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Abstract

Sharp bounds are given for the highest multiplicity of zeros of poly-

nomials in terms of their norm on Jordan curves and arcs. The results

extend a theorem of Erdős and Turán and solve a problem of them from

1940.

1 Introduction

According to Chebyshev’s classical theorem, if Pn(x) = xn+ · · · is a polynomial
of degree n with leading coefficient 1, then

‖Pn‖[−1,1] ≥ 21−n, (1.1)

where ‖Pn‖[−1,1] denotes the supremum norm of Pn on [−1, 1]. The equality is
attained for the Chebyshev polynomials 21−n cos(n arccosx). It was Paul Erdős
and Paul Turán who observed that if such a Pn has zeros in [−1, 1] and its
norm is not too much larger than the theoretical minimum, then the zeros are
distributed like the zeros of the Chebyshev polynomials. More precisely, in [7]
they verified that if Pn(x) = xn + · have all their zeros xj on [−1, 1], then
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As an immediate consequence they obtained that if ‖Pn‖[−1,1] = O(1/2n), then
the largest multiplicity of any zero of Pn is at most O(

√
n). Indeed, if a is the

zero in question, then the claim follows by applying (1.2) to the degenerated
interval a = b. In connection with this observation Erdős and Turán wrote (see
the paragraph before [7, (17)]): “We are of the opinion that ... there exists a
polynomial f(z) = zn + · · · of degree n, which has somewhere in [−1, 1] a root
of the multiplicity [

√
n] and yet the inequality |2nf(x)| ≤ B in [−1, 1] holds.”

This paper grew out of this problem of Erdős and Turán. In general, we
shall relate the largest possible multiplicity of a zero of a polynomial on a set
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K to its supremum norm on K. We shall need to use some basic facts from
potential theory, for all these see the books [3], [5], [12].

Recall ([12, Theorem 5.5.4]) that if Pn(z) = zn + · · · is a monic polynomial
and K is a compact subset of the plane then

‖Pn‖K ≥ cap(K)n (1.3)

where cap(K) denotes the logarithmic capacity of K. Since cap([−1, 1]) = 1/2,
we can see that in (1.2) the expression 2n‖Pn‖[−1,1] is the quantity

‖Pn‖[−1,1]/cap([−1, 1])n,

thus (1.2) is an estimate of the discrepancy of the distribution of the zeros from
the arcsine distribution in terms of how much larger the norm of Pn is than the
n-th power of capacity. Hence, in general, we shall compare the supremum norm
of Pn on a compact set K with that of cap(K)n, and show that the multiplicity
of any zero is governed by the ratio ‖Pn‖K/cap(K)n. Our first result is

Theorem 1.1 Let K be a compact set consisting of pairwise disjoint C1+α-
smooth Jordan curves or arcs lying exterior to each other. Then there is a
constant C such that if Pn(z) = zn + · · · is any monic polynomial of degree at
most n, then the multiplicity m of any zero a ∈ K of Pn satisfies

m ≤ C

√

n log
‖Pn‖K
cap(K)n

. (1.4)

In the smoothness assumption 0 < α < 1 can be any small number. Recall
also that a Jordan curve is a set homeomorphic to a circle while a Jordan arc
is a set homeomorphic to a segment.

It is convenient to rewrite (1.4) in the form

‖Pn‖K ≥ ecm
2/ncap(K)n, (1.5)

which gives a lower bound for the norm of a monic polynomial on K in turn of
the multiplicity of one of its zeros on K.

Our next theorem shows that this is sharp at least when K consists of one
analytic component.

Theorem 1.2 Let K be an analytic Jordan curve or arc, let zn ∈ K be pre-
scribed points and 1 ≤ mn ≤ n prescribed multiplicities for all n. There are
constants A, c such that for every n there are polynomials Pn = zn + · · · such
that zn is a zero of Pn of multiplicity mn, and

‖Pn‖K ≤ Aecm
2
n/ncap(K)n. (1.6)

Furthermore, when K is a Jordan curve then we can set A = 1, and for a Jordan
arc A = 2.
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The Erdős-Turán conjecture mentioned above is the1 mn = [
√
n], K =

[−1, 1] special case of Theorem 1.2.
If K is the unit circle, then cap(K) = 1 and Pn(z) = zn has supremum

norm 1 on K, so the right-hand side of (1.4) is 0 even though z = 0 is a zero
of Pn of multiplicity n. This indicates that the zero in Theorem 1.1 must lie
on K to have the estimate (1.4), and this is why in Theorems 1.1 and 1.2 we
concentrated on zeros on K. Note however, that in this example a = 0 lies
in the inner domain of K, and, as we show in the next theorem, one does not
need to assume a ∈ K so long as a does not belong to the interior domains
determined by K.

Theorem 1.3 Let K and Pn be as in Theorem 1.1, and assume that Pn has
a zero of multiplicity m which does not belong to any of the inner domains
determined by the Jordan curve components of K. Then (1.4) holds true with
a constant C depending only on K.

Note that if K consists only of Jordan arcs, then there is no restriction whatso-
ever on the location of the zero a.

For small mn(≪
√
n) the factor m2

n/n in the exponent in (1.6) is small,
and then exp(cm2

n/n) ≈ 1. In this case for analytic Jordan curves, for which
A = 1, the polynomials in (1.6) are asymptotically minimal: ‖Pn‖K = (1 +
o(1))cap(K)n. This is no longer true for arcs: when K is an arc then there are
no polynomials Pn(z) = zn + · · · whatsoever with ‖Pn‖K = (1 + o(1))cap(K)n

(see [17, Theorem 1]), in particular the constant A in (1.6) cannot be 1 when K
is an arc. Therefore, Theorems 1.1 and 1.2 give finer estimates for the highest
multiplicity of a zero on Jordan curves than on Jordan arcs. For example,
if K is an analytic Jordan curve then, in view of Theorem 1.1, a single zero
on K means that ‖Pn‖ ≥ (1 + c/n)cap(K)n, and, conversely, ‖Pn‖ ≤ (1 +
O(1/n))cap(K)n implies that the highest multiplicity of zeros on K is bounded
by a constant. There are no such results for Jordan arcs: if K is a Jordan arc,
then ‖Pn‖K/cap(K)n in Theorem 1.1 is at least some constant 1 + β > 1 ([17,
Theorem 1]), so it cannot be 1 + O(1/n). In this case A in Theorem 1.2 must
necessarily be bigger than 1, and for K = [−1, 1] the precise value is A = 2 (see
below), so in this respect Theorem 1.2 is exact.

