser  amount  [172].  The  ARISE  study  (A  Phase  3,  Ran-
domized, Double-blind, Placebo-controlled Study to Evalu-
ate the Efficacy and Safety of AMG 334 in Migraine Preven-
tion), a large multinational, placebo-controlled phase 3 trial
of erenumab 70 mg in EM resulted in a LSM treatment dif-
ference of -1.0. The safety profile of erenumab was similar
to the placebo. The most common AEs were upper respirato-
ry tract infection (7 mg erenumab - 6.4%, placebo - 4.8%),
injection site pain (70 mg erenumab - 6.0%, placebo - 4.2%)
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and  nasopharyngitis  (70  mg  erenumab  -  5.3%,  placebo  -
5.9%)  [173].  The  LIBERTY  trial  was  conducted  as  a  12-
week  long  randomised,  double-blind,  placebo-controlled,
phase 3b study investigated erenumab (140 mg SC) in pa-
tients  with  EM  in  whom  two  to  four  previous  preventive
drug treatments had failed. Regarding efficacy as a 50% or
greater  reduction  from  baseline  in  the  mean  number  of
MMDs, 30% of patients in the verum group versus 14% in
the  placebo  group  found  the  treatment  effective.  Injection
site pain was the most common and equivalent TEAE in the
two study groups (6% in erenumb group and 6% in placebo
group) [174]. Analysis of the effect of erenumab on patien-
t-reported  functional  outcomes  from  the  LIBERTY  study
showed  that  erenumab  was  efficacious  on  functional  out-
comes [175]. The long-term (64-week long) open-label ex-
tension phase of the LIBERTY study, evaluating the effica-
cy and safety of erenumab (140 mg SC) in EM resulted in a
50% responder rate (≥50% reduction in MMDs from base-
line), increased from 29.9% to 43.3% at week 61-64, which
pointed to the sustained efficacy of erenumab monotherapy.
The most common AEs were nasopharyngitis (30.8%) and
injection  site  pain  (5.4%)  [176].  A  real-life  observational
study evaluating the efficacy and safety of erenumab treat-
ment over 6 months, mainly (94.4%) in CM patients and in
medication overuse headache patients (71.9%), revealed that
after the complete 6 dose treatment of erenumab the median
MMDs decreased from 19 days to 4 days. The main AE was
constipation  (13.5%)  [177].  The  subgroup  analysis  of  the
study mentioned above demonstrated that 68.1% of CM pa-
tients on an at least 6-month, erenumab treatment converted
to EM (from 26.5 to 7.5 median MMDs) [178]. Another re-
al-world observational study examining erenumab and gal-
cazenumab in refractory migraine patients who had not had
success with at least three preventative medications reported
that after 12 weeks the headache frequency decreased -9.1
headache  days  per  month  (erenumab)  and  -8.5  migraine
days per month (galcanezumab) from the baseline. The most
frequently  reported  drug-related  AEs  were  constipation
(20%)  and  fatigue  (7.1%)  [179].  A  meta-analysis  of
erenumab RCTs revealed significantly greater reductions in
baseline  MMDs  (70  mg:  mean  difference  -1.3;  140  mg:
mean difference -1.9). It can be concluded that erenumab is
an  efficacious  and  well-tolerated  prophylactic,  therapeutic
option both in EM and CM [180]. A newly published system-
atic review and meta-analysis, which includes data of 8 clini-
cal trials evaluating the AEs of erenumab revealed that a sig-
nificant heterogeneity of estimated incidence of AEs was ob-
served. This heterogeneity can be connected to treatment du-
ration for back pain, while influenza, upper respiratory tract
infection and Body Mass Index for nasopharyngitis [181].

The latest published long-term 5-year, open-label treat-
ment  phase  following a  12-week RCT evaluating  efficacy
and safety of erenumab (70 mg, which increased to 140 mg)
in  EM prevention  study  revealed  that  the  mean  change  in
MMDs from a baseline of 8.7 days was -5.3 days and the av-
erage  reduction  of  MMDs  were  62.3%  at  year  5,  and  the
change in monthly acute migraine-specific medication days
were -4,4 days at the end of 5 years. Incidence rates of AEs
were 123/100 patient-year [182].

A real-life cohort study evaluating MMDs after the dis-
continuation of erenumab (98.1% of the patients) and gal-
canezumab (1.9% of the patients) one-year long treatments
revealed that the migraine frequency quickly returned. After
treatment  interruption,  the MMDs were 6 days in  the first
month and these numbers rose to 11 days in the third month
[183].

