

Contents lists available at ScienceDirect

**Chemical Engineering Journal** 



journal homepage: www.elsevier.com/locate/cej

# Synergistic conversion of $CO_2$ into C1 and C2 gases using hybrid in-doped $TiO_2$ and $g-C_3N_4$ photocatalysts



Jiyeon Park <sup>a,1</sup>, Hao Liu <sup>a,1</sup>, Guangxia Piao <sup>a</sup>, Unseock Kang <sup>a</sup>, Hye Won Jeong <sup>b,\*</sup>, Csaba Janáky <sup>b</sup>, Hyunwoong Park <sup>a,\*</sup>

<sup>a</sup> School of Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

<sup>b</sup> Department of Physical Chemistry and Materials Science, University of Szeged, Szeged H-6720, Hungary

| ARTICLE INFO                                                                              | A B S T R A C T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Keywords:<br>Solar fuels<br>Artificial photosynthesis<br>Hydrocarbons<br>Charge transfers | Achieving high-efficiency photocatalytic conversion of CO <sub>2</sub> into value-added chemicals remains a challenge. This study synthesizes In-doped TiO <sub>2</sub> and g-C <sub>3</sub> N <sub>4</sub> composites (In-TiO <sub>2</sub> /g-C <sub>3</sub> N <sub>4</sub> ) via a facile and reliable method. The as-synthesized In-TiO <sub>2</sub> /g-C <sub>3</sub> N <sub>4</sub> produces CO, CH <sub>4</sub> , and C <sub>2</sub> H <sub>4</sub> under UV, and CO and CH <sub>4</sub> under visible light from gaseous CO <sub>2</sub> and H <sub>2</sub> O vapor. A prolonged photocatalysis results in the continuous production of the same set of carbonaceous compounds over 30 h, with a photonic yield of ~ 40%. The yield of C <sub>2</sub> H <sub>4</sub> with In-TiO <sub>2</sub> /g-C <sub>3</sub> N <sub>4</sub> is ~ 11-times greater than the sum of In-TiO <sub>2</sub> and g-C <sub>3</sub> N <sub>4</sub> . The CO <sub>2</sub> adsorption isotherms show that In-TiO <sub>2</sub> acts as a CO <sub>2</sub> adsorbent and photocatalyst whereas g-C <sub>3</sub> N <sub>4</sub> mainly works as a photocatalyst. In-situ FTIR study reveals the formation of CH <sub>4</sub> and C <sub>2</sub> H <sub>4</sub> on In-TiO <sub>2</sub> /g-C <sub>3</sub> N <sub>4</sub> . Time-resolved photoluminescence indicate that In-doping facilitates charge transfer and a strongly coupled g-C <sub>3</sub> N <sub>4</sub> induces cascaded charge transfer. This leads to inhibited |

charge recombination and long-lived charge carriers.

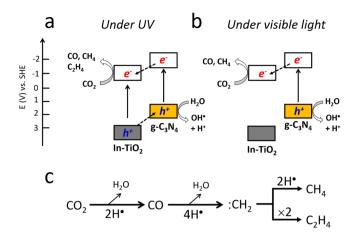
#### 1. Introduction

Over the last few decades, photocatalytic CO<sub>2</sub> conversion has gained popularity as one of the artificial photosynthesis technologies [1–5]. It can upgrade captured CO<sub>2</sub> to value-added chemicals, such as CO, methanol, aliphatic acids, and hydrocarbons, using n-type and p-type semiconductor photocatalysts [6–10]. Despite extensive studies, most photocatalysts still suffer from low selectivity (i.e., mixed carbon products), non-stoichiometric redox reactions (i.e., limited or absent water oxidation reactions), short durability, and poor solar conversion efficiency. Some *p*-type semiconductors demonstrated an exceptionally high solar conversion efficiency of ~ 5% over a month under simulated sunlight, with 100%-selective formic acid production and stoichiometric O<sub>2</sub> evolution in the absence of any sacrificial chemicals and electrical biases [6,11–13].

Among *n*-type semiconductors,  $TiO_2$  has been widely studied as a model material because of its low cost, photochemical stability, and environmentally friendly properties [14–16]. Nevertheless,  $TiO_2$  has several photochemical limitations for driving  $CO_2$  reduction reactions (CO<sub>2</sub> RR), including a wide bandgap, poor charge transfer, and

inefficient charge injection. The first two issues are common for most reduction reactions (e.g.,  $O_2$  reduction and  $H_2$  evolution). However, the last is critical, particularly for  $CO_2$  RR because the conduction band (CB) has a significantly lower energy level than the one-electron reduction potential of  $CO_2$  ( $E^{\circ}$  ( $CO_2/CO_2^{\bullet-}$ ) = -1.97 V) [5]. Nevertheless, the formation of aliphatic acids and  $C_1$  hydrocarbons at irradiated TiO<sub>2</sub>/ liquid and TiO<sub>2</sub>/gas interfaces indicates that proton-coupled electron transfer (PCET) to adsorbed  $CO_2$  is the dominant process. Furthermore, the presence of  $C_{\geq 2}$  hydrocarbons indicates that the adsorbed  $C_1$  intermediates are sufficiently long-lived for C–C coupling.

Many surface modifications (e.g., doping, heterojunction, and coupling with co-catalysts) have been attempted to enhance the photocatalytic activity for CO<sub>2</sub> RR (Table S1). Among them, doping with  $In^{3+}$  is effective in creating oxygen vacancies in TiO<sub>2</sub> and reducing the charge recombination process [17]. Furthermore, indium-doping can increase the surface area and enlarge the bandgap (E<sub>g</sub>) of TiO<sub>2</sub> [18]. Previous studies showed that the inhibited charge recombination significantly increased CH<sub>4</sub> production with In-doped TiO<sub>2</sub>, whereas CO was the sole product with bare TiO<sub>2</sub> [17–19]. Coupling with carbon-based materials (e.g., graphitic carbon derivates, graphene, graphene


\* Corresponding authors.

<sup>1</sup> Contributed equally to this work.

https://doi.org/10.1016/j.cej.2022.135388

Received 21 December 2021; Received in revised form 6 February 2022; Accepted 18 February 2022 Available online 22 February 2022 1385-8947/© 2022 Elsevier B.V. All rights reserved.

E-mail addresses: h.jeong@chem.u-szeged.hu (H.W. Jeong), hwp@knu.ac.kr (H. Park).



**Scheme 1.** Schematic illustration of the charge transfer mechanism with In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> under (a) UV and (b) visible light. (c) Proposed elementary reaction pathway of photocatalytic CO<sub>2</sub> conversion into CO and hydrocarbons. H<sup>•</sup> represents a proton/electron (H<sup>+</sup>/e<sup>-</sup>) pair.

oxide, and carbon nanotubes) can also improve the TiO<sub>2</sub> activity. The electrically conductive carbon materials with a large surface area can serve as an adsorbent of CO<sub>2</sub> and catalyst of CO<sub>2</sub> RR because of their unique electronic properties [20,21]. Among carbon materials, graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) has a semiconductor property with a narrow E<sub>g</sub> (~2.7 eV). When coupled to TiO<sub>2</sub>, g-C<sub>3</sub>N<sub>4</sub> captures visible light ( $\lambda \sim$  460 nm) and facilitates photogenerated charge transfer (Scheme 1) [22–24].

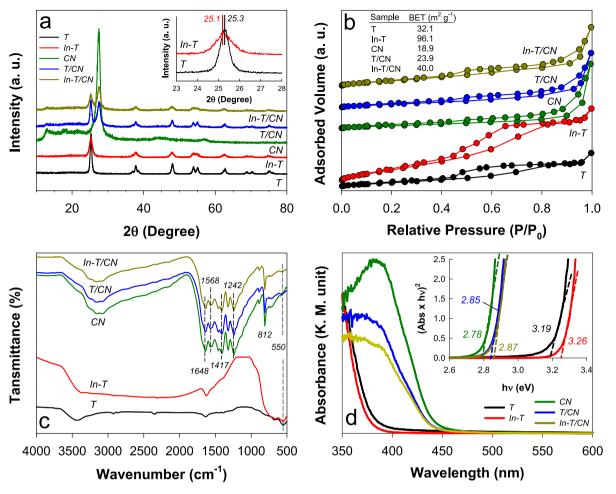
Therefore, this study synthesized In-doped TiO<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub> using sol–gel and thermal polymerization processes, respectively, and coupled them using an impregnation method. Considering different E<sub>g</sub>s of TiO<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub>, the photocatalytic activity of the as-synthesized samples (TiO<sub>2</sub>, In-TiO<sub>2</sub>, g-C<sub>3</sub>N<sub>4</sub>, TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>, and In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>) was examined for CO<sub>2</sub> RR under UV ( $\lambda$  = 365 nm) and visible light ( $\lambda$  > 420 nm). Particularly, the yield, total charge consumption, and photoelectrochemical features were analyzed, and charge carrier transfer dynamics were examined. Based on the experimental results, photocatalytic reaction mechanisms under UV and visible light were proposed. Finally, the as-synthesized composites were characterized using various surface analysis tools (XRD, XPS, Raman, FTIR, UV–vis absorption, BET, and HR-TEM).