The Erdős–Turán theorem has the shortcoming that it cannot give better
discrepancy estimate than C/

√
n, and, as a consequence, it cannot give a bet-

ter upper bound for the multiplicity of a zero than C
√
n. This is due to the

fact that Erdős and Turán compared ‖Pn‖[−1,1] to capn([−1, 1]), and not to the
theoretical minimum 21−n = 2capn([−1, 1]). In fact, in view of (1.1), the right
hand side in the estimate (1.2) is always ≥ c/

√
n, i.e., the discrepancy given in

the theorem is never better than c/
√
n. As a consequence, no matter how close

‖Pn‖[−1,1] is to the theoretical minimum 21−n, we do not get from (1.2) a better
estimate for the multiplicity of a zero than ≤ C

√
n. Probably if one compares

‖Pn‖[−1,1] not to capn([−1, 1]) but to the theoretical minimum 2capn([−1, 1]),

1In what follows [·] denotes integral part.

3



then one can get better than 1/
√
n discrepancy rate and better multiplicity esti-

mate than C
√
n. While we are not investigating such finer discrepancy results,

we do verify the corresponding finer result in connection with multiplicity of the
zeros.

Theorem 1.4 Suppose that a polynomial Pn(x) = xn+ · · · has a zero in [−1, 1]
of multiplicity m ≥ 2. Then

‖Pn‖[−1,1] ≥ 21−necm
2/n (1.7)

with some absolute constant c.
Conversely, there is a constant C > 0 such that if xn ∈ [−1, 1] for all

n and 2 ≤ mn ≤ n are prescribed multiplicities, then there are polynomials
Pn(x) = xn + · · ·, n = 1, 2, . . ., such that xn is a zero of Pn of multiplicity mn

and
‖Pn‖[−1,1] ≤ 21−neCm2

n/n. (1.8)

Note that in stating (1.7) we must assume m ≥ 2 (as opposed to the Jordan
curve case in Theorem 1.1 where a single zero raises the norm away from the
theoretical minimum), just consider the classical Chebyshev polynomials for
which the norm on [−1, 1] is precisely 21−n.

There is no similar result on a set consisting of more than one intervals.
Indeed, if E ⊂ R is such a set, then, by [14], for every polynomial Pn with
leading coefficient 1 we have

‖Pn‖E ≥ 2cap(E)n.

Therefore, the analogue of (1.8) would be to have polynomials Pn(x) = xn+ · · ·
with a zero of multiplicity mn on E and with

‖Pn‖E ≤ 2cap(E)neCm2
n/n. (1.9)

But for mn = o(
√
n) this is not possible, since there are no polynomials Pn(z) =

zn + · · ·, n = 1, 2, . . ., for which

‖Pn‖E = (1 + o(1))2cap(E)n

is true, because, by [17, Theorem 3], the largest limit point of the sequence

min
Pn(x)=xn+···

‖Pn‖E
cap(E)n

, n = 1, 2, . . .

as n→ ∞ is bigger than 2.

All the results above assumed smoothness of the underlying curves. Some
kind of smoothness assumption is necessary as is shown by
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Proposition 1.5 Let 0 < θ < 1. There is a Jordan curve γ such that for
infinitely many n, say for n = n1, n2, . . ., there are polynomials Pn(z) = zn+ · · ·
such that Pn has a zero on γ of multiplicity at least nθ, and yet

‖Pn‖γ = (1 + o(1))cap(γ)n, n→ ∞, n = n1, n2, . . . ,

where o(1) tends to 0 as n→ ∞.

Note that this is in sharp contrast to (1.5) because for smooth curves a zero of
multiplicity > nθ implies

‖Pn‖K ≥ ecn
2θ−1

cap(K)n,

and here the factor exp(cn2θ−1) is large for θ > 1/2.

Finally, we mention that for a single component Theorem 1.1 easily follows
from results of V. V. Andrievskii and H-P. Blatt in [1, Ch. 4]. As for the
converse, i.e., Theorem 1.2, the key will be a construction of G. Halász [8], see
Proposition 4.1 below. For the unit circle Theorem 1.1 is a direct consequence
of [15, Theorem 1], and Theorem 1.2 is a consequence of the just mentioned
theorem of Halász. For related results when not the leading coefficient, but a
value of Pn is fixed inside K see [2], [6], [16].

2 Proof of Theorem 1.1

Let K be as in the theorem, ds the arc measure on K, µK the equilibrium
measure of K, Ω the unbounded component of C \K and gΩ(z,∞) the Green’s
function of Ω with pole at infinity. In the proof of the theorem we shall need
the following lemma. Choose ε > 0 so that the closed ε-neighborhoods of
the different connected components of K are disjoint, and let Γ be one of the
connected components of K.

Lemma 2.1 I. If Γ is a Jordan curve, then in the ε-neighborhood of Γ we
have in the exterior of Γ the estimates

c0dist(z,Γ) ≤ gΩ(z,∞) ≤ C0dist(z,Γ) (2.1)

with some positive constants c0, C0.
Furthermore, dµK/ds is continuous and positive on Γ.

II. If Γ is a Jordan arc, then in the ε-neighborhood of Γ the Green’s function
behaves as described below. Let P,Q be the endpoints of Γ, let Z ∈ Γ be (one
of) the closest point to z in Γ, and assume that P is closer to Z than Q. Then

c0H(z) ≤ gΩ(z,∞) ≤ C0H(z) (2.2)

with some positive constants c0, C0, where

H(z) =







√

|z − P | if |Z − P | ≤ |z − Z|,

dist(z,Γ)/
√

|Z − P | if |Z − P | > |z − Z|.
(2.3)
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Furthermore,
dµ(z)

ds
∼ 1

√

|z − P |
(2.4)

on the “half” of Γ that lies closer to P than to Q.

In particular, if J is a subarc of Γ, then µK(J) ∼
√

|J | if J lies closer to P

than its length |J |, while µK(J) ∼ |J |/
√

dist(J, P ) in the opposite case (all this
on the ”half” of Γ that lies closer to P than to Q).

Here and in what follows, A ∼ B means that the ratio A/B is bounded away
from 0 and infinity.

Lemma 2.1 is folklore, for completeness we shall give a short proof for it in
the Appendix at the end of this paper.

Now let us proceed with the proof of Theorem 1.1.
First we mention that

n log cap(K) ≤
∫

K

log |Pn(z)|dµK(t). (2.5)

Indeed, from well-known properties of equilibrium measures (see e.g. [13, (I.4.8)]
or [12, Sec. 4.4])

∫

log |z − t|dµK(z) =

{

log cap(K) if z lies in Pc(K)

log cap(K) + gΩ(z,∞) otherwise,
(2.6)

where Pc(K) = C \ Ω denotes the polynomial convex hull of K, which is the
union of K with all the bounded connected components of C \ K. Hence the
left-hand side is always at least log cap(K), which proves the inequality in (2.5)
if we write log |Pn(z)| in the form

∑

j log |z − zj | with the zeros zj of Pn.
Let a be a zero of Pn on K of multiplicitym. Then a belongs to a component

Γ of K, and first we consider the case when Γ is a Jordan curve.