4.2.5. Meta-analyses of CGRP-targeted mAbs Treatment in
Migraine

A meta-analysis  was  aimed at  the  placebo and nocebo
phenomena in clinical trials which involve CGRP-targeted
mAbs  in  migraine  prevention.  The  data  demonstrated  that
the  50%  responder  rates  in  EM  were  32.7%  in  the  place-
bo-arm versus 50.8% in the verum-arm (anti-CGRP mAbs),
while in CM the placebo-arm showed 23.6% and the verum-
arm had 43.8% responder rate. Regarding the nocebo pheno-
menon,  in  placebo-treated  EM  patients,  the  proportion  of
drop-outs due to AEs (nocebo) was 1.9%, while in CM pa-
tients, it was 1.4%. In the verum-arm (anti-CGRP mAbs) of
EM the ratio of drop-outs due to AEs was 2.7%, while with
CM  it  was  1.4%.  These  results  suggest  that  the  stronger
placebo and weaker nocebo phenomena in these RCTs may
determine anti-CGRP mAbs treatment success [184]. A sys-
tematic review and meta-analysis were conducted focusing
on proportional contextual effects (PCE) of CGRP mAbs in
EM and CM. The PCE means the ratio between the reduc-
tion of MMDs in the placebo group and in the verum group
after  3  months  of  treatment.  The  pooled  PCE was  0.66  in
EM and 0.68 in CM. Two-thirds of the therapeutic benefit of
anti-CGRP mAbs in migraine is originated from the PCE ef-
fect [185]. A systematic review and likelihood to help ver-
sus  harm  (LHH)  analysis  of  CGRP-based  mAbs  for  mi-
graine prevention were recently published. The LHH values
mean  the  ratio  of  NNTH/NNTB  (the  number  of  patients
needed to be treated to harm / the number needed to be treat-
ed for  a  specific  beneficial  outcome).  Efficacy,  safety and
benefit/risk outcomes of erenumab (STRIVE and ARISE),
fremanezumab  (HALO-EM),  galcanezumab  (EVOLVE-1
and EVOLVE-2) and eptinezumab (PROMISE-I) in the pro-
phylaxis  of  EM  were  analysed.  The  LHH  (AE/50%)  of
erenumab  70  mg  in  the  STRIVE  trial  was  3,  and  in  the
ARISE trial was 1.6. The LHH (AE/50%) of fremanezumab
225 mg in the halo-EM study was 2.6 and of galcanezumab
120  mg  in  the  EVOLVE-1  study  was  4.0,  and  in
EVOLVE-2 was 7.2,  while of  eptinezumab 100 mg in the
PROMISE-1 study was 3.4. In the prophylaxis of CM, LHH
(AE/50%) of fremanezumab 225 mg monthly in the HALO-
CM trial was 2.8, of galcanezumab 120 mg in the REGAIN
study was 1.4, and of eptinezumab 100 mg in PROMISE-2
was 5.1 [186]. Another systematic review and network me-
ta-analysis concerning the efficacy (changes in MMDs) and
safety  of  CGRP-targeting  mAbs  revealed  that  fre-
manezumab  225  mg  (-2.19  days),  galcanezumab  120  mg
(-2.10 days), erenumab 70 mg (-1.61 days) and eptinezumab
100 mg (-1.43 days) significantly reduced MMDs compared
to  the  placebos.  Regarding  the  safety  profile  of  the  four
mAbs,  the  incidences  of  TEAEs  were  the  following:  gal-
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canezumab  vs.  placebo  (relative  risk-RR:  1.11),  fre-
manezumab vs. placebo (RR: 1.05), eptinezumab vs. placebo
(RR:  1.03)  and  erenumab  vs.  placebo  (RR:  0.98).  The
pooled RR of serious AEs due to erenumab (RR: 1.15), fre-
manezumab  (RR:  1.16),  eptinezumab  (RR:  1.25)  and  gal-
canezumab (RR: 2.95) compared to the placebo [187].

5. SUMMARY
One  of  the  biggest  challenges  in  the  clinical  manage-

ment of migraine is that up to one-third of migraineurs need
prophylactic  drug  treatment.  Prophylactic  migraine  treat-
ment is considered effective if the drug decreases the attack
frequency by at least 50% within 3 months and diminishes
the duration of the headache phase and the intensity of head
pain [139,  140].  Based on the results  of  clinical  trials,  the
currently available CGRP-targeted mAbs fulfill these strict
criteria.  Even  more,  the  application  of  these  medications
gives  a  chance  to  avoid  the  development  of  medication
overuse  headaches  due  to  the  reduced  need  of  acute  mi-
graine drugs. The management of CM is difficult; therefore,
CGRP-related mAbs give a bright perspective in this thera-
peutic field [188].

In daily clinical practice, the rate of adherence is a deci-
sive aspect for clinicians, which ranges considerably (from
25% to 94%) among migraineurs regarding their prophylac-
tic medications [189, 190]. There is hope that CGRP-target-
ed mAbs with a remarkably better safety profile will result
in an increase in adherence rates in this population [191].

The unique effect of these pharmacons is that those mi-
graine patients for whom multiple previous standard-of-care
preventative drug treatments failed (so they were considered
difficult-to-treat patient groups) showed clear-cut improve-

ments. Another beneficial feature of these drugs is their ear-
ly onset and sustained efficacy, which occurs after one week
of their administration.