#### 2. Experimental section

#### 2.1. Synthesis of materials

A series of In-TiO<sub>2</sub> samples were synthesized using a sol–gel method. Titanium tetrabutoxide (Ti(C4H9O)4, 4.8 mL, Sigma-Aldrich reagent grade, 97%) was added to a vigorously stirred aqueous solution containing tert-butanol (12.6 mL, Sigma-Aldrich, ACS reagent, 99.0%), acetic acid (1.4 mL, Sigma-Aldrich, ACS reagent, ≥99.7%), deionized water (18 MΩ cm, 1.2 mL), and various amounts of indium nitrate (In (NO<sub>3</sub>)<sub>3</sub>·xH<sub>2</sub>O, Sigma-Aldrich, 99.9%). The mole fractions of In (In / (Ti + In)) were 0.01–0.15; unless otherwise specified, the mole fraction was fixed to be 0.05. The as-obtained gel was aged for 24 h and dried at 105 °C, followed by calcination at 450 °C in the air for 4 h. g-C<sub>3</sub>N<sub>4</sub> was synthesized by thermal polymerization of melamine (Sigma-Aldrich, 99%) at 550 °C for 4 h in air. The as-synthesized In-TiO<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub> were mixed at a weight ratio of 3:7 in 50 mL acetone in an ultrasound bath for 60 min. Finally, the mixture was stirred in a fume hood for 24 h to remove the acetone [25]. The as-obtained yellow solid powder was ground and calcined in a muffle furnace at 300 °C for 2 h.

#### 2.2. Surface characterizations


A low-temperature N2 adsorption-desorption method (Quantachrome, Autosorb-iQ & Quadrasorb SI) was used to measure the BET surface area, pore-volume, and average pore diameter of the samples. High-resolution transmission electron microscopy (HR-TEM, FEI Company Titan G2) equipped with high-angle annular dark-field scanning TEM (HAADF-STEM) and energy-dispersive X-ray spectroscopy (EDS) was used to examine the morphology, lattice fringe, and elemental composition of the samples. The crystalline patterns and elemental states of the samples were examined using X-ray powder diffraction (XRD, Rigaku D/Max-2500) equipped with Cu K $\alpha$  X-ray source ( $\lambda$  = 1.5408 Å) and X-ray photoelectron spectroscopy (XPS, ULVAC-PHI Quantera SXM) with Mg Ka monochromator X-ray source at 14 kV, respectively. The binding energies of the elements were calibrated with regards to C1 s (284.8 eV). The diffuse reflectance UV-vis absorption spectra of the samples were obtained (Shimadzu, UV-2540). Sample powders were mixed with BaSO<sub>4</sub> and their reflectance spectra were measured with respect to BaSO<sub>4</sub>. Then, the reflectance (R) was converted into absorbance using the Kubelka–Munk equation; absorbance =  $(1 - R)^2/2R$ . The Fourier transform infrared spectra (FTIR, PerkinElmer, Frontier) were collected in the wavenumber range of 400  $cm^{-1}$  and 4000 cm<sup>-1</sup> at a spectral resolution of 4 cm<sup>-1</sup>. An inverted-type scanning confocal microscope (MicroTime-200, Picoquant, Germany) with a  $40 \times$ (air) objective was used for the time-resolved photoluminescence lifetime (TRPL) study. Lifetime measurements were performed at the Korea Basic Science Institute, Daegu Center, Korea. Single-mode pulsed diode lasers ( $\lambda = 375$  nm with a  $\sim 30$  ps pulse width) were used as excitation sources. More information on the analytical conditions can be found elsewhere [12,26].

The adsorption-desorption isotherms of CO2 gas on the assynthesized photocatalysts were obtained using a BET analyzer (BEL-SORP-mini II, Japan Microtrac-BEL, Corp). Highly pure CO2 gas (99.99%) at a pressure of 0-1 bar was adsorbed and desorbed at 298 K. The saturation vapor pressure was 1 bar when the relative pressure (p/ p<sub>0</sub>) was 1. The *in-situ* FTIR spectroscopic analysis was performed during photocatalytic reactions. The photocatalyst samples (50 mg) were placed in a  $1 \times 1$  cm sample mount (RefractorReactor, Harrick). Before CO<sub>2</sub> adsorption, the samples were irradiated with simulated sunlight (100 mW cm<sup>-2</sup>) for 1 h while purging high purity air to remove carbonaceous impurities adsorbed onto the samples. After the prephototreatment, no FTIR signals associated with carbonaceous chemicals were found. The reactor was purged with high-purity of CO<sub>2</sub> (99.99%) for 30 min and sealed. The FTIR spectra were obtained before and during the irradiation in the wavenumber range of  $600-4000 \text{ cm}^{-1}$ at a resolution of 4  $\text{cm}^{-1}$  (Thermo Scientific). For each spectrum, 40 scans were automatically averaged. All spectra were referenced to the spectrum with the pre-phototreated surface before CO<sub>2</sub> adsorption.

# 2.3. Photoelectrochemical measurements and photocatalytic $\mathrm{CO}_2$ reduction

The transient photocurrents of the as-synthesized sample electrodes were obtained in a customized glass reactor containing 0.5 M Na<sub>2</sub>SO<sub>4</sub> aqueous solution using a three-electrode system with a saturated calomel electrode (SCE, reference electrode) and Pt wire (counter electrode). The sample electrodes were synthesized using a doctor blade method described elsewhere [27]. In brief, 5 mg of the sample powder was ultrasonicated in ethanol (10 mL) with a Nafion solution (5%, 20  $\mu$ L, Sigma-Aldrich) and the sticky paste was coated on a fluorine-doped SnO<sub>2</sub>-coated glass electrode. The sample electrodes were dried in air for 1 h and in an oven at 120 °C for 2 h. While a potential of + 0.5 V vs. SCE was applied to the sample electrodes, AM 1.5 light (100 mW cm<sup>-2</sup>) was irradiated from a Xenon arc lamp (300 W).

Photocatalytic reactions were performed in a closed gas reactor using a UV LED generating  $\lambda = 365$  nm (LUNA fiber optics) and visible light ( $\lambda$ 



**Fig. 1.** Surface characterization of the as-synthesized TiO<sub>2</sub> (T), In-TiO<sub>2</sub> (In-T), TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> (T/CN), and In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> (In-T/CN) samples. (a) XRD spectra (inset: magnified spectra of TiO<sub>2</sub> and In-TiO<sub>2</sub>). (b) N<sub>2</sub> adsorption–desorption isotherms (inset: BET surface areas). (c) FTIR spectra. (d) UV–vis absorption spectra (inset: optical analysis of bandgaps).

> 420 nm) of the simulated sunlight with an intensity of 100 mW cm<sup>-2</sup> (300 W Xe lamp, ABET Technology). The wavelength intensity of the UV LED was estimated to be  $0.9025 \text{ mW cm}^{-2}$ , which was converted to an incident 365 nm-photon flux of  $1.658 \times 10^{18}$  s<sup>-1</sup>. To use visible light, the simulated sunlight passed through a cutoff filter ( $\lambda > 420$  nm, Newport). The catalyst powder (50 mg) was placed in the bottom of the stainlesssteel reactor equipped with a quartz window for light penetration. Before photocatalysis, the samples were irradiated with light sources for 1 h while purging with high purity air to remove carbonaceous impurity adsorbed onto the samples. High-purity CO<sub>2</sub> (99.99%) or N<sub>2</sub> (99.999%) gases were then passed through a deionized water column and the reactor for 1 h. During irradiation (irradiated area: 1 cm<sup>2</sup>), the headspace gases (i.e., CO, CH<sub>4</sub>, and C<sub>2</sub>H<sub>4</sub>) were intermittently sampled and quantified using gas chromatography with a thermal conductivity detector (GC-TCD, Agilent 7820) and flame ionization detector (Young Lin ACME 6100 and Agilent 7820). To quantify CO and hydrocarbons, each standard gas (Fluka) was allowed to flow through the GC, and standard curve fits between each gas concentration and corresponding spectral area were obtained. Detailed analytical methods for CO and hydrocarbons have been described elsewhere [7,11,28]. After photocatalysis for 6 h, the photonic yield was estimated using the following equation:  $[2 \times$ CO (mol) + 8  $\times$  CH<sub>4</sub> (mol) + 12  $\times$  C<sub>2</sub>H<sub>4</sub> (mol)]  $\times$  100% / [photon flux  $\times$ 6 h], where 2, 8, and 12 represent the equivalent numbers of electron for production of CO, CH<sub>4</sub>, and C<sub>2</sub>H<sub>4</sub>, respectively, from CO<sub>2</sub>.