Case I: Γ is a Jordan curve. Then in the ε-neighborhood of Γ as in Lemma
2.1

g
C\Γ(ζ,∞) ≤ C0dist(ζ,Γ),

and for other ζ this is automatically true (if we increase C0 somewhat if nec-
essary). Hence, by the Bernstein-Walsh lemma [18, p. 77], for |ζ − a| ≤ ρ we
have

|Pn(ζ)| ≤ engΩ(ζ,∞)‖Pn‖K ≤ eC0nρ‖Pn‖K . (2.7)

Recall also that, by Cauchy’s formula,

P (m)
n (w) =

m!

2πi

∫

|ζ−w|=ρ/2

Pn(ζ)

(ζ − w)m+1
dζ (2.8)

with integration on the circle with center at w and of radius ρ/2. As a conse-
quence, for |w − a| ≤ ρ/2 we obtain

|P (m)
n (w)| ≤ eC0nρm!

1

(ρ/2)m
‖Pn‖K , (2.9)
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and here ρ > 0 is arbitrary.
Since Pn(z) has a zero at a of order m, we can write

Pn(z) =

∫ z

a

∫ w1

a

· · ·
∫ wm−1

a

P (m)
n (w)dwdwm−1 · · · dw1 (2.10)

with integration along the segment connecting a and z. Hence, for z ∈ Γ,
|z − a| ≤ ρ/2 we have (note that during m-fold integration the factor 1/m!
emerges)

|Pn(z)| ≤ eC0nρm!
1

(ρ/2)m
|a− z|m
m!

‖Pn‖K ≤ eC0nρ

( |a− z|
ρ/2

)m

‖Pn‖K . (2.11)

Now this gives2 for ρ = m/n and |z − a| ≤ (m/n)/2e · eC0

|Pn(z)| ≤
(

1

e

)m

‖Pn‖K ,

i.e., on the arc J of Γ on which |a− z| ≤ (m/n)/2e · eC0 , the estimate

log |Pn(z)| ≤ log ‖Pn‖K −m (2.12)

holds. Elsewhere we use |Pn(z)| ≤ ‖Pn‖K . The µK-measure of J is≥ c1(m/n)/e·
eC0 with some c1 depending only on K (see Lemma 2.1), hence we obtain from
(2.5) and (2.12)

n log cap(K) ≤
∫

log |Pn|dµK ≤ log ‖Pn‖K −
(

c1(m/n)/e · eC0
)

m

≤ log ‖Pn‖K − c2m
2/n, (2.13)

which proves (1.5).

Case II: Γ is a Jordan arc. The proof is along the previous lines, though the
computations are somewhat more complicated. Suppose that P is the endpoint
of Γ that lies closer to a than the other endpoint, and let d be the distance
from a to P . First consider the case when d ≤ (m/n)2. In that case we set
ρ = (m/n)2. In this situation (i.e., a lies closer to P than ρ) if |ζ−a| ≤ ρ, then,
by Lemma 2.1, gC\Γ(ζ,∞) ≤ C0

√
2ρ, so instead of (2.7) and (2.9) we have for

|w − a| ≤ ρ/2

|P (m)
n (w)| ≤ e2C0n

√
ρm!

1

(ρ/2)m
‖Pn‖K , (2.14)

and, as a consequence, instead of (2.11) we derive for |z−a| ≤ ρ/2 the estimate

|Pn(z)| ≤ e2C0n
√
ρm!

1

(ρ/2)m
|a− z|m
m!

‖Pn‖K ≤ e2C0n
√
ρ

( |a− z|
ρ/2

)m

‖Pn‖K .
(2.15)

2We may assume that m/n ≤ ε, for the m/n > ε case of Theorem 1.1 follows from its
m = [εn] case. The same remark applies in similar situations to be discussed below.
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Since ρ = (m/n)2, on the arc J of Γ on which |a − z| ≤ (m/n)2/2e · e2C0 we
have (2.12). The µK -measure of J in this case is

µK(J) ≥ c1
√

|J | ≥ c1(m/n)/
√
2e · e2C0 ,

hence (2.13) is true again, and that proves the claim in the theorem.
The just given proof works also when a = P , i.e when d = 0.

Finally, let us assume that d > (m/n)2, in which case we set ρ = (m/n)
√
d.

Now for |ζ − a| = ρ we have gC\Γ(ζ,∞) ≤ C0ρ/
√
d (see Lemma 2.1), so instead

of (2.9) and (2.14) we get for |w − a| ≤ ρ/2 the inequality

|P (m)
n (w)| ≤ eC0nρ/

√
dm!

1

(ρ/2)m
‖Pn‖K , (2.16)

and instead of (2.11) and (2.15) we have for |z − a| ≤ ρ/2

|Pn(z)| ≤ eC0nρ/
√
dm!

1

(ρ/2)m
|a− z|m
m!

‖Pn‖K ≤ eC0nρ/
√
d

( |a− z|
ρ/2

)m

‖Pn‖K .
(2.17)

Since ρ = (m/n)
√
d, we obtain that on the arc J of Γ on which

|a− z| ≤ (m/n)
√
d/2e · eC0

we have (2.12). The µK-measure of J in this case is

µK(J) ≥ c1|J |/
√
d ≥ c1(m/n)/2e · eC0 ,

hence (2.13) is true again, which proves the theorem.

3 Proof of Theorem 1.3

As before, let Ω be the unbounded component of C \K. The assumption in the
theorem on the location of the zero a is equivalent to a ∈ Ω = K ∪Ω. Let ε > 0
be again a small number such that the closed ε-neighborhoods of the different
connected components of K do not intersect. The Green’s function gΩ(z,∞)
has a positive lower bound in Ω away from K, so there is a β > 0 such that
if a ∈ K ∪ Ω does not belong to the ε-neighborhood of K, then gΩ(a,∞) > β.
Hence we obtain from (2.6)

∫

log |Pn|dµK ≥ n log cap(K) +mβ,

which implies
‖Pn‖ ≥ emβcap(K)n,

and that is stronger than (1.5).
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Thus, in what follows we may assume that a lies closer than ε to K, say lies
closer than ε to the component Γ of K.

Case I: Γ is a Jordan curve. Let A ∈ Γ be (one of) the closest point to a
in Γ. We fix a small θ < 1/2 to be determined below, and we distinguish two
cases.

Case 1: |a−A| ≤ θ(m/n). In this case we case we follow the proof of Theorem
1.1. As there, we set ρ = (m/n). We have the analogue of (2.7):

|Pn(ζ)| ≤ engΩ(ζ,∞)‖Pn‖K ≤ eC0nρ‖Pn‖K , |ζ −A| ≤ ρ,

and from here we get as in (2.9)

|P (m)
n (w)| ≤ eC0nρm!

