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Abstract

A short, elementary and non-computational proof is given for the clas-
sical Beckman-Quarles theorem asserting that a map of a Euclidean space
into itself that preserves distance 1 must be an isometry.

One of the gems of elementary Euclidean geometry is the Beckman-Quarles
theorem [1]:

Theorem 1 If n ≥ 2 and τ : Rn → Rn maps points of distance 1 into points
of distance 1, then τ is an isometry.

In other words, if a mapping of Rn into itself preserves distance 1, then it
preserves all distances.

Note that injectivity1 of τ is not required.
The theorem has been independently discovered later (see [3],[9]), and was

the starting point of a number of similar results in various settings (see e.g. [4],
[7], [10], and particularly the survey paper [8], just to name a few). Several
proofs are known (see e.g. [1], [2], [5] or [6]).

In this note we give a short and elementary proof that uses no computation
whatsoever, only the triangle inequality.

Let d(·, ·) denote the Euclidean distance in Rn, Recall the triangle inequal-
ity: if P,Q,R ∈ Rn, then d(P,R) ≤ d(P,Q) + d(Q,R), with strict inequality
unless Q lies on the segment connecting P and R. Simple iteration gives that if
P0, P1, . . . , Pl ∈ Rn, then d(P,Pl) ≤

∑l−1
j=0 d(Pj , Pj+1).

As in [5], we write P ′ for τ(P ). Let F be the set of those r > 0 for which τ
preserves r-distance (i.e. points of distance r are mapped into points of distance
r). By assumption 1 ∈ F . We shall repeatedly use the following

Observation. If rj ∈ F and d(P,Q) ≤
∑l

1 rj, then d(P ′, Q′) ≤
∑l

1 rj.

∗AMS Classification: 51-01; Key words: Beckman-Quarles theorem, isometries in Rn,
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1In [1] actually the statement was for multi-valued mappings, but that can be easily reduced
to Theorem 1.
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This follows from the fact that P and Q can be joined by a sequence
P0 = P , P1, . . . , Pl−1, Pl = Q of points with d(Pj , Pj+1) = rj+1, which im-
plies d(P ′

j , P
′
j+1) = rj+1, and the claim follows from the triangle inequality.

Next, we show that if α/2 is the length of the height of a regular tetrahe-
dron of side-length 1, then α ∈ F . Indeed, let V0, . . . , Vn be the vertices of a
regular tetrahedron with side-length 1 and let V ∗

0 be the reflection of V0 onto
the hyperplane spanned by V1, . . . , Vn. Then the distance of V0 and V ∗

0 is twice
the length of the height, hence α = d(V0, V

∗
0 ). Since (the vertices of) regular

tetrahedra of side-length 1 are mapped into (the vertices of) regular tetrahedra
of side-length 1, it follows that the image of {V0, V1, . . . , Vn, V

∗
0 } is congruent to

{V0, V1, . . . , Vn, V
∗
0 } itself,2 therefore d(V ′

0 , (V
∗
0 )

′) = α. However, that implies
α ∈ F by building the above configuration for any P,Q with d(P,Q) = α so
that V0 = P and V ∗

0 = Q.
The same argument gives that if r ∈ F , then αr ∈ F . Therefore, the

numbers 1, α, α2, α3, . . . are all in F . About α the only information we need is
that 1 < α < 2. Indeed, α < 2 follows by applying the triangle inequality in
the triangle V0V1V

∗
0 , and we must have α > 1, otherwise the distance d(V0,M)

from V0 to the center of mass M of {V0, . . . , Vn} (which lies on the segment
V0V

∗
0 ) would be smaller than 1/2, which contradicts the triangle inequality in

the triangle V0V1M (note that d(V1,M) = d(V0,M) by symmetry).

The theorem claims that d(P ′, Q′) = d(P,Q) for all points P,Q ∈ Rn. First
we prove d(P ′, Q′) ≥ d(P,Q) for all such P,Q. Suppose to the contrary that
for some P,Q and δ ≤ 1/2 we have d(P,Q) =: ∆ but d(P ′, Q′) ≤ ∆ − δ. We
claim that there are natural numbers s0, r0 such that {r0αs0} ∈ (δ/2, δ), where
{·} denotes fractional part. If α is irrational,3 then this follows with s0 = 1
and some r0 since then the numbers {rα}, r = 1, 2, . . ., are dense in [0, 1]. On
the other hand, if α = p/q with relative prime p, q, then choose s0 so that
1/qs0 < δ/2, then r∗0 so that {r∗0(ps0/qs0)} = 1/qs0 ,4 and finally an r∗∗0 so that
r∗∗0 (1/qs0) ∈ (δ/2, δ). Clearly, r0 = r∗0r