#### 3. Results and discussion

#### 3.1. Surface characterization of the as-synthesized materials

The XRD patterns of the as-synthesized samples (TiO<sub>2</sub>, In-TiO<sub>2</sub>, g- $C_3N_4$ , TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>, and In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>) were compared (Fig. 1a). TiO<sub>2</sub> and In-TiO<sub>2</sub> showed an anatase crystalline structure (e.g.,  $2\theta = 25.3^{\circ}$ , 37.6°, and 47.8° for (101), (004), and (200) planes, respectively; JCPDS no. 21-1272) [29]. The In-TiO<sub>2</sub> sample did not contain any indium-oriented peaks (e.g., In2O3) [30]. However, the (101) plane broadened and shifted to a low angle because of the In-oriented disorder of the TiO<sub>2</sub> lattice (Fig. 1a inset). The XRD pattern of g-C<sub>3</sub>N<sub>4</sub> showed two characteristic peaks at  $2\theta = 13.1^{\circ}$  and  $27.4^{\circ}$ , corresponding to (100) and (002) planes of g-C<sub>3</sub>N<sub>4</sub>, respectively (JCPDS no. 87-1526) [31]. The TiO<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub> composite samples (i.e., TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> and In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>) also showed the copresence of the crystal planes observed in the  $\rm TiO_2$  and g-C\_3N\_4. This indicates that g-C\_3N\_4 did not influence the TiO<sub>2</sub> structure during the synthetic processes of the composites. In line with this, the Raman spectroscopy of the composites did not show any new vibration modes (Fig. S1).

The N<sub>2</sub> adsorption–desorption isotherm measurement was used to evaluate pore distributions and specific surface areas of the assynthesized samples (Fig. 1b). All samples showed mesoporous structures with hysteresis loops [32] and their textural properties were summarized in Table S2. Notably, In-doping increased the surface area of TiO<sub>2</sub> by three times (32 m<sup>2</sup> g<sup>-1</sup> to 96 m<sup>2</sup> g<sup>-1</sup>) because of inhibited crystal growth. The as-synthesized, bulky g-C<sub>3</sub>N<sub>4</sub> showed the lowest

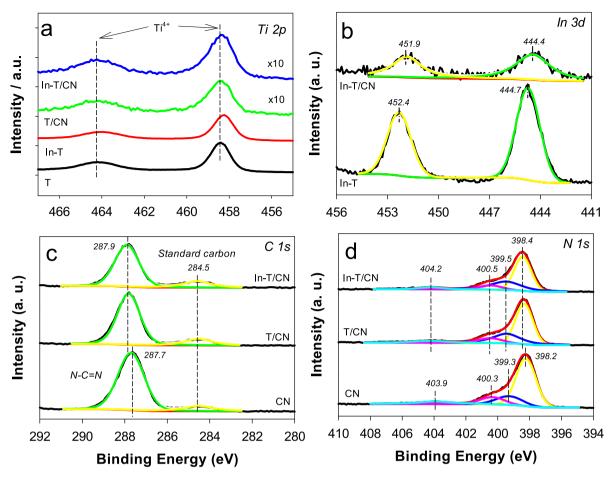



Fig. 2. XPS spectra of (a) Ti 2p, (b) In 3d, (c) C 1 s, and (d) N 1 s bands for In-TiO<sub>2</sub>, g-C<sub>3</sub>N<sub>4</sub>, TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>, and In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>.

surface area of  $\sim 18~m^2~g^{-1}.$  When g-C\_3N\_4 was coupled with In-TiO\_2, its surface area increased twofold.

The surface functional groups of the composites were also examined using FTIR (Fig. 1c). TiO<sub>2</sub> and In-TiO<sub>2</sub> samples showed broad absorption bands at  $\sim 3500 \text{ cm}^{-1}$ , which were attributed to stretching vibrations of surface OH groups and adsorbed water molecules (H-O-H). The absorption at  $\sim 550 \text{ cm}^{-1}$  was attributed to the Ti-O-Ti stretching vibration [33]. For g-C<sub>3</sub>N<sub>4</sub>, a broad absorption band at  $3000-3600 \text{ cm}^{-1}$  was associated with N-H stretching vibration of amino groups and/or O-H stretching of adsorbed water molecules [29]. Furthermore, many absorption peaks in the wavenumber region of  $1200-1650 \text{ cm}^{-1}$  were attributed to the typical stretching modes of g-C<sub>3</sub>N<sub>4</sub>. For example, the aromatic C-N stretching resulted in absorption peaks at 1242, 1417, and 1568 cm<sup>-1</sup>. The peaks at 1648 and 812 cm<sup>-1</sup> could be attributed to the C-N stretching and characteristic breathing mode of triazine units, respectively [34]. All these characteristic bands of TiO<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub> were found in the composite samples, indicating that the chemical structures of both components remained intact during the synthetic processes of the composites.

The UV–vis reflectance absorption spectra of the as-synthesized samples were obtained to estimate the optical  $E_g$  values (Fig. 1d and S2). Compared to bare TiO<sub>2</sub>, In-TiO<sub>2</sub> exhibited a slightly blue-shifted absorption spectrum without any new absorption band. However, g- $C_3N_4$  showed an absorption peak at ~ 400 nm and an edge at ~ 450 nm. The spectrum of TiO<sub>2</sub>/g- $C_3N_4$  was similar to that of g- $C_3N_4$ , but with a slight blue shift in the absorption edge. In-TiO<sub>2</sub>/g- $C_3N_4$  followed the same tendency as TiO<sub>2</sub>/g- $C_3N_4$ , with the reduced absorbance attributed to the In-doping effect [18]. Based on these spectra, the optical  $E_g$  values were estimated to be 3.19 eV (TiO<sub>2</sub>), 3.26 eV (In-TiO<sub>2</sub>), 2.78 eV (g- $C_3N_4$ ), 2.85 eV (TiO<sub>2</sub>/g- $C_3N_4$ ), and 2.87 eV (In-TiO<sub>2</sub>/g- $C_3N_4$ ) (Fig. 1d

**inset**). The increase in  $E_g$  caused by In-doping was partly attributed to  $In_2O_3$  with a large  $E_g$  (3.7 eV) [18]. In some cases, absorption in the visible region of 400–800 nm was observed with In-TiO<sub>2</sub> synthesized with an indium chloride precursor [35] because of the surface states of O-In-Cl<sub>x</sub> species. However, in this study, a different precursor (indium nitrate) was used and no visible light absorption with In-TiO<sub>2</sub> alone was observed.

The elemental states of the as-synthesized samples were examined using XPS analysis (Fig. 2 and S3). The bare TiO<sub>2</sub> spectrum showed Ti 2p bands at ~ 458.4 eV (2p3/2) and ~ 464. 2 eV (2p1/2) associated with Ti<sup>4+</sup> states (Fig. 2a). In-TiO<sub>2</sub> showed the same Ti 2p bands, at 0.2 eVlower binding energies [36]. This sample also contained two In 3d-bands at ~ 452.4 (3d3/2) and ~ 444.7 (3d5/2) (Fig. 2b), which were attributed to  $In^{3+}$  species [35,37]. It appears that  $In^{3+}$ -doping of the TiO<sub>2</sub> lattice partially reduced Ti<sup>4+</sup> to Ti<sup>3+</sup>, creating oxygen vacancies favorable for  $CO_2$  adsorption [38–40]. Notably, the coupling of In-TiO<sub>2</sub> (or TiO<sub>2</sub>) and g-C<sub>3</sub>N<sub>4</sub> significantly influenced the binding energies of the elements in both materials. For example, the binding energy of the In 3dbands decreased by  $\sim 0.4$  eV (Fig. 2b) and the C 1 s band in the bare g-C<sub>3</sub>N<sub>4</sub> was shifted to high binding energy by 0.2 eV. However, the binding energy of standard carbon was unchanged (Fig. 2c). Considering that the binding energy of C1 s band in g-C<sub>3</sub>N<sub>4</sub> is susceptible to electronegativity of neighboring elements [29,41], such shift indicates a strong interaction between In-TiO<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub>. The bare g-C<sub>3</sub>N<sub>4</sub> also demonstrated N 1 s bands originating from C - N = C,  $N - (C)_3$ , C - N - H, and  $\pi$ -excitation at binding energies of 398.6, 399.4, 400.9, and 404.2 eV, respectively (Fig. 2d) [42-44]. The sub-N 1 s bands were also shifted to high binding energy by 0.2 eV. Accordingly, these shifts in the binding energies of the component elements indicate strong electronic interaction between In-TiO<sub>2</sub> (or TiO<sub>2</sub>) and g-C<sub>3</sub>N<sub>4</sub>.