1

(ρ/2)m
‖Pn‖K , |w −A| ≤ ρ/2. (3.1)

Now if |z − A| ≤ ρ/2 and z belongs to Γ, then integrating along the segment
connecting a and z we obtain as in (2.10)–(2.11) from (3.1) and from the fact
that a is a zero of Pn of multiplicity m the estimate

|Pn(z)| ≤ eC0nρ

( |a− z|
ρ/2

)m

‖Pn‖K . (3.2)

This gives for ρ = m/n and |a− z| ≤ (m/n)/2e · eC0

|Pn(z)| ≤
(

1

e

)m

‖Pn‖K ,

i.e., on the arc J of Γ for which |a− z| ≤ (m/n)/2e · eC0 , we have

log |Pn(z)| ≤ log ‖Pn‖K −m. (3.3)

However, if |a − A| ≤ θ(m/n) and here θ = 1/4e · eC0 , then every z ∈ Γ with
|z − A| ≤ θ(m/n) belongs to J , so we have (3.3) at those points. Since the
µK -measure of these points is ≥ c1θ(m/n) with some c1 > 0, we obtain (2.13)
in the form

n log cap(K) ≤ log ‖Pn‖K − c2m
2/n, (3.4)

and that proves (1.5).
This argument used θ = 1/4e · eC0 , and that is how we choose θ.

Case 2: |a − A| ≥ θ(m/n). In this case, in view of Lemma 2.1, we have
gΩ(a,∞) ≥ c0θ(m/n), so (2.6) yields

∫

log |Pn|dµK ≥ n log cap(K) +mc0θ(m/n),

which gives again (1.5).

Case II: Γ is a Jordan arc, with endpoints, say, P and Q. In this case the
behavior of the Green’s function gΩ and of the equilibrium measure is described
in the second part of Lemma 2.1.
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Let again A be a closest point in Γ to a, and let the endpoint P be closer to
A than the other endpoint of Γ.

If d = |A−P | is the distance from A to P , then we distinguish three cases.

Case 1: d ≤ (m/n)2. Set ρ = (m/n)2 and choose again a small θ > 0 as below.
If |a− A| ≤ θ(m/n)2, then follow the proof for Theorem 1.1 for the Jordan

arc case. As there, for |w −A| ≤ ρ/2 we obtain

|P (m)
n (w)| ≤ e2C0n

√
ρm!

1

(ρ/2)m
‖Pn‖K

(see (2.14)) and for |A− z| ≤ ρ/2

|Pn(z)| ≤ e2C0n
√
ρ

( |a− z|
ρ/2

)m

‖Pn‖K

(see (2.15)). Since ρ = (m/n)2, on the arc J of Γ on which

|a− z| ≤ (m/n)2/2e · e2C0 (3.5)

we have (2.12). But if θ = 1/4e · e2C0 , then every point z ∈ Γ with |z − A| ≤
θ(m/n)2 satisfies (3.5) and the µK-measure of these points is ≥ c1

√
θ(m/n),

hence (2.13) is true again, proving (1.5).
If, on the other hand |a − A| ≥ θ(m/n)2, then in view of (2.2)–(2.3) and

(2.6) we obtain
∫

log |Pn|dµK ≥ n log cap(K) +mc̃0
√
θ(m/n)

with some constant c̃0 > 0 (consider separately when d ≤ |a − A| and when
|a−A| < d) implying again (1.5).

Case 2: d > (m/n)2 and |a − A| ≤ d. In this case we set ρ = (m/n)
√
d and

select again a small θ > 0 as below.
If |a − A| ≤ θρ, then, as before, follow the proof of Theorem 1.1 leading to

(2.16) and (2.17). We get as in (2.17)

|Pn(z)| ≤ eC0nρ/
√
d

( |a− z|
ρ/2

)m

‖Pn‖K (3.6)

for |z−A| ≤ ρ/2. Therefore, for θ = 1/4e ·eC0 and for |z−a| ≤ θρ the inequality

|Pn(z)| ≤
(

1

e

)n

‖Pn‖K

holds for all
z ∈ J := {z ∈ Γ |A− z| ≤ θρ}.

So in this case (2.12) is true on J , and since

µK(J) ≥ c1|J |/
√
d ≥ c1θ(m/n),
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we conclude (2.13), and that proves (1.5).
If, however, d ≥ |a−A| > θρ, then, in view of (2.2)–(2.3)

gΩ(z,∞) ≥ c0|a−A|/
√
d,

and we obtain from (2.6)

∫

log |Pn|dµK ≥ n log cap(K) +mc0|a−A|/
√
d

≥ n log cap(K) +mc0θ(m/n)
√
d/

√
d

and (1.5) follows.

Case 3: |a−A| > d > (m/n)2. In view of Lemma 2.1 we have then

gΩ(a,∞) ≥ c0
√

|a− P | ≥ c0
√

|a−A| ≥ c0(m/n),

so we get from (2.6)

∫

log |Pn|dµK ≥ n log cap(K) +mc0(m/n)

giving again (1.5).

4 Proof of Theorem 1.2

We need to extend the following theorem of Gábor Halász.

Proposition 4.1 For every n there is a polynomial Qn(z) = zn + · · · such that
Qn has a zero at 1, and

‖Qn‖C1
≤ e2/n, (4.1)

where C1 denotes the unit circle.

We are going to show the following variant.

Proposition 4.2 If γ is an analytic Jordan curve, then there is a C such that
if z0 ∈ γ is given, then for every n there are polynomials Sn(z) = zn+ · · · which
have a zero at z0 and for which

‖Sn‖γ ≤ eC/ncap(γ)n.

Proof. The claim can be reduced to Halász’ result by the Faber-type argument
given below. For large n the construction gives C = 5 independently of the curve
γ.

First of all, for the Qn in Halász’ result we may assume that they decrease
geometrically in n on compact subsets of the open unit disk on the price that

11



in (4.1) the exponent 2/n is replaced by 4/n. In fact, it is enough to consider
Q∗

n(z) = z[n/2]Q[(n+1)/2](z). For these we have Q∗
n(1) = 0,

‖Q∗
n‖C1

≤ e4/n (4.2)

and
|Q∗

n(z)| ≤ C(
√
r)n, if |z| ≤ r < 1. (4.3)

By simple rotation, i.e., considering Q∗
n,ζ(z) = ζnQn(ζ

−1z), the zero can be
moved from 1 to any point ζ of the unit circle.

Now let γ be an analytic Jordan curve, and let Φ the conformal map from
the exterior Ω of γ onto the exterior C \ ∆ of the unit disk that leaves the
point infinity invariant. Without loss of generality we may assume γ to have
logarithmic capacity 1, in which case the Laurent expansion of Φ around the
point ∞ is of the form Φ(z) = z + c0 + c−1/z + · · ·. Since γ is analytic, Φ can
be extended to some domain that contains γ (see [11, Proposition 3.1]), hence
for r < 1 sufficiently close to 1 the level set γr := {z |Φ(z)| = r} is defined,
and it is an analytic curve inside γ. Fix such an r. Let the image of z0 under
Φ be ζ ∈ C1, and consider the polynomial S∗

n which is the polynomial part
of Q∗

n,ζ(Φ(z)). Set R∗
n(z) = Q∗

n,ζ(Φ(z)) − S∗
n(z), which is the Laurent-part of

Q∗
n,ζ(Φ(z)). By Cauchy’s formula we have for z ∈ γ

R∗
n(z) =

1

2πi

∫

γr

Q∗
n,ζ(Φ(ξ))

ξ − z
dξ (4.4)

with clockwise orientation on γr (note that the corresponding integral with
Q∗

n,ζ(Φ(ξ)) replaced by S∗
n(ξ) vanishes since then the integrand is analytic inside

γr), and since γr is mapped by Φ into the circle |z| = r < 1, (4.3) shows that
R∗

n(z) is exponentially small on γ: |R∗
n(z)| ≤ C

√
r
n
. Now

Sn(z) := S∗
n(z) +R∗

n(z0) = Q∗
n,ζ(Φ(z))−R∗

n(z) +R∗
n(z0)

is a monic polynomial of degree n, on γ it has norm

≤ e4/n + 2C
√
r
n ≤ eC/n,

and Sn(z0) = Q∗
n,ζ(Φ(z0)) = Q∗

n,ζ(ζ) = 0.