∗∗
0 and s0 are appropriate. Since, by the

choice of r0, any interval of length δ contains modulo 1 one of the points jr0α
s0 ,

1 ≤ j ≤ 3/δ, for any x ∈ R there is an 1 ≤ i ≤ 3r0/δ and an integer m such

2Since both V ′
0 and (V ∗

0 )′ are vertices of regular tetrahedra with common face {V ′
1 , . . . , V

′
n},

and since we do not assume τ to be injective, theoretically there are two possibilities for
the distance d(V ′

0 , (V
∗
0 )′): either d(V ′

0 , (V
∗
0 )′) = 0 (when V ′

0 = (V ∗
0 )′) or d(V ′

0 , (V
∗
0 )′) = α

(when V ′
0 ̸= (V ∗

0 )′, i.e. when (V ∗
0 )′ is the reflection of V ′

0 onto the hyperplane spanned by

{V ′
1 , . . . , V

′
n}). But the first one is impossible, for otherwise if (Ṽ0, . . . , Ṽn, Ṽ ∗

0 ) is obtained by

a rotation of (V0, . . . , Vn, V ∗
0 ) about V0 so that d(V ∗

0 , Ṽ ∗
0 ) = 1, then the image (Ṽ ∗

0 )′ cannot
be of unit distance from (V ∗

0 )′ = V ′
0—as is required by the assumption of the theorem—,

since, as we have just observed, it is of distance either 0 or α from (Ṽ0)′ = V ′
0 , and here α > 1

(see below). This reasoning was taken from [1].
3We do not need the exact value of α nor the information if it is rational or irrational.

But for completeness let us state that α =
√

2(n+ 1)/n, and it can be rational or irrational
depending on n: for n = 2 it is irrational, while for n = 8 it is rational.

4That is possible since there are integers r∗0 > 0, t∗0 for which r∗0p
s0 + t∗0q

s0 = 1 because
ps0 and qs0 are relative primes.
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that
x ≤ iαs0 +∆+m < x+ δ,

and if here x > (3r0/δ)α
s0 +∆+ 1, then the m is positive. We apply this with

x = αk with a large integer k for which the previous inequality holds. Then

αk ≤ iαs0 +∆+m < αk + δ,

and m is a positive integer. On the half-line
−−→
PQ let R be the point for which

d(P,R) = αk. Then d(Q,R) = αk − ∆ ≤ iαs0 + m, so by our Observation
d(Q′, R′) ≤ iαs0 + m. But this, d(P ′, Q′) ≤ ∆ − δ and d(P ′, R′) = αk con-
tradicts the triangle inequality because (iαs0 + m) + (∆ − δ) < αk, imply-
ing d(Q′, R′) + d(P ′, Q′) < d(P ′, R′). This contradiction proves that, indeed,
d(P ′, Q′) ≥ d(P,Q).

P

Q

R

Q1

R1

1

m

m

Figure 1: The distance of Q1, R1 is 1/m

After these we can easily complete the proof of the theorem. Indeed, if
d(P,Q) = m is an integer, then d(P ′, Q′) ≥ d(P,Q) ≥ m. On the other hand,
by our Observation we have d(P ′, Q′) ≤ m, so actually d(P ′, Q′) = m, which
means that all natural numbers belong to F . This immediately implies that
there are arbitrarily small numbers in F : consider a triangle PQR of side-
lengths d(P,Q) = d(P,R) = m, d(Q,R) = 1, with some large natural number
m, and let Q1, R1 be the points on the sides PQ, PR that lie of distance 1 from
P (hence d(Q1, R1) = 1/m, see Figure 1). Then

d(P ′, Q′
1) + d(Q′

1, Q
′) = 1 + (m− 1) = d(P ′, Q′),

so (again by triangle inequality) Q′
1 lies on the segment connecting P ′ and Q′.

Similarly, R′
1 lies on the segment connecting P ′ and R′. But that means that

d(Q′
1, R

′
1) = (1/m)d(Q′, R′) = 1/m = d(Q1, R1),

so all 1/m-distances are preserved (i.e. 1/m ∈ F for all natural number m).

Finally, we verify d(P ′, Q′) ≤ d(P,Q) for all P,Q, which, with the inequality
d(P,Q) ≤ d(P ′, Q′) proven before, completes the proof of the theorem. Let
ε ∈ F be small, and let l be the smallest number for which d(P,Q) ≤ lε. By
our Observation then d(P ′, Q′) ≤ lε < d(P,Q) + ε, and upon letting ε → 0 we
obtain d(P ′, Q′) ≤ d(P,Q).
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