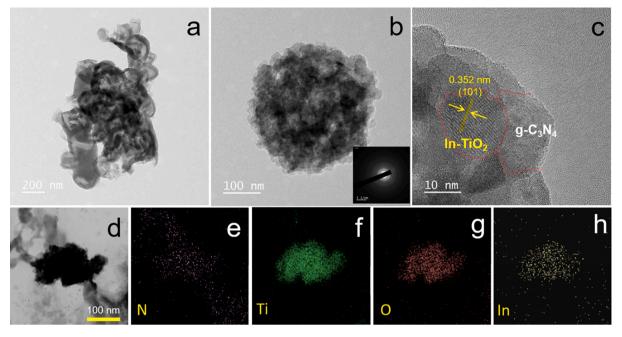
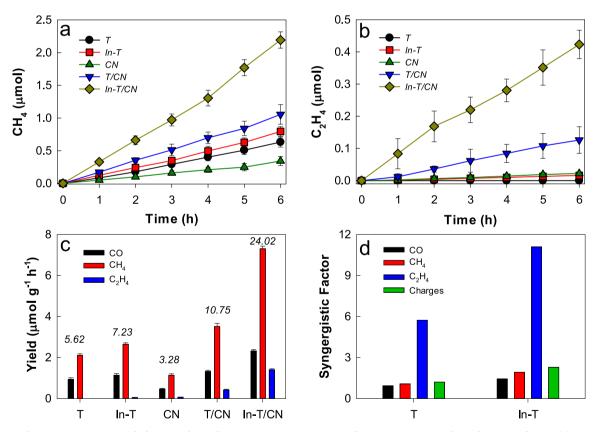




Fig. 3. (a and b) TEM, (c) HR-TEM, (d) HAADF-STEM image, and (e-h) EDS elemental mappings of In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>.



**Fig. 4.** Photocatalytic CO<sub>2</sub> conversions with the as-synthesized TiO<sub>2</sub>, In-TiO<sub>2</sub>, TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>, and In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> samples under UV irradiation. (a) CH<sub>4</sub> productions. (b) C<sub>2</sub>H<sub>4</sub> productions. (c) Comparison of product yields after 6 h. The numbers on the bars stand for the total elementary charges (µmol) used for the products (2e<sup>-</sup>, 8e<sup>-</sup>, and 12e<sup>-</sup> for CO, CH<sub>4</sub>, and C<sub>2</sub>H<sub>4</sub>, respectively). (d) Synergistic factors of TiO<sub>2</sub> and In-TiO<sub>2</sub> activities by g-C<sub>3</sub>N<sub>4</sub> for CO<sub>2</sub> conversion products and elementary charges. Synergistic factor = activity of TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> (or In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>) divided by the sum of TiO<sub>2</sub> (or In-TiO<sub>2</sub>) activity and g-C<sub>3</sub>N<sub>4</sub> activity.

The morphology of  $In-TiO_2/g-C_3N_4$  composites was examined using TEM and HR-TEM (Fig. 3). The various morphologies of the same sample were attributed to the impregnation method which often results in irregular configuration. The lattice plane of anatase (101) with a lattice

spacing of 0.325 nm was observed, indicating In-TiO<sub>2</sub> inside the composites. While forming interfacial contact with In-TiO<sub>2</sub>,  $\sim$  10 nm-thick g-C<sub>3</sub>N<sub>4</sub> was located on the edge of the composite. EDS mapping of the In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> composites showed that In and Ti were uniformly

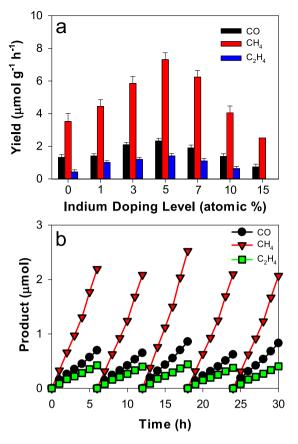
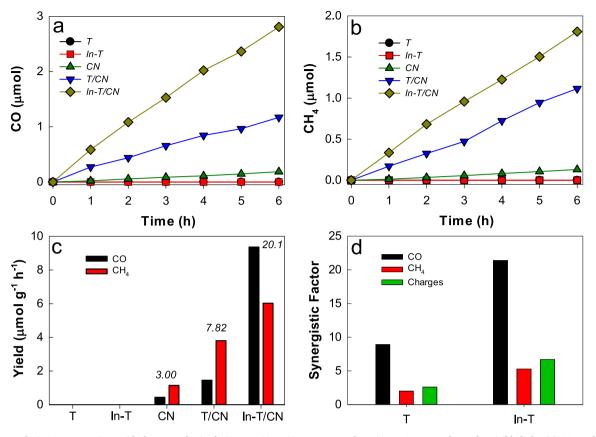



Fig. 5. Photocatalytic  $CO_2$  conversions with the as-synthesized In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> samples under UV irradiation. (a) Effect of In-doping level. (b) Prolonged photocatalysis.

distributed in the same region. N atoms also were found in the In and Ti regions (Fig. S4) and further spread from the regions. This indicates that  $g-C_3N_4$  acts as a linker of In-TiO<sub>2</sub> particles while forming a composite.

#### 3.2. Photocatalytic CO<sub>2</sub> conversion under UV and visible light

The photocatalytic CO<sub>2</sub> conversion was conducted using the assynthesized samples under UV ( $\lambda = 365$  nm) (Fig. 4). The primary CO<sub>2</sub> conversion products were CO, methane, and ethylene, which were linearly produced with time (see Fig. S5 for CO production). The yield was 2–3 times greater than the CO yield for all samples. Trace levels of ethylene were produced on irradiated TiO<sub>2</sub>, In-TiO<sub>2</sub>, and g-C<sub>3</sub>N<sub>4</sub>, whereas the amount of ethylene was comparable to CO with In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>. When the reactor was filled with N<sub>2</sub> instead of CO<sub>2</sub>, no carbonaceous compound was detected (Fig. S6). This implies that the purged CO<sub>2</sub> was the sole carbon source of the compounds.


The photocatalytic activity of bare and modified samples was also compared. TiO<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub> showed poor activity, whereas TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> showed significant photocatalytic activity (Fig. 4a and 4b). For example, TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> produced 1.7 times and 3 times more methane than those with TiO<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub>, respectively. A similar enhancement was similarly found for CO (Fig. S5). In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> demonstrated a more pronounced coupling effect. The amount of methane with In-TiO<sub>2</sub>/ g-C<sub>3</sub>N<sub>4</sub> was ~ 2.8 times and 6.4 times larger than those with In-TiO<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub>, respectively (Table S3). Notably, ethylene production with In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> was 26.5 times and ~ 19 times larger than that with In-TiO<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub>, respectively. The synergistic factors [i.e., the activity of In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> dor TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>) divided by the sum of In-TiO<sub>2</sub> (or TiO<sub>2</sub>) activity and g-C<sub>3</sub>N<sub>4</sub> activity] were estimated for CO, methane, and ethylene (Fig. 4c). The synergistic factors for CO, methane, and ethylene by g-C<sub>3</sub>N<sub>4</sub> with TiO<sub>2</sub>, were 0.9, 1.1, and 5.7, respectively; with In-TiO<sub>2</sub> they were 1.4, 1.9, and 11, respectively. This shows that the coupling effect of g-C<sub>3</sub>N<sub>4</sub> became more significant as more reduced chemicals were produced (12*e*<sup>-</sup>, 8*e*<sup>-</sup>, and 2*e*<sup>-</sup>-transfers for ethylene, methane, and CO, respectively). Notably, the fractional ratios of CO, methane, and ethylene were ~ 29%, 68%, and < 4%, respectively, with each In-TiO<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub>, whereas with In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>, they changed to 21%, 66%, and 13%, respectively. This indicates that In-doping facilitated the charge transfer kinetics in increasing the ethylene selectivity. The total number of photogenerated charges used for CO<sub>2</sub> conversion (for 6 h) was ~ 10.8 µmole with TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> and 24.0 µmole with In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> (Fig. 4c), leading to the synergistic factors of ~ 1.2 and 2.3, respectively (Fig. 4d). The overall photonic yield with In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> was 40.4% (2.4% for CO, 29.5% for methane, and 8.5% for ethylene) (Table S3).

The as-observed activity of In-TiO2/g-C3N4 significantly depended on the In-doping level (Fig. 5a). The yield products of CO, methane, and ethylene were greatest with the In-doping of 5 atomic%. The existence of the optimal doping level indicates that In played a critical role in the photogenerated charge transfer kinetics (discussed below). CO was always observed regardless of the In-doping level, whereas neither H<sub>2</sub> nor other carbonaceous compounds (e.g., formate) were detected in all cases. The proton-coupled electron  $(H^+/e^- \text{ or } H^{\bullet})$  transfer (PCET) appeared to be the predominant pathway of methane and ethylene production and the direct CO<sub>2</sub> reduction by photogenerated electrons did not occur (Scheme 1). A prolonged photocatalysis over 30 h with the as-synthesized In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> showed continuous production of carbonaceous compounds with no sign of material deactivation (Fig. 5b). This stability with high activity is impressive because materials with high activities usually suffer from rapid deactivation whereas those with low activities exhibit relatively prolonged stability [6,11-13]. It appears that an efficient charge transfer between In-TiO<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub> effectively inhibits the photo-induced deactivation (e.g., photocorrosion) of each component.