Based on the polynomials Sn from Proposition 4.2, the proof of Theorem 1.2
for an analytic curve K is now easy. Set γ = K and with the just constructed Sn

for γ and zn define Pn(z) = S[n/mn](z)
mn . Pn(z) is a monic polynomial, but its

degree may not be n, it is [n/mn]mn =: n− k with some 0 ≤ k < mn. To have
exact degree n suitably modify one of the factors in Pn, i.e., use S[n/mn]+k(z)
instead of S[n/mn](z). Since

‖Pn‖γ ≤
(

eC/[n/mn]
)mn

≤ e2Cm2
n/n,

12



it is clear that Pn satisfies (1.6) with A = 1, and it has at zn a zero of multiplicity
mn.

We still need to consider the case when K is an analytic arc γ. First assume
that zn is not one of the endpoints of γ. We may assume that the endpoints of
γ are ±2, and consider the standard mapping Z = 1

2 (z +
√
z2 − 4), where we

take that branch (analytic on C \ γ) of
√
z2 − 4 for which Z ∼ z for |z| ∼ ∞.

This “opens up” γ, and it maps γ into a Jordan curve Γ (cf. [19, p. 206 and
Lemma 11.1]) with the same logarithmic capacity as γ (and maps C \ γ into
the unbounded component of C \ Γ). Furthermore, it is not difficult to show
that if γ is analytic then so is Γ, see e.g. the discussion in [9, Proposition 5].
The point zn is considered to belong to both sides of γ, and then it is mapped
into two points Z±

n on Γ, for which Z−
n = 1/Z+

n . Now for each of these points
and for the analytic Jordan curve Γ construct the polynomials Pn above but for
degree [n/2] (more precisely, for one of them of degree [n/2] and for the other
one of degree [(n + 1)/2] to have precise degree n in their product), let these
be P±

n . Thus, P+
n has a zero at Z+

n of multiplicity mn, P
−
n has a zero at Z−

n of
multiplicity mn, and their norm on Γ is at most

exp(Cm2
n/[n/2])cap(Γ)

[n/2] ≤ exp(3Cm2
n/n)cap(Γ)

[n/2]

respectively

exp(Cm2
n/[(n+ 1)/2])cap(Γ)[(n+1)/2] ≤ exp(2Cm2

n/n)cap(Γ)
[(n+1)/2].

Consider now the product

P ∗
n(Z) = P+

n (Z)P−
n (Z) = Zn + · · · ,

which has a zero of multiplicity mn at both Z±, and it has norm

‖P ∗
n‖K ≤ exp(5Cm2

n/n)cap(Γ)
n.

Note that z → 1
2 (z −

√
z2 − 4) = 1/Z also maps γ into Γ (mapping C \ γ

into the bounded component of C \Γ) and zn is mapped by this mapping again
into Z±

n (but the images of the two sides of γ are interchanged, i.e., if zn on one
side of γ was mapped into Z+

n by z → 1
2 (z +

√
z2 − 4), then under this second

mapping it is mapped into Z−
n = 1/Z+

n ). Now

Pn(z) = P ∗
n

(

1

2
(z +

√

z2 − 4)

)

+ P ∗
n

(

1

2
(z −

√

z2 − 4)

)

is a polynomial of degree n with leading coefficient 1 (just consider its behavior
at ∞), and for its norm on γ we have

‖Pn‖γ ≤ 2‖P ∗
n‖Γ ≤ 2 exp(5Cm2

n/n)cap(Γ)
n = 2 exp(5Cm2

n/n)cap(γ)
n.

Finally, since Z±
n = 1/Z∓

n and since (Z − Z±
n )mn are factors in P ∗

n , and as
z → zn we have

13



z +
√

z2 − 4 = Z → Z+
n , z −

√

z2 − 4 = 1/Z → Z−
n

or Z → Z−
n , 1/Z → Z+

n (depending on which side of γ the point z is approaching
zn), and then, since zn is not an endpoint,

|z − zn| ∼ |Z − Z+
n | ∼

∣

∣

∣

∣

1

Z
− Z−

n

∣

∣

∣

∣

resp.

|z − zn| ∼ |Z − Z−
n | ∼

∣

∣

∣

∣

1

Z
− Z+

n

∣

∣

∣

∣

,

it follows that Pn(z) divided (z − zn)
mn is bounded around zn, hence zn is a

zero of Pn of multiplicity mn.

If zn coincides with one of the endpoints, say zn = 2, then the preceding ∼
relations are not true and we have instead e.g.

|z − zn| ∼ |Z − Z+
n |2 ∼

∣

∣

∣

∣

1

Z
− Z−

n

∣

∣

∣

∣

2

.

But since then Z+ = Z− = 2 is also satisfied, we get again a zero of multiplicity
mn at zn = 2.

5 Proof Theorem 1.4

Since cap([−1, 1]) = 1/2, the second part follows from (1.6) with A = 2. There-
fore, we shall deal only with the first part (which is not covered by Theorem
1.1).

Suppose that a is a zero of Pn of multiplicity m ≥ 2. We set ν = [m/2], so
Pn has a zero at a of multiplicity ≥ 2ν. The idea of the proof is to transform
[(ν + 1)/2] of the zeros at a to the point 1 without raising the norm, and then
to get a lower estimate for the norm on [−1, 1] from the information that 1 is a
zero of multiplicity ≥ [(ν + 1)/2]. This will be carried out in several steps.

Step 1. The point a lies in an interval [cos(π(k+1)/n), cos(kπ/n)], 0 ≤ k < n.
If a coincides with one of the endpoints, then go to Step 2 setting there Sn = Pn,
otherwise let

ε = min(a− cos(π(k + 1)/n), cos(kπ/n)− a)

and

Sn(x) =
Pn(x)

(x− a)2ν
(x− a− ε)ν(x− a+ ε)ν .

