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Abstract

Background: Use of capsaicin or resiniferatoxin (RTX) as analgesics is an attractive therapeutic option. RTX opens the cation
channel inflammatory pain/vanilloid receptor type 1 (TRPV1) permanently and selectively removes nociceptive neurons by
Ca2+-cytotoxicity. Paradoxically, not only nociceptors, but non-neuronal cells, including keratinocytes express full length
TRPV1 mRNA, while patient dogs and experimental animals that underwent topical treatment or anatomically targeted
molecular surgery have shown neither obvious behavioral, nor pathological side effects.

Methods: To address this paradox, we assessed the vanilloid sensitivity of the HaCaT human keratinocyte cell line and
primary keratinocytes from skin biopsies.

Results: Although both cell types express TRPV1 mRNA, neither responded to vanilloids with Ca2+-cytotoxicity. Only ectopic
overproduction of TRPV1 rendered HaCaT cells sensitive to low doses (1–50 nM) of vanilloids. The TRPV1-mediated and non-
receptor specific Ca2+-cytotoxity ([RTX].15 mM) could clearly be distinguished, thus keratinocytes were indeed resistant to
vanilloid-induced, TRPV1-mediated Ca2+-entry. Having a wider therapeutic window than capsaicin, RTX was effective in
subnanomolar range, but even micromolar concentrations could not kill human keratinocytes. Keratinocytes showed orders
of magnitudes lower TRPV1 mRNA level than sensory ganglions, the bona fide therapeutic targets in human pain
management. In addition to TRPV1, TRPV1b, a dominant negative splice variant was also noted in keratinocytes.

Conclusion: TRPV1B expression, together with low TRPV1 expression, may explain the vanilloid paradox: even genuinely
TRPV1 mRNA positive cells can be spared with therapeutic (up to micromolar) doses of RTX. This additional safety
information might be useful for planning future human clinical trials.
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Introduction

Vanilloid receptor type 1 (VR1/TRPV1) is a member of the

‘‘transient receptor potential’’ (TRP) family of ion channels (20+)

that show high levels of structural homology, particularly in the 6

transmembrane and ankyrin domain regions. TRPV1 is a Ca2+/

Na+channel that, triggered by algesic endo-, and exovanilloids,

moderate heat, inflammatory mediators and tissue acidification,

transduces pain signals in the peripheral nervous system (PNS) [1].

TRPV1 is the cognate receptor of capsaicin (CAP), resiniferatoxin

(RTX) and various other vanilloid-like analogous phytotoxins/

irritants evolved as defense molecules in modern plants against

mammalian herbivores. Contrary to mammals, avians, descen-

dents of the dinosaurs can live a normal life without capsaicin

sensitive V1 type TRP channel [2]. Indeed, avian seed dispersers

are favored, whereas, mammalian herbivores are repelled by

plants producing fruits with CAP or other toxic vanilloids [3].

TRPV1 positive nociceptors are an intermingled subset of

primary sensory afferent neurons residing in cranial and spinal

sensory ganglia [1]. From the ganglia TRPV1-immunoreactive

fibers project to the sub-epidermis and intraepidermis in normal skin

[4]. We have previously proposed that vanilloids, especially RTX,

the most potent agonist of TRPV1, can be used to remove TRPV1+

neurons via specific Ca2+-cytotoxicity (i.e. necrosis) occurring within

minutes, sparing other nociceptive neurons [5,6,7,8], and the

procedure had little or any side-effect in these mammals.

Expression of TRPV1 has recently been noted in the brain [9] and

various non-neuronal tissues, such as pneumocytes, urothelium, gut

epithelium, vascular endothelium, thymocytes, dendritic cells,

mastocytes, smooth muscle, fibroblast and keratinocytes [10–12].
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Interestingly, a number of these cell types claimed to be

immunopositive to TRPV1 later turned out to be resistant to

RTX. Vanilloid-elicited chemical knock-outs and TRPV12/2

mice do not show functional abnormalities other than loss of

TRPV1-related moderate heat- and pain sensitivity [13,14], except

for somewhat impaired motility of the bladder [15]. Likewise,

creating ‘‘chemical knock-outs’’ by either systemic CAP or RTX

injection of newborn animals eliminates TRPV1 expressing neurons

in the PNS, but beyond the neurological abnormalities noted in

TRPV12/2 mice, no other gross abnormalities have been detected

[16]. All these fact point to a lack of vanilloid-responsive TRPV1 in

non-neuronal cell, while the eventual non-neuron-specific function

of the receptor or its possible splice variants remains to be clarified.

Vanilloid sensitivity of non-neuronal cells is likewise a key question

in the case of local vanilloid treatment. Topical application of

capsaicin cream for the treatment or prurigo [17], HIV neuropathy

[18] and other forms of neuropathies [19] was found to be an

effective therapeutic intervention. A systematic review revealed that

capsain, beside being the less expensive of the available therapeutic

options, was among the most effective ones in treating post-herpetic

neuralgia [20]. In the skin, beside the C-, and Ad fibers, epidermal

keratinocytes were also found to be TRPV1 immunopositive in a

number of studies [21–23]. Our functional approach with both

systemic and local RTX treatment, however, has determined these

cells again to be resistant. In order to further address the vanilloid

resistance paradox and to better characterize the treatment of topical

application of capsaicin cream and RTX-mediated neurosurgery,

we employed different diagnostic and functional assays in HaCaT

cells [24], an immortalized human keratinocyte line. To compare

and validate results in the established HaCaT cell line, some

experiments were repeated in primary keratinocytes from skin

biopsies and primary rat DRG culture.