The photocatalytic activity of the as-synthesized samples was also examined under visible light ( $\lambda > 420$  nm) (Fig. 6). Any CO<sub>2</sub> conversion product was not observed with TiO2 and In-TiO2 under visible light (Fig. 6a and 6b), because of their  $E_g$  of  $\sim 3.2$  eV. However, g-C<sub>3</sub>N<sub>4</sub> with Eg of 2.78 eV generated photo charges and produced CO and CH4 at the ratio of  $\sim$  3:7. Therefore, g-C<sub>3</sub>N<sub>4</sub> was essential for driving the CO<sub>2</sub> reduction reaction under visible light. The overall tendency of the activity was similar to that under UV. In-doping and g-C<sub>3</sub>N<sub>4</sub>-coupling enhanced TiO<sub>2</sub> activity, leading to the highest activity with In-TiO<sub>2</sub>/g- $C_{2}N_{4}$  (Fig. 6c). The optimal In-doping level was the same as that observed under UV (Fig. S7). However, CO was the most abundant with  $\sim$  60% selectivity, whereas ethylene was not produced. The synergistic factors with TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> for the CO and methane production were 9 and 2, respectively; the values with In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> were 21 and 5, respectively (Fig. 6d). The total number of photogenerated charges used for CO2 conversion (for 6 h) was 7.8 µmole with TiO2/g-C3N4 and 20 µmole with In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> (Fig. 6c), resulting in synergistic factors of 2.6 and 6.7, respectively (Fig. 6d).

## 3.3. Photoinduced charge transfer and photocatalytic $CO_2$ conversion mechanism

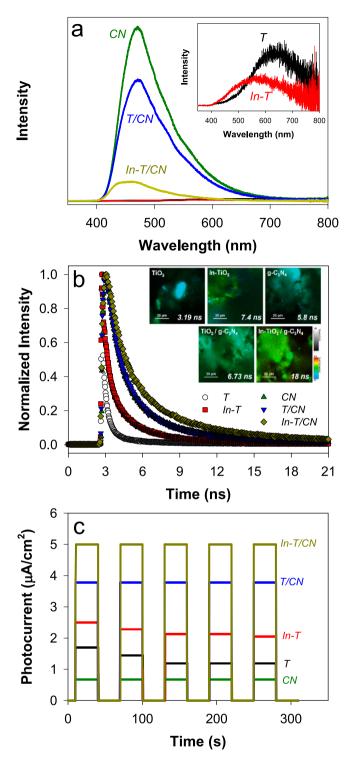
To examine the In-doping and g-C<sub>3</sub>N<sub>4</sub>-coupling effects on the photoinduced behavior, the PL emission spectra of the as-synthesized samples were compared (Fig. 7a). Upon excitation at  $\lambda = 375$  nm, all the samples exhibited the similar spectral responses with broad emission bands in the wavelength range from 400 to 700 nm. The main emission band with bare TiO<sub>2</sub> was found at  $\lambda = -630$  nm because of the recombination of trapped electrons and holes [45,46]. The emission band was shifted to  $\lambda \sim 560$  nm and its intensity was reduced because of the In 5 s state [17]. In contrast to these TiO<sub>2</sub>-based PL spectra, the g-C<sub>3</sub>N<sub>4</sub> generated a significant emission at  $\lambda \sim 470$  nm. Notably, this band was significantly reduced when coupled to In-TiO<sub>2</sub>, indicating that the



**Fig. 6.** Photocatalytic CO<sub>2</sub> conversions with the as-synthesized TiO<sub>2</sub>, In-TiO<sub>2</sub>, TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>, and In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> samples under visible light. (a) CO productions. (b) CH<sub>4</sub> productions. (c) Comparison of product yields after 6 h. The numbers on the bars stand for the total elementary charges ( $\mu$ mol) used for the products (2e<sup>-</sup>, 8e<sup>-</sup>, and 12e<sup>-</sup> for CO, CH<sub>4</sub>, and C<sub>2</sub>H<sub>4</sub>, respectively). (d) Synergistic factors of TiO<sub>2</sub> and In-TiO<sub>2</sub> activities by g-C<sub>3</sub>N<sub>4</sub> for CO<sub>2</sub> conversion products and elementary charges.

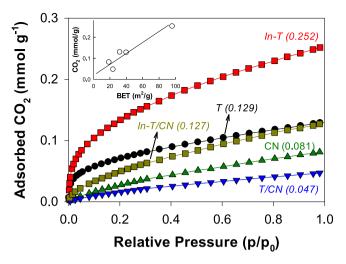
charge recombination was inhibited in  $In-TiO_2/g-C_3N_4$  [29,47].

TRPL decay spectra of the samples excited at  $\lambda = 375$  nm were compared (Fig. 7b) to gain insights into the charge transfer kinetics. The PL intensity of TiO<sub>2</sub> decayed rapidly with an average decay lifetime  $(\tau)$ of 3.19 ns, whereas In-TiO<sub>2</sub> showed a twofold slower  $\tau$  (7.4 ns). This confirms that charge carriers survived for longer periods and their recombination is retarded with In-TiO<sub>2</sub>. Notably,  $\tau$  with g-C<sub>3</sub>N<sub>4</sub> increased from 5.8 ns to 6.73 ns and 18 ns when g-C<sub>3</sub>N<sub>4</sub> was coupled with TiO2 and In-TiO2, respectively. The slowest PL decay with In-TiO2/ g-C<sub>3</sub>N<sub>4</sub> was attributed to the synergetic effect of In-associated trap sites and delocalized  $\pi$ -electrons over the molecular framework in g-C<sub>3</sub>N<sub>4</sub> [48]. This should inhibit the recombination of photogenerated charge carriers by facilitating the interfacial charge transfer, allowing the charge carriers to survive long enough for reaction with adsorbed CO<sub>2</sub>. The 2D PL images of the as-synthesized samples further revealed that the charge carrier transfer kinetics were relatively uniform over the composite samples (Fig. 7b inset). The strong junction between In-TiO2 and g-C<sub>3</sub>N<sub>4</sub> appears to effectively separate electrons and holes, resulting in a low PL emission.


A comparison of photocurrent density ( $J_{ph}$ ) verified the inhibited charge recombination with In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> (Fig. 7c). Bare TiO<sub>2</sub> generated small  $J_{ph}$  of  $< 2 \ \mu A \ cm^{-2}$ , and In-doping slightly enhanced  $J_{ph}$ . g-C<sub>3</sub>N<sub>4</sub> showed a lower activity than TiO<sub>2</sub> and In-TiO<sub>2</sub>; however,  $J_{ph}$  with g-C<sub>3</sub>N<sub>4</sub> was stable over time.  $J_{ph}$  with In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> was 5  $\mu A \ cm^{-2}$ , which was greater than each In-TiO<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub>, as well as the sum of both. Furthermore, it was maintained over time without a sign of decrease. TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> showed the same tendency.

The CO<sub>2</sub> adsorption isotherms were also obtained to examine the CO<sub>2</sub> adsorption capacities of the as-synthesized photocatalysts (Fig. 8). All adsorption–desorption isotherms were found to be reversible without hysteresis (Fig. S8), indicating that CO<sub>2</sub> is physically adsorbed

without forming chemical bonds. The CO<sub>2</sub> adsorbed on bare TiO<sub>2</sub> was estimated to be 0.13 mmol g<sup>-1</sup>, whereas In-doping enhanced CO<sub>2</sub> adsorption capacity by nearly twofold (0.25 mmol g<sup>-1</sup>). This In-doping effect was similarly found in the BET surface area, which was ~ 3-fold enhanced upon In-doping (Fig. 1b). Note that the CO<sub>2</sub> adsorption capacity of g-C<sub>3</sub>N<sub>4</sub> (~0.08 mmol g<sup>-1</sup>) was only 25% that of In-TiO<sub>2</sub>. In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>, with a weight ratio of 3/7 had a lower capacity than that for In-TiO<sub>2</sub> without g-C<sub>3</sub>N<sub>4</sub> (the same for TiO<sub>2</sub>). Therefore, In-TiO<sub>2</sub> should act as a CO<sub>2</sub> adsorbent and photocatalyst, whereas g-C<sub>3</sub>N<sub>4</sub> mainly acts as a photocatalyst in the CO<sub>2</sub> RR with the In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> composites. The tendency for the CO<sub>2</sub> adsorption capacity was similar to that for the BET area (Fig. 8 inset).


To gain insight into the reaction mechanism, in-situ FTIR spectra of In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> during photocatalysis under UV and visible light were obtained (Fig. 9). The surface without CO<sub>2</sub> adsorption was clean with no specific absorption signals. However, the surface exposed to CO<sub>2</sub> gas exhibited many absorption signals at wavenumbers of 944–1076 cm<sup>-1</sup> (CO<sub>2</sub>·H<sub>2</sub>O, HCO<sub>3</sub><sup>-</sup>, and CO<sub>3</sub><sup> $\overline{2}$ </sup>), 2345 cm<sup>-1</sup> (CO<sub>2</sub>), and 3625 cm<sup>-1</sup>  $(HCO_3^- \text{ or } CO_2)$  [49,50]. With UV irradiation, two absorption bands appeared at 2985 cm<sup>-1</sup> and 3155 cm<sup>-1</sup> corresponding to C–H stretching vibrations of CH<sub>4</sub> and C<sub>2</sub>H<sub>4</sub>, respectively (Fig. 9a). The wavenumber of 1295 cm<sup>-1</sup> was also attributed to the C–H stretching vibration of CH<sub>4</sub>. The surface irradiated with visible light showed similar spectral patterns, except for the absence of absorbance at 3155  $\text{cm}^{-1}$  (C<sub>2</sub>H<sub>4</sub>) (Fig. 9b). This is consistent with the gaseous products obtained under UV (CO, CH<sub>4</sub>, and C<sub>2</sub>H<sub>4</sub>) and visible light (CO and CH<sub>4</sub>). The absence of CO stretching mode in the wavenumber range of 2100–2200 cm<sup>-1</sup> was attributed to the limited adsorption of CO on In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> (Fig. S9).