This is a polynomial of degree n with leasing coefficient 1 which has a zero
either at cos(π(k + 1)/n) or at cos(πk/n) of multiplicity at least ν. We claim
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that ‖Sn‖[−1,1] ≤ ‖Pn‖[−1,1]. Indeed, it is clear that |Sn(x)| ≤ |Pn(x)| for all
x 6∈ (a − ε, a + ε), so it is sufficient to show that |Sn| takes its maximum in
[−1, 1] on the set [−1, a− ε]∪ [a+ ε, 1]. For that purpose it is sufficient to prove
that if

Sn,ε′(x) =
Pn(x)

(x− a)2ν
(x− a− ε′)ν(x− a+ ε′)ν , 0 < ε′ < ε,

then |Sn,ε′ | takes its maximum in [−1, 1] only on the set [−1, a− ε′]∪ [a+ ε′, 1],
for then the claim for Sn follows by letting ε′ tend to ε.

Now suppose to the contrary that |Sn,ε′ | takes its maximum in [−1, 1] some-
where in (a − ε′, a + ε′), say at the point b. Then the trigonometric poly-
nomial Sn,ε′(cos t) takes its maximum modulus on R at the point arccos b ∈
(

arccos(a+ ε′), arccos(a− ε′)
)

, so, by Riesz’ lemma ([4, 5.1.E13]) it cannot have
a zero in the interval (arccos b− π2/n, arccos b+ π/2n). However,

kπ

n
< arccos(a+ ε′) < arccos b < arccos(a− ε′) <

(k + 1)π

n
,

so either
(

arccos(a− ε′)− arccos b
)

or
(

arccos b− arccos(a+ ε′)
)

is smaller than
π/2n. Thus, we obtain a contradiction to Riesz’ lemma because Sn,ε′(cos t) is
zero at arccos(a± ε′), and this contradiction proves the claim.

Thus, Sn has a zero either at cos(π(k+1)/n) or at cos(πk/n) of multiplicity
at least ν, and its supremum norm on [−1, 1] is at most as large as the norm of
Pn. For definiteness assume e.g. that Sn has a zero at cos(πk/n) of multiplicity
at least ν.

Step 2. Define

Tn(t) = Sn(cos t) = (cos t)n + · · · = 21−n cosnt+ · · · .

This is an even trigonometric polynomial of degree n which has a zero at kπ/n
of multiplicity at least ν. Then

T̃n(t) = Tn(t+ kπ/n) = 21−n cos(n(t+ kπ/n)) + · · · = (−1)k21−n cosnt+ · · ·

is a trigonometric polynomial (not necessarily even) of degree n which has a
zero at 0 of multiplicity at least ν. Then the same is true of T̃n(−t), and hence
also of

T ∗
n(t) =

1

2
(Tn(t) + Tn(−t)) = (−1)k21−n cosnt+ · · · ,

which is already an even trigonometric polynomial of degree at most n. However,
the multiplicity of a zero at 0 of an even trigonometric polynomials is necessarily
even, so T ∗

n has a zero at 0 of multiplicity at least 2[(ν+1)/2] ≥ 2, which means
that T ∗

n(t)/(cos t− 1)[(ν+1)/2] is bounded around 0.
Therefore, by setting

Rn(x) = (−1)kT ∗
n(arccosx) = xn + · · ·
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we get a monic polynomial of degree n which has a zero at x = 1 of multiplicity
at least κ := [(ν + 1)/2].

Note that this Rn has norm

‖Rn‖[−1,1] ≤ ‖Sn‖[−1,1] ≤ ‖Pn‖[−1,1].

Step 3. From now on we work with the monic polynomial Rn which has a zero
at 1 of multiplicity ≥ κ = [(ν + 1)/2]. By the Bernstein-Walsh lemma ([18, p.
77]) we have for all z

|Rn(z)| ≤ ‖Rn‖[−1,1]|z +
√

z2 − 1|n,

hence if 0 < ρ < 1 is given, then

|Rn(z)| ≤ ‖Rn‖[−1,1](1 + 3
√
ρ)n ≤ ‖Rn‖[−1,1]e

3
√
ρn

for |z − 1| ≤ ρ. So, by Cauchy’s integral formula for he κ-th derivative using
integration over the circle with center at t and of radius ρ/2 (cf. (2.8)), we get
for 1 ≤ t ≤ 1 + ρ/2 the bound

|R(κ)(t)| ≤ ‖Rn‖[−1,1]κ!
e3

√
ρn

(ρ/2)κ
,

and hence for x ∈ [1, 1 + ρ/8]

|Rn(x)| =

∣

∣

∣

∣

∫ x

1

∫ x1

1

· · ·
∫ xκ−1

1

Rn(t)
(κ)dtdxk−1 · · · dx1

∣

∣

∣

∣

≤ ‖Rn‖[−1,1]κ!
e3

√
ρn

(ρ/2)κ
(x− 1)κ

κ!
≤ ‖Rn‖[−1,1]

(

1

4

)κ

e3
√
ρn.

By selecting here ρ = (κ/3n)2 we obtain that

|Rn(x)| ≤ ‖Rn‖[−1,1] for x ∈ [1, 1 + (κ/3n)2/8],

i.e., if I = [−1, 1 + (κ/3n)2/8], then

‖Rn‖I ≤ ‖Rn‖[−1,1] ≤ ‖Pn‖[−1,1].

Now

‖Pn‖[−1,1] ≥ 21−n exp

(

κ2

n288

)

follows because, by Chebyshev’s theorem,

‖Rn‖I ≥ 2

( |I|
4

)n

= 2

(

1

2
+
(κ

n

)2 1

288

)n

= 21−n

(

1 +
κ2

n2144

)n

and because 1+τ ≥ eτ/2 for 0 ≤ τ ≤ 1. Since here κ = [(ν+1)/2] ≥ ν/2 ≥ m/4,
the inequality (1.7) has been proven with c = 1/4 · 288.
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6 Proof of Proposition 1.5

We sketch the construction. We shall consider Jordan curves σ with 2π-periodic
parametrizations σ : R → C, where σ is a continuous 2π-periodic function which
maps [0, 2π) in a one-to-one manner into the complex plane. We shall often use
σ also for the range {σ(t) t ∈ R}. The curve σ is analytic if σ(t), t ∈ R, is
analytic and σ′ 6= 0. First we show the following.

Lemma 6.1 Let σ be an analytic Jordan curve and ε > 0, 0 < θ < 1. There
are an analytic Jordan curve σ∗, a point Z∗ ∈ σ∗, a natural number n and a
polynomial P ∗

n(z) = zn + · · · such that

(i) Z∗ is a zero of P ∗
n of multiplicity at least nθ,

(ii) |σ(t)− σ∗(t)| < ε for all t ∈ R, and

(iii) ‖P ∗
n‖σ∗ < (1 + ε)cap(σ∗)n.

Furthermore, there is an η∗ > 0 such that if γ is a Jordan curve with |γ −
σ∗| < η∗, then there are a point Z ∈ γ, |Z − Z∗| < η∗, and a polynomial
Pn(z) = zn + · · · such that Z is a zero of Pn of multiplicity at least nθ, and

‖Pn‖γ < (1 + ε)cap(γ)n.