Overall,  all  the  currently  available  CGRP-targeting
mAbs  (eptinezumab,  fremanezumab,  galcanezumab  and
erenumab)  are  highly  effective  in  the  prophylaxis  of  both
EM and CM. They are safe and well-tolerated with the most
frequent AEs as injection site reactions and, for erenumab,
constipation. Their administration is simple with long-last-
ing  action.  Evenmore  their  long-term  immunogenicity  is
limited. Nonetheless, their use still requires cautious atten-
tion to their contraindications like cerebrovascular and car-
diovascular events [109, 192].

CONCLUSION
The Brain Prize winners  in 2021 were Lars Edvinsson

(Sweden), Peter Goadsby (UK), Michael Moskowitz (USA)
and Jes Olesen (Denmark). These outstanding scientists are
pioneers in migraine research. They discovered and proved
the key mechanisms of the role of CGRP in migraines. Addi-
tionally, they have built a robust pathway between the role
of CGRP in the TS associated with CSD, NO, PACAP and
the  kynurenine  system.  Moreover,  their  activities  have
opened the door and marked new directions for preclinical
and clinical work in the migraine bedside-to-bench-to-bed-
side  research  field.  The  results  of  their  ground-breaking
work led to CGRP-based treatment of migraine, like CGRP
receptor  antagonists  (ubrogepant,  rimegepant,  atogepant)
and an antibody against CGRP receptor (erenumab) and anti-
bodies  against  CGRP  as  a  ligand  (fremanezumab,  gal-
canezumab,  eptinezumab).  This  CGRP-targeted mechanis-
m-based therapy has had a huge impact on millions of mi-
graineurs (Table 3).

Table 3. Migraine-related milestone discoveries of Brain Prize winners 2021.

Discoveries and Main Hypotheses Year Researcher Refs.
Trigeminovascular hypothesis 1979 Moskowitz MA [5]

Trigeminovascular system 1983 Moskowitz MA [52]
The first description of CGRP localization and function in the cerebral circulation 1984 Edvinsson L [50]

CGRP release after trigeminal stimulation in humans 1988 Edvinson L
Goadsby PJ

[64]

CGRP release during an acute migraine attack 1990 Edvinsson L
Goadsby PJ

[17]

The first suggestion of CSD occurring during the aura phase of migraine 1990 Olesen J [18]
Triptans block trigeminal activation and CGRP release in animals and humans 1993-1994 Edvinsson L

Goadsby PJ
[86, 87]

Nitric oxide triggers migraine attacks 1994 Olesen J [78]
CGRP co-localized with 5-HT 1/B and 1/D receptors in human TRIG neurons and sensory fibers 2001-

2002
Edvinsson L [88, 89]

CGRP IV infusion triggers the migraine attack 2002 Olesen J [65]
PACAP IV administration triggers the migraine attack 2009 Olesen J [106]

Sumatriptan reduced elevated PACAP plasma level during the migraine attack 2014 Edvinsson L
Goadsby PJ

[193]

Kynurenic acid modulates experimentally induced inflammation in the trigeminal ganglion 2015 Edvinsson L [97]
Abbreviations: CGRP: Calcitonin Gene-Related Peptide, CSD: Cortical Spreading Depression, 5-HT: 5-hydroxy-tryptamine, IV: Intravenous PACAP: Pituitary Adenylate Cy-
clase-Activating Peptide, TRIG: Trigeminal Ganglion.
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LIST OF ABBREVIATIONS

AE = Adverse Event
CGRP = Calcitonin Gene-Related Peptide
CM = Chronic Migraine
CRLR = Calcitonin-Receptor-Like Receptor
CSD = Cortical Spreading Depression
EM = Episodic Migraine
EMA = European Medicine Agency
FDA = Food and Drug Administration
GTN = Glyceryl Trinitrate
5-HT = 5-Hydroxy-Tryptamine
ICHD-3 = International  Classification  of  Headache

Disorders  3rd  edition
IV = Intravenous(ly)
KYNA = Kynurenic Acid
KAT = Kynurenine Aminotransferase
LHH = Likelihood to Help versus Harm
L-KYN = L-Kynurenine
LSM = Least Square Mean
MIDAS = Migraine Disability Assessment
MMD = Monthly Migraine Day
MRI = Magnetic Resonance Imaging
mAb = monoclonal Antibody
NMDA = N-Methyl-D-Aspartate
NNTB = Number of patients Needed to be Treated

for Benefit
NNTH = Number of patients Needed to be Treated

to Harm
NO = Nitric Oxide
NOS = Nitric Oxide Synthase
NF-kappa B = Nuclear Factor kappa-light-chain-enhancer

of activated B cells
PACAP = Pituitary  Adenylate  Cyclase-Activating

Peptide
PCE = Proportion of Contextual Effects
RAMP-1 = Receptor-Activity-Modifying Protein-1
RCP = Receptor-Component Protein
RCT = Randomized Controlled Trial
RR = Relative Risk
SC = Subcutaneous (ly)

TNC = Trigeminal Nucleus Caudalis
TRIG = Trigeminal Ganglion
TS = Trigeminovascular System
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