All observed results indicate that  $In-TiO_2/g-C_3N_4$  is active for photoinduced charge transfer and photocatalytic  $CO_2$  conversion under UV and visible light. Under UV,  $In-TiO_2$  and  $g-C_3N_4$  are both activated;



**Fig. 7.** Spectroscopic and photoelectrochemical analysis of the as-synthesized samples. (a) Photoluminescence spectra excited at  $\lambda = 375$  nm. The inset shows the magnified spectra of TiO<sub>2</sub> and In-TiO<sub>2</sub>. (b) Time-resolved photoluminescence emission decay spectra. Excited at  $\lambda = 375$  nm. The inset shows the two-dimensional emission intensity and lifetime images. The numbers in the images represent the average lifetimes ( $\tau$ ). (c) Chopped photocurrent profiles at E = 0.5 V vs. SCE in 0.5 M sodium sulfate solutions.

under visible light, only g- $C_3N_4$  is activated (Scheme 1). The different band energy levels of the two semiconductors can induce cascaded charge transfer under UV [51]. Therefore, regardless of the irradiation condition, the photogenerated electrons in g- $C_3N_4$  are transferred to In-TiO<sub>2</sub> with high CO<sub>2</sub> adsorption capacity and the photogenerated hole-



**Fig. 8.**  $CO_2$  adsorption isotherms with the as-synthesized samples at 298 K. The numbers in parentheses represent the amounts of adsorbed  $CO_2$  at 1 atm  $CO_2$  gas (mmol  $g^{-1}$ ). Inset shows the plot between the BET surface areas and the amounts of adsorbed  $CO_2$  for the same samples.

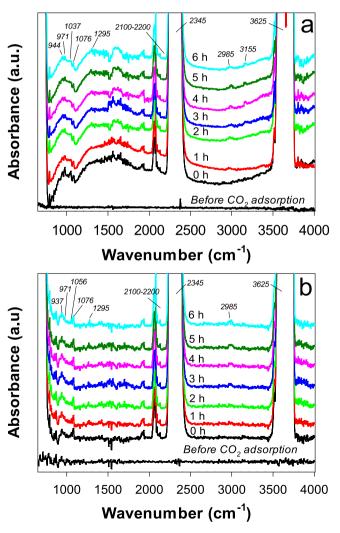



Fig. 9. In-situ FTIR spectra of In-TiO $_2/g\text{-}C_3N_4$  surface in the CO $_2$  atmosphere under (a) UV and (b) visible light.

reaction occurs on g-C<sub>2</sub>N<sub>4</sub> with low CO<sub>2</sub> adsorption capacity. The high  $J_{\rm ph}$  and long  $\tau$  with In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> (see Fig. 7) indicate that the charge separation occurs efficiently, and the separated charge carriers sufficiently survive for transfer to adsorbed CO<sub>2</sub> (\*CO<sub>2</sub>). According to density functional theory computations, the CO<sub>2</sub> adsorption energy on TiO<sub>2</sub> surface is strongly influenced by crystalline structures and oxygen vacancies [38,52,53]. For the anatase (101) surface, the monodentate binding modes (e.g., O-C-O - Tisurf and O-C - Osurf) have the exothermic adsorption energies between -7.8 and -11 kcal mol<sup>-1</sup>, whereas the adsorption energy for the bidentate modes significantly decreases. Notably, the presence of oxygen vacancies largely enhances the CO<sub>2</sub> adsorption energies for both binding modes. For example, the adsorption energy of  $CO_2$  via the monodentate mode for the anatase  $TiO_2$ (101) with oxygen vacancies  $(-15.5 \text{ kcal mol}^{-1})$  is greater than the adsorption energy of CO<sub>2</sub> with g-C<sub>3</sub>N<sub>4</sub> (-9.64 kcal mol<sup>-1</sup>) [38,40,54]. Considering that In-doping induced Ti<sup>3+</sup> species with oxygen vacancies (see Fig. 2a), In-TiO<sub>2</sub> should be better than  $g-C_3N_4$  for CO<sub>2</sub> adsorption.

The CO production under UV and visible light also indicates that the photogenerated electrons are transferred to a carbon atom of \*CO<sub>2</sub> in the initial stage [19,32,55]. If an oxygen atom of \*CO<sub>2</sub> is an electron acceptor, the aliphatic acids should have been produced instead [6,11,13,56]. In-TiO<sub>2</sub> has a lower CB than the one-electron reduction potential of free CO<sub>2</sub>  $[E^{\circ}(CO_2/CO_2^{\bullet-}) = -1.97 \text{ V}]$  [57]. Accordingly, PCET (not electron transfer) should be the primary pathway for \*CO2 reduction. Despite similar thermochemical potentials for H<sub>2</sub> and CO production  $[E^{\circ}(H_2O/H_2) = 0 \text{ V}; E^{\circ}(CO_2/CO) = -0.106 \text{ V}]$ , the absence of H<sub>2</sub> production indicates that the dimerization of two H<sup>•</sup>s did not occur and that the reaction between  $H^{\bullet}$  and  $CO_2$  was dominant (Scheme 1c). The produced CO should undergo stepwise PCET, forming methane and ethylene. Such photocatalyzed Fischer-Tropsch reaction was also observed in previous studies [7,28]. Finally, the photogenerated holes were speculated to oxidize adsorbed water to surface-bound OH radicals (>OH•) and H<sup>+</sup>. The dimerization of the two radical species can form hydrogen peroxide, which can be actively involved in photochemical and photocatalytic reactions. The absence of O<sub>2</sub> in the reactor headspace supports this speculation.

#### 4. Conclusions

This study demonstrated that In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> composites synthesized using a facile impregnation method converted CO<sub>2</sub> into valueadded chemicals with high efficiency under UV and visible light. The primary CO<sub>2</sub> conversion products were CO, methane, and ethylene under UV, and CO and methane under visible light. A prolonged photocatalysis with In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> produced the same carbonaceous compounds for 30 h, with a photonic yield of  $\sim$  40% (2.4% for CO, 29.5% for methane, and 8.5% for ethylene). The enhanced UV and visible light activities were attributed to synergistic effects of doping with In and coupling with g-C<sub>3</sub>N<sub>4</sub>. While In-doping facilitated charge transfer via In<sup>3+</sup>-associated trap sites, a strongly coupled g-C<sub>3</sub>N<sub>4</sub> induced cascaded charge transfer. The photoelectrochemical response and timeresolved photoluminescence spectra confirmed the significantly inhibited charge recombination and prolonged charge carriers, particularly with In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>. The CO<sub>2</sub> adsorption isotherms indicated that In-TiO2 acts as a primary CO2 adsorbent and photocatalyst, whereas g-C3N4 mainly acts as a photocatalyst. In-situ FTIR study further revealed the formation of CH<sub>4</sub> and C<sub>2</sub>H<sub>4</sub> under UV and CH<sub>4</sub> under visible light on In-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>. Considering that In-TiO<sub>2</sub> surface is the same CO<sub>2</sub> reduction site under UV and visible light, the absence of ethylene production under visible light was attributed to insufficient PECT in the last stage of the stepwise CO<sub>2</sub> reduction (CO<sub>2</sub>  $\rightarrow$  CO  $\rightarrow$  CH<sub>4</sub>  $\rightarrow$  C<sub>2</sub>H<sub>4</sub>).

### **Declaration of Competing Interest**

Chemical Engineering Journal 437 (2022) 135388

### Acknowledgments

This research was supported by the National Research Foundation of Korea (2018R1A6A1A03024962, 2019R1A2C2002602, and 2021K1A4A7A02102598).

#### Appendix A. Supplementary data

the work reported in this paper.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cej.2022.135388.