Proof. Without loss of generality we may assume cap(σ) = 1 and θ > 1/2.
Consider a conformal map Φ from the exterior of σ onto the exterior of the unit
circle that leaves the point ∞ invariant. As in the proof of Theorem 1.2 this
Φ can be extended to a conformal map of a domain G that contains σ, and let
γr be the inverse image under Φ of the circle {z |z| = r} for some r < 1 lying
close to 1. For a positive integer m let Sm be the polynomial part of Φ(z)m —
it is a monic polynomial. As in (4.4) we have the representation

Φ(z)m − Sm(z) =
1

2πi

∫

γr

Φ(ξ)m

ξ − z
dξ (6.1)

for all z lying outside γr, so at every such point the left-hand side is O(rm) in
absolute value. This gives

|Sm(z)| ≤ 1 + C1r
m, z ∈ σ,

with some C1 independent of m.
Let τ < ε/6 be a small positive number, and Z̃ ∈ G a point inside σ and

outside γr the distance of which to σ is smaller than τ . Then (6.1) gives with
some C2 the bound |Φ(Z̃)m − Sm(Z̃)| ≤ C2r

m, and since |Φ(Z̃)| < 1, we obtain
|Sm(Z̃)| ≤ C3r

m
1 with some C3 > C1 and r < r1 < 1. Hence, for the monic

polynomial Qm(z) = Sm(z)− Sm(Z̃) we obtain

‖Sm(z)‖σ ≤ 1 + 2C3r
m
1 , (6.2)
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and Z̃ is a zero of Sm.
Now for a large n set

P̃n(z) = Sn1−θ (z)n
θ

, (6.3)

more precisely let P̃n be the product of [nθ] + 1 copies of Q[n1−θ]−1, Q[n1−θ] or
Q[n1−θ]+1 in such a way that Pn has degree precisely n, but for simplicity we

shall just use the form (6.3). This has at Z̃ a zero of multiplicity at least nθ,
and its norm on σ is at most

‖P̃n(z)‖σ ≤ (1 + 2C3r
n1−θ

1 )n
θ

< 1 + C4r
n1−θ/2
1 . (6.4)

We choose and fix n so large that

‖P̃n(z)‖σ < 1 + τ, (6.5)

which is possible in view of (6.4).
The point Z̃ is inside σ and now we make a Jordan curve σ̃ lying inside but

close to σ with capacity close to 1 that contains Z̃. Indeed, let J be a small arc
on σ lying in the τ -neighborhood of Z̃, remove J from σ and connect the two
endpoints of J to Z̃ via two segments. This way we get a Jordan curve σ̃ that
lies in the τ -neighborhood of σ, σ̃ already contains Z̃, and it is clear from the
construction that we can choose a parametrization of σ̃ so that for all t ∈ R we
have

|σ̃(t)− σ(t)| < τ. (6.6)

Furthermore, if J is sufficiently small, then the capacity of σ̃ will be so close to
cap(σ) = 1, that along with (6.5) we also have

‖P̃n(z)‖σ̃ < (1 + τ)cap(σ̃)n. (6.7)

Choose now for a ρ > 0 an analytic Jordan curve3 σ∗ such that for all t ∈ R
we have

|σ∗(t)− σ̃(t)| < ρ, (6.8)

which implies (ii) if τ + ρ < ε (see (6.6)). Then Z̃ lies closer to σ∗ than ρ, so we
can translate Z̃ by at most of distance ρ to get a point Z∗ on σ∗. Now if we set

P ∗
n(z) = P̃n(z + Z̃ − Z∗),

then for sufficiently small ρ we will have

‖P ∗
n(z)‖σ∗ < (1 + τ)cap(σ∗)n (6.9)

(see (6.7)), hence (iii) (as well as (i)) is also true.
The last statement concerning η∗ is clear if we make a translation of Z∗ to

a point Z ∈ γ such that |Z − Z∗| < η∗ and consider

Pn(z) = P̃ ∗
n(z + Z∗ − Z))

3Say a level line of a conformal mapping from the outer domain of σ̃ to the unit disk or
first approximate σ̃ by a C2 smooth Jordan curve σ1 with σ′

1
6= 0, then approximate σ′

1
by

trigonometric polynomials and then integrate them.
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(apply the just used translation argument).

After this let us return to the proof of Proposition 1.5. The γ in that
proposition will be the uniform limit of analytic Jordan curves γj , j = 1, 2, . . ..
To each γj there is also associated a positive number εj . Suppose that γj and
εj are given, and set σ = γj , ε = εj in Lemma 6.1. The lemma provides a σ∗, a
Z∗, an n, a P ∗

n and an η∗ that have the properties listed in the lemma. We set
γj+1 = σ∗, η∗j+1 = η∗,

εj+1 = min(εj/3, η
∗
j+1/3), (6.10)

z∗j+1 = Z∗, nj+1 := n and P ∗
nj+1

= P ∗
n . So z

∗
j+1 is a zero of P ∗

nj+1
of multiplicity

at least nθj+1. Furthermore,

γ(t) = lim
j→∞

γj(t)

satisfies, in view of (6.10), the estimate

|γ(t)− γj+1(t)| <
∞
∑

k=j+1

εk < η∗j+1. (6.11)

Therefore, by the choice of η∗ = η∗j+1, there is a zj+1 ∈ γ of distance smaller
than η∗j+1 from z∗j+1 and a polynomial Pnj+1

= znj+1 + · · · such that zj+1 is a

zero of Pnj+1
of multiplicity at least nθj+1 and

‖Pnj+1
‖γ < (1 + εj)cap(γ)

nj+1 .

This seemingly completes the proof of Proposition 1.5, but there is a problem,
namely the uniform limit of Jordan curves is not necessarily a Jordan curve. We
ensure that γ = lim γj is a Jordan curve as follows. Let

δj+1 =
1

2
min {|γj+1(u)− γj+1(t)| |u− t| ≥ 1/(j + 1) (mod) 2π} .

This is a positive number because γj+1 is a Jordan curve. Now if η∗j+1 is
sufficiently small, then for all Jordan curves γ for which |γ − γj+1| < η∗j+1

we will have by the definition of δj+1 the inequality

min {|γ(u)− γ(t)| |u− t| ≥ 1/(j + 1) (mod) 2π} > δj+1, (6.12)

and we make sure that the η∗j+1 above is so small that this additional property
is also satisfied. Then, by (6.11), the limit curve γ satisfies (6.12) for all j ≥ 2,
which shows that γ : R → C is, indeed, one-to-one on [0, 2π), i.e., γ is a Jordan
curve.
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7 Appendix

We briefly give the proof of Lemma 2.1. Let ΩΓ be the outer domain to Γ, and
γ ⊂ C \K a Jordan curve that contains Γ in its interior, but all other compo-
nents of Γ are exterior to γ. The Green’s functions gΩ(z,∞) and gΩΓ

(z,∞) are
bounded away from zero and infinity on γ, hence

αgΩΓ
(z,∞) ≤ gΩ(z,∞) ≤ gΩΓ

(z,∞), z ∈ γ, (7.1)

with an α > 0. Since both functions are 0 on Γ, the maximum principle yields
that (7.1) remains valid also in the domain G enclosed by Γ and γ. This shows
that when we deal with gΩ, we may assume K = Γ.