#### References

- M. Halmann, Photoelectrochemical reductoin of aqueous carbon dioxide on p-GaP in liquid junction solar cells, Nature 275 (1978) 115–116, https://doi.org/ 10.1038/275115a0.
- [2] T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature 277 (5698) (1979) 637–638, https://doi.org/10.1038/277637a0.
- [3] J.-M. Lehn, R. Ziessel, Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation, Proc. Natl. Acad. Sci. U.S.A. 79 (2) (1982) 701–704, https://doi.org/10.1073/ pnas.79.2.701.
- [4] B.A. Parkinson, P.F. Weaver, Photoelectrochemical pumping of enzymatic CO<sub>2</sub> reduction, Nature 309 (5964) (1984) 148–149, https://doi.org/10.1038/ 309148a0.
- [5] M.R. Hoffmann, J.A. Moss, M.M. Baum, Artificial photosynthesis: Semiconductor photocatalytic fixation of CO<sub>2</sub> to afford higher organic compounds, Dalton Trans. 40 (2011) 5151–5158, https://doi.org/10.1039/C0DT01777A.
- [6] S.Y. Choi, S.H. Yoon, U. Kang, D.S. Han, H. Park, Standalone photoconversion of CO<sub>2</sub> using Ti and TiO<sub>x</sub>-sandwiched heterojunction photocatalyst of CuO and CuFeO<sub>2</sub> films, Appl. Catal. B 288 (2021) 119985, https://doi.org/10.1016/j. apcatb.2021.119985.
- [7] H. Park, H.-H. Ou, A.J. Colussi, M.R. Hoffmann, Artificial photosynthesis of C1–C3 hydrocarbons from water and CO<sub>2</sub> on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum dots, J. Phys. Chem. A 119 (19) (2015) 4658–4666, https://doi.org/10.1021/jp511329d.
- [8] C. Bie, B. Zhu, F. Xu, L. Zhang, J. Yu, In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO<sub>2</sub> reduction, Adv. Mater. 31 (42) (2019) 1902868, https://doi.org/10.1002/adma.201902868.
- [9] Z.-C. Kong, J.-F. Liao, Y.-J. Dong, Y.-F. Xu, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Core@shell CsPbBr<sub>3</sub>@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO<sub>2</sub> reduction, ACS Energy Lett. 3 (11) (2018) 2656–2662, https:// doi.org/10.1021/acsenergylett.8b01658.
- [10] S. Sorcar, J. Thompson, Y. Hwang, Y.H. Park, T. Majima, C.A. Grimes, J.R. Durrant, S.-I. In, High-rate solar-light photoconversion of CO<sub>2</sub> to fuel: Controllable transformation from C1 to C2 products, Energy Environ. Sci. 11 (11) (2018) 3183–3193, https://doi.org/10.1039/C8EE00983J.
- [11] U. Kang, S.H. Yoon, D.S. Han, H. Park, Synthesis of aliphatic acids from CO<sub>2</sub> and water at efficiencies close to the photosynthesis limit using mixed copper and iron oxide films, ACS Energy Lett. 4 (9) (2019) 2075–2080, https://doi.org/10.1021/ acsenergylett.9b01281.
- [12] U. Kang, H. Park, A facile synthesis of CuFeO<sub>2</sub> and CuO composite photocatalyst films for production of liquid formate from CO<sub>2</sub> and water over a month, J. Mater. Chem. A 5 (2017) 2123–2131, https://doi.org/10.1039/c6ta09378g.
- [13] U. Kang, S.K. Choi, D.J. Ham, S.M. Ji, W. Choi, D.S. Han, A. Abdel-Wahab, H. Park, Photosynthesis of formate from CO<sub>2</sub> and water at 1% energy efficiency via copper iron oxide catalysis, Energy Environ. Sci. 8 (9) (2015) 2638–2643, https://doi.org/ 10.1039/C5EE01410G.
- [14] Y.Y. Ahn, S.Y. Yang, C. Choi, W. Choi, S. Kim, H. Park, Electrocatalytic activities of Sb-SnO<sub>2</sub> and Bi-TiO<sub>2</sub> anodes for water treatment: Effects of electrocatalyst composition and electrolyte, Catal. Today 282 (2017) 57–64, https://doi.org/ 10.1016/j.cattod.2016.03.011.
- [15] G. Kim, H.J. Choi, H.-i. Kim, J. Kim, D. Monllor-Satoca, M. Kim, H. Park, Temperature-boosted photocatalytic H<sub>2</sub> production and charge transfer kinetics on TiO<sub>2</sub> under UV and visible light, Photochem. Photobiol. Sci. 15 (10) (2016) 1247–1253, https://doi.org/10.1039/C6PP00263C.
- [16] S. Kim, G.-H. Moon, G. Kim, U. Kang, H. Park, W. Choi, TiO<sub>2</sub> complexed with dopamine-derived polymers and the visible light photocatalytic activities for water pollutants, J. Catal. 346 (2017) 92–100, https://doi.org/10.1016/j. jcat.2016.11.027.
- [17] V. Kumaravel, S. Rhatigan, S. Mathew, J. Bartlett, M. Nolan, S.J. Hinder, P. K. Sharma, A. Singh, J.A. Byrne, J. Harrison, S.C. Pillai, Indium-doped TiO<sub>2</sub> photocatalysts with high-temperature anatase stability, J. Phys. Chem. C 123 (34) (2019) 21083–21096, https://doi.org/10.1021/acs.jpcc.9b06811.
- [18] M. Tahir, N.S. Amin, Indium-doped TiO<sub>2</sub> nanoparticles for photocatalytic CO<sub>2</sub> reduction with H<sub>2</sub>O vapors to CH<sub>4</sub>, Appl. Catal. B 162 (2015) 98–109, https://doi. org/10.1016/j.apcatb.2014.06.037.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence

- [19] M. Tahir, N.S. Amin, Photocatalytic CO<sub>2</sub> reduction and kinetic study over In/TiO<sub>2</sub> nanoparticles supported microchannel monolith photoreactor, Appl. Catal. A 467 (2013) 483–496, https://doi.org/10.1016/j.apcata.2013.07.056.
- [20] X. Li, R. Shen, S. Ma, X. Chen, J. Xie, Graphene-based heterojunction photocatalysts, Appl. Surf. Sci. 430 (2018) 53–107, https://doi.org/10.1016/j. apsusc.2017.08.194.
- [21] M.M. Kandy, Carbon-based photocatalysts for enhanced photocatalytic reduction of CO<sub>2</sub> to solar fuels, Sustain. Energ. Fuels 4 (2) (2020) 469–484, https://doi.org/ 10.1039/C9SE00827F.
- [22] S. Ye, R. Wang, M.-Z. Wu, Y.-P. Yuan, A review on g-C<sub>3</sub>N<sub>4</sub> for photocatalytic water splitting and CO<sub>2</sub> reduction, Appl. Surf. Sci. 358 (2015) 15–27, https://doi.org/ 10.1016/j.apsusc.2015.08.173.
- [23] J. Theerthagiri, R.A. Senthil, A. Priya, J. Madhavan, R.J.V. Michael, M. Ashokkumar, Photocatalytic and photoelectrochemical studies of visible-light active α-Fe<sub>2</sub>O<sub>3</sub>–g-C<sub>3</sub>N<sub>4</sub> nanocomposites, RSC Adv. 4 (72) (2014) 38222–38229, https://doi.org/10.1039/C4RA04266B.
- [24] J. Ran, W. Guo, H. Wang, B. Zhu, J. Yu, S.-Z. Qiao, Metal-free 2D/2D phosphorene/ g-C<sub>3</sub>N<sub>4</sub> Van der Waals heterojunction for highly enhanced visible-light photocatalytic H<sub>2</sub> production, Adv. Mater. 30 (25) (2018) 1800128, https://doi. org/10.1002/adma.201800128.
- [25] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C<sub>3</sub>N<sub>4</sub> fabricated by directly heating melamine, Langmuir 25 (17) (2009) 10397–10401, https://doi. org/10.1021/la900923z.
- [26] H.W. Jeong, W.-S. Chae, B. Song, C.-H. Cho, S.-H. Baek, Y. Park, H. Park, Optical resonance and charge transfer behavior on patterned WO<sub>3</sub> microdisc arrays, Energy Environ. Sci. 9 (2016) 3143–3150, https://doi.org/10.1039/C6EE01003B.
- [27] S. Kim, H. Park, Sunlight-harnessing and storing heterojunction TiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>/WO<sub>3</sub> electrodes for night-time applications, RSC Adv. 3 (2013) 17551–17558, https:// doi.org/10.1039/C3RA42644K.
- [28] H. Park, H.-H. Ou, U. Kang, J. Choi, M.R. Hoffmann, Photocatalytic conversion of carbon dioxide to methane on TiO<sub>2</sub>/CdS in aqueous isopropanol solution, Catal. Today 266 (2016) 153–159, https://doi.org/10.1016/j.cattod.2015.09.017.
- [29] J. Qiu, Y.i. Feng, X. Zhang, X. Zhang, M. Jia, J. Yao, Facile stir-dried preparation of g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> homogeneous composites with enhanced photocatalytic activity, RSC Adv. 7 (18) (2017) 10668–10674, https://doi.org/10.1039/C7RA00050B.
- [30] A.K. Nayak, S. Lee, Y. Sohn, D. Pradhan, Biomolecule-assisted synthesis of In(OH)<sub>3</sub> nanocubes and In<sub>2</sub>O<sub>3</sub> nanoparticles: photocatalytic degradation of organic contaminants and CO oxidation, Nanotechnology 26 (48) (2015) 485601, https://doi.org/10.1088/0957-4484/26/48/485601.
- [31] J. Ma, C. Wang, H. He, Enhanced photocatalytic oxidation of NO over g-C<sub>3</sub>N<sub>4</sub>-TiO<sub>2</sub> under UV and visible light, Appl. Catal. B 184 (2016) 28–34, https://doi.org/ 10.1016/j.apcatb.2015.11.013.
- [32] X. Li, Z. Zhuang, W. Li, H. Pan, Photocatalytic reduction of CO<sub>2</sub> over noble metalloaded and nitrogen-doped mesoporous TiO<sub>2</sub>, Appl. Catal. A 429–430 (2012) 31–38, https://doi.org/10.1016/j.apcata.2012.04.001.
- [33] L.-L. Tan, W.-J. Ong, S.-P. Chai, B.T. Goh, A.R. Mohamed, Visible-light-active oxygen-rich TiO<sub>2</sub> decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction, Appl. Catal. B 179 (2015) 160–170, https://doi.org/10.1016/j.apcatb.2015.05.024.
- [34] X. Li, J. Zhang, L. Shen, Y. Ma, W. Lei, Q. Cui, G. Zou, Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine, Appl. Phys. A-Mater 94 (2) (2009) 387–392, https://doi.org/10.1007/s00339-008-4816-4.
- [35] E. Wang, W. Yang, Y. Cao, Unique surface chemical species on indium doped TiO<sub>2</sub> and their effect on the visible light photocatalytic activity, J. Phys. Chem. C 113 (49) (2009) 20912–20917, https://doi.org/10.1021/jp9041793.
- [36] N. Cao, Z. Chen, K. Zang, J. Xu, J. Zhong, J. Luo, X. Xu, G. Zheng, Doping strain induced bi-Ti<sup>3+</sup> pairs for efficient N<sub>2</sub> activation and electrocatalytic fixation, Nat. Commun. 10 (2019) 1–12, https://doi.org/10.1038/s41467-019-10888-5.
- [37] B. Tahir, M. Tahir, N.S. Amin, Gold-indium modified TiO<sub>2</sub> nanocatalysts for photocatalytic CO<sub>2</sub> reduction with H<sub>2</sub> as reductant in a monolith photoreactor, Appl. Surf. Sci. 338 (2015) 1–14, https://doi.org/10.1016/j.apsusc.2015.02.126.
- [38] D.C. Sorescu, W.A. Al-Saidi, K.D. Jordan, CO<sub>2</sub> adsorption on TiO<sub>2</sub> (101) anatase: a diserpsion-corrected density functional theory study, J. Chem. Phys. 135 (2011), 124701, https://doi.org/10.1063/1.3638181.