As for the equilibrium measure, the situation is similar. In fact, µK is the
harmonic measure with respect to the point ∞ in Ω, and hence (see e.g. [10,
II.(4.1)]) on Γ

dµK(z)

ds
=

1

2π

∂gΩ(z,∞)

∂n
,

where n denotes the normal at z ∈ Γ pointing towards the interior of Ω (when
Γ is an arc we must consider both of its sides, so actually then we have

dµK(z)

ds
=

1

2π

(

∂gΩ(z,∞)

∂n+
+
∂gΩ(z,∞)

∂n−

)

with n± being the two normals) and a similar formula holds for µΓ. Since both
gΩ(z,∞) and gΩΓ

(z,∞) are zero on Γ, the inequality (7.1) extends to their
normal derivatives on Γ, i.e., we have

α
dµΓ(z)

ds
≤ dµK(z)

ds
≤ dµΓ(z)

ds
, z ∈ Γ.

Thus, it is sufficient to prove the lemma for K = Γ, in which case Ω is simply
connected. Let Φ be a conformal map from Ω onto the exterior of the unit disk
that leaves the point infinity invariant. Then gΩ(z) = log |Φ(z)| (just check the
defining properties of Green’s functions for log |Φ(z)|). Now we distinguish the
curve and arc cases.

Γ is a Jordan curve. If Γ is a C1+α Jordan curve, then Φ′ can be extended to
Γ to a nonvanishing continuous function (see [11, Theorem 3.6]) so (2.2) follows.
Since µK is the harmonic measure with respect to the point ∞ in Ω, we obtain
from the conformal invariance of harmonic measures that µK is the pull-back
of the normalized arc measure on the unit circle under the mapping Φ (i.e.,
µ(E) = |Φ(E)|/2π where | · | denotes arc-length), which proves the statement in
the lemma concerning µK .

Γ is a Jordan arc. In this case we may assume that its endpoints are −2
and 2. The Joukowski mapping ψ(z) = 1

2 (z +
√
z2 − 4) maps Γ into a C1+α-

smooth Jordan curve (see [19, Lemma 11.1]) Γ∗ with outer domain ΩΓ∗ . By the
conformal invariance of Green’s functions we have

gΩ(z,∞) = gΩΓ∗
(ψ(z),∞),
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and here, by the just proven first part,

gΩΓ∗
(ψ(z),∞) ∼ dist(ψ(z),Γ∗),

from which the relation (2.3) can be easily deduced. As before, µE is the pull-
back of the arc measure on the unit circle under the mapping Φ∗ ◦ψ where Φ∗ is
the conformal map from Γ∗ = ψ(Γ) onto the exterior of the unit disk. We have
already seen that Φ∗ is continuously differentiable with nonvanishing derivative
up to Γ∗, hence (2.4) follows from the form of ψ.

An alternative proof can be given via some known distortion theorems of
conformal maps. Indeed, assume we want to prove the claim in the lemma
around a point P = 0. The most complicated situation is when Γ is a Jordan
arc and P is one of its endpoint, so let us just consider that case. Let δ be so
small that the disk D2δ = {z |z| ≤ 2δ} intersects only the component Γ of K
and the other endpoint of Γ lies outside D2δ. Let E1 = Γ, Ω1 its complement,
and consider a conformal map Φ1 from Ω1 onto the exterior of the unit disk that
leaves the point ∞ invariant, and let, say, Φ1(0) = 1. By [11, Corollary 2.2] this
Φ1 can be continuously extended to (the two sides of) E1, and if ϕ1 is its inverse,
then [11, Theorem 3.9] with α = 2 gives that ϕ(w)/(w− 1)2 and ϕ′(w)/(w− 1),
|w| ≥ 1, are continuous and non-vanishing functions in a neighborhood of 1.
This translates to the continuity of (Φ1(z) − 1)2/z and Φ′

1(z)(Φ1(z) − 1) in a
neighborhood of 0. Therefore, |Φ1(z) − 1| ∼

√

|z|, and then |Φ′
1(z)| ∼ 1/

√

|z|.
Since log |Φ1(z)| is the Green’s function gΩ1

of Ω1 with pole at infinity, the
behavior (2.2)–(2.3) follow (at this moment only) for gΩ1

.
The equilibrium measure µE1

is the pull-back of the normalized arc measure
on the unit circle under the mapping w = Φ1(z), hence it follows that

dµE1
(z)

ds
∼ 1/

√

|z|. (7.2)

in Γ ∩Dδ.
The just given relations will be the suitable upper bounds for gΩ and µK .

The matching lower bounds follow in a similar manner. In fact, connect the
different components of K by smooth arcs so that we obtain a connected set
E2 containing K for which E2 ∩ D2δ = E1 ∩ D2δ = Γ ∩ D2δ, and let Ω2 be
the unbounded component of the complement of E2. This Ω2 is again simply
connected, and let Φ2 be the conformal map from Ω2 onto the exterior of the
unit disk that leaves ∞ invariant and for which Φ2(0) = 1. Everything we
have just said about E1 holds also for E2 because [11, Theorem 3.9] is a local
theorem and in the neighborhood D2δ of 0 the two sets are the same. Therefore,
we obtain again the behavior (2.2)–(2.3) for gΩ2

, and on Γ ∩Dδ

dµE2
(z)

ds
∼ 1/

√

|z|. (7.3)

Finally, since Ω2 ⊂ Ω ⊂ Ω1 we have gΩ2
(z,∞) ≤ gΩ(z,∞) ≤ gΩ1

(z,∞), so
the (2.2)–(2.3) behavior for gΩ follows from the similar behavior for gΩ1

and gΩ2
.
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As for µK , it is the harmonic measure of the point ∞ in the outer domain Ω,
and since we have Ω2 ⊂ Ω ⊂ Ω1 and Γ∩Dδ is a common arc on the boundaries
of Ω, Ω1 and Ω2, we have the relation (see [11, Corollary 4.16])

µE2
Γ ∩Dδ

≤ µK
Γ ∩Dδ

≤ µE1
Γ ∩Dδ

,

so the claim in the lemma regarding the equilibrium measure follows from (7.2)
and (7.3).

References

[1] V. V. Andrievskii and H-P. Blatt, Discrepancy of Signed Measures and
Polynomial Approximation, Springer Monographs in Mathematics. Springer-
Verlag, New York, 2002.

[2] V. V. Andrievskii and H-P. Blatt, Polynomials with prescribed zeros on an
analytic curve, Acta Math. Hungar., 128(2010), 221–238.

[3] D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer
Verlag, Berlin, Heidelberg, New York, 2002.
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