- [39] K. Bhattacharyya, A. Danon, B.K. Vijayan, K.A. Gray, P.C. Stair, E. Weitz, Role of the surface Lewis acid and base sites in the adsorption of CO<sub>2</sub> on titania nanotubes and platinized titania nanotubes: an in situ FT-IR study, J. Phys. Chem. C 117 (24) (2013) 12661–12678, https://doi.org/10.1021/jp402979m.
- [40] G.K. Ramesha, J.F. Brennecke, P.V. Kamat, Origin of catlaytic effect in the reduction of CO<sub>2</sub> at nanostructured TiO<sub>2</sub> films, ACS Catal. 4 (2014) 3249–3254, https://doi.org/10.1021/cs500730w.
- [41] L. Tan, J. Xu, X. Zhang, Z. Hang, Y. Jia, S. Wang, Synthesis of g-C<sub>3</sub>N<sub>4</sub>/CeO<sub>2</sub> nanocomposites with improved catalytic activity on the thermal decomposition of ammonium perchlorate, Appl. Surf. Sci. 356 (2015) 447–453, https://doi.org/ 10.1016/j.apsusc.2015.08.078.
- [42] B. Tahir, M. Tahir, N.A.S. Amin, Photo-induced CO<sub>2</sub> reduction by CH<sub>4</sub>/H<sub>2</sub>O to fuels over Cu-modified g-C<sub>3</sub>N<sub>4</sub> nanorods under simulated solar energy, Appl. Surf. Sci. 419 (2017) 875–885, https://doi.org/10.1016/j.apsusc.2017.05.117.
  [43] L. Kong, X. Zhang, C. Wang, J. Xu, X. Du, L. Li, Ti<sup>3+</sup> defect mediated g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>
- [43] L. Kong, X. Zhang, C. Wang, J. Xu, X. Du, L. Li, Ti<sup>3+</sup> defect mediated g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> Z-scheme system for enhanced photocatalytic redox performance, Appl. Surf. Sci. 448 (2018) 288–296, https://doi.org/10.1016/j.apsusc.2018.04.011.
- [44] B. Zhu, P. Xia, Y. Li, W. Ho, J. Yu, Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C<sub>3</sub>N<sub>4</sub>/Ag-<sub>2</sub>WO<sub>4</sub> photocatalyst, Appl. Surf. Sci. 391 (2017) 175–183, https://doi.org/10.1016/j.apsusc.2016.07.104.
- [45] G. Khan, Y.K. Kim, S.K. Choi, D.S. Han, A. Abdel-Wahab, H. Park, Evaluating the catalytic effects of carbon materials on the photocatalytic reduction and oxidation reactions of TiO<sub>2</sub>, Bull. Korean Chem. Soc. 34 (4) (2013) 1137–1144, https://doi. org/10.5012/bkcs.2013.34.4.1137.
- [46] S.K. Choi, S. Kim, S.K. Lim, H. Park, Photocatalytic comparison of TiO<sub>2</sub> nanoparticles and electrospun TiO<sub>2</sub> nanofibers: effects of mesoporosity and interparticle charge transfer, J. Phys. Chem. A 114 (39) (2010) 16475–16480, https://doi.org/10.1021/jp104317x.
- [47] H. Wang, H. Li, Z. Chen, J. Li, X. Li, P. Huo, Q. Wang, TiO<sub>2</sub> modified g-C<sub>3</sub>N<sub>4</sub> with enhanced photocatalytic CO<sub>2</sub> reduction performance, Solid State Sci. 100 (2020) 106099, https://doi.org/10.1016/j.solidstatesciences.2019.106099.
- [48] Y.-N. Liu, C.-C. Shen, N. Jiang, Z.-W. Zhao, X. Zhou, S.-J. Zhao, A.-W. Xu, g-C<sub>3</sub>N<sub>4</sub> hydrogen-bonding viologen for significantly enhanced visible-light photocatalytic H<sub>2</sub> evolution, ACS Catal. 7 (12) (2017) 8228–8234, https://doi.org/10.1021/ acscatal.7b03266.
- [49] H.L. Huynh, J. Zhu, G. Zhang, Y. Shen, W.M. Tucho, Y. Ding, Z. Yu, Promoting effect of Fe on supported Ni catalysts in CO<sub>2</sub> methanation by in situ DRIFTS and DFT study, J. Catal. 392 (2020) 266–277, https://doi.org/10.1016/j. jcat.2020.10.018.
- [50] F. He, S. Weon, W. Jeon, M.W. Chung, W. Choi, Self-wetting triphase photocatalysis for effective and selective removal of hydrophilic volatile organic compound in air, Nat. Commun. 12 (2021) 6259, https://doi.org/10.1038/ s41467-021-26541-z.
- [51] L. Wang, W. Si, Y. Tong, F. Hou, D. Pergolesi, J. Hou, T. Lippert, S.X. Dou, J. i. Liang, Graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>)-based nanosized heteroarrays: Promising materials for photoelectrochemical water splitting, Carbon Energy 2 2 (2) (2020) 223–250, https://doi.org/10.1002/cey2.48.
- [52] L. Mino, G. Spoto, A.M. Ferrari, CO<sub>2</sub> capture by TiO<sub>2</sub> anatase surfaces: a combined DFT and FTIR study, J. Phys. Chem. C 118 (43) (2014) 25016–25026, https://doi. org/10.1021/jp507443k.
- [53] S. Huygh, A. Bogaerts, E.C. Neyts, How oxygen vacancies activate CO<sub>2</sub> dissociation on TiO<sub>2</sub> anatase (001), J. Phys. Chem. C 120 (38) (2016) 21659–21669, https:// doi.org/10.1021/acs.jpcc.6b07459.
- [54] B. Zhu, L. Zhang, D. Xu, B. Cheng, J. Yu, Adsorption investigation of CO<sub>2</sub> on g-C<sub>3</sub>N<sub>4</sub> surfavce by DFT calculation, J. CO2 Util. 21 (2017) 327–335, https://doi.org/ 10.1016/j.jcou.2017.07.021.
- [55] C.-C. Yang, Y.-H. Yu, B. van der Linden, J.C.S. Wu, G. Mul, Artificial photosynthesis over crystalline TiO<sub>2</sub>-based catalysts: Fact or fiction? J. Am. Chem. Soc. 132 (24) (2010) 8398–8406, https://doi.org/10.1021/ja101318k.
- [56] S.H. Yoon, U. Kang, H. Park, A. Abdel-Wahab, D.S. Han, Computational density functional theory study on the selective conversion of CO<sub>2</sub> to formate on homogeneously and heterogeneously mixed CuFeO<sub>2</sub> and CuO surfaces, Catal. Today 335 (2019) 345–353, https://doi.org/10.1016/j.cattod.2018.12.043.
- [57] P. Wardman, Reduction potentials of one-electron couples involving free radicals in aqueous solution, J. Phys. Chem. Ref. Data 18 (4) (1989) 1637–1755, https:// doi.org/10.1063/1.555843.