To complicate functionality (i.e. vanilloid inducibility) of

TRPV1 in keratinocytes, some previous reports claimed

[21,23,25] but another contradicted the inductive function of

vanilloids [26]. In addition to vanilloid resistance, we also

addressed this contradiction in this paper. Neither our short

(minutes scale) functional assays (45Ca2+-uptake, Co2+-uptake, of

fluorimetric assays), nor long term (24 hr) cell survival assays

showed keratinocytes to be responsive to TRPV1 mediated CAP/

RTX effects. Nevertheless, cell survival assays show the non-

TRPV1 mediated cell death elicited by high dose of CAP/RTX.

The different concentrations of CAP/RTX between the TRPV1

mediated and non-TRPV1 mediated cell death clearly show that

the therapeutic window is larger in the case of RTX. These results

support our view that topical use of RTX containing creams may

evolve into an effective pain relief option.

Materials and Methods

Reagents
Capsaicin (CAP), N-arachidonoyl-dopamine (NADA), agonists

of TRPV1, capsazepine, a well characterized antagonist of

TRPV1, and ionomycin (IONO), a calcium ionophore, were

dissolved in DMSO (all from Sigma-Aldrich, St. Louis, MO).

Anandamide (ANA) was obtained as an emulsion (in TocrisolveH;

Tocris Bioscience, Bristol, UK). Resiniferatoxin (RTX) (LC

Laboratories, Woburn, MA) was dissolved in ethanol at 2 mg/

ml concentration and further diluted in ddH2O. Propidium iodide

(Sigma) was dissolved in PBS.

Cells and cell culture
Normal human epidermal keratinocytes (NHEK) were derived

from human skin samples obtained from esthetic surgery

operations after obtaining written informed consent from the

patients. The spontaneously immortalized human keratinocyte cell

line HaCaT was kindly provided by Dr N. E. Fusenig, Heidelberg,

Germany [27] and cultured in MIXMEM medium supplemented

with 10% FCS (Sigma-Aldrich). The differentiation of HaCaT

cells was induced by serum starvation as described [28]. Primary

DRG cultures were prepared from E16 embryonic rats with method

described previously [5] and slightly modified. Briefly, DRGs were

dissected and then processed in Hank’s balanced salt puffer until

plated in DMEM. The DMEM contained 20 mM HEPES (to

prevent acidification and stabilize pH at 7.4), 7.5% fetal bovine

serum, 7.5% horse serum, 5 mg/ml uridine supplemented with

2 mg/ml 5-fluoro-29-deoxyuridine, and 40 ng/ml nerve growth

factor to inhibit cell division and to promote differentiation of long

neuronal processes, respectively. Cells were seeded on 25-mm glass

coverslips or on multi-well microtiter plates. Surfaces were coated

with poly-D-lysine. The cultures were selected in this medium for 2

day, at which point well differentiated neurons and nondividing cells

dominated the population. Human trigeminal ganglion neurons

were collected from human cadavers after obtaining ethical

clearance from the institutional ethical committee. The Sf9 insect

cell line, derived from pupal ovarian tissue of the fall armyworm

Spodoptera frugiperda and the HEK-293 human embryonal kidney

cell line and NIH3T3 mouse fibroblast cell line were obtained from

ATCC.

Preparation of TRPV1-YFP and TRPV1 e -expressing
HaCaT cell line

The C-terminally tagged rat TRPV1e DNA construct was

prepared in the pMTH plasmid vector as described [5]. To avoid

decrease of cell survival that occurs when TRPV1 is overex-

pressed, TRPV1e was expressed using only the basal activity of the

metallothionein (pMTH) promoter. The protein kinase C e
epitope tag allowed immunological detection. To prepare a cell

line permanently expressing TRPV1e, HaCaT cells were

transfected with the pMTH-TRPV1e plasmid using the Exgen

500 transfection reagent (Fermentas, Burlington, Canada). Trans-

fections were carried out according to the recommendations of the

manufacturer. After 24 h, cells were incubated with selection

medium, containing 0.8 mg/ml G418 (Sigma-Aldrich). The

selection medium was changed every second day. After 1 month,

G418-resistant colonies were tested with vanilloid-induced 45Ca2+

uptake assays. A colony exhibiting capsaicin-induced 45Ca2+

uptake 20-fold above the base line determined in comparison

with parental HaCaT cells was chosen for further studies.

45Ca2+ uptake assay
One day before the assay, cells were seeded in 96-well flat

bottom plates (Orange Scientific, Braine-l’Alleud, Belgium) at a

density of 20.000 cells/well. Assays were performed using a

BioMek 1000 robotized liquid handler (Beckman Instruments,

Fullerton, CA). The plates were washed three times with assay

medium (Ca2+- and Mg2+-free Hanks’ balanced salt solution

supplemented with 0.8 mM MgCl2 and with 25 mM TRIS-HCl,

pH 7.4). The agonist effect of ANA was measured at pH 5.5

because ANA is not active at pH 7.4 [29]. The dilutions of

reagents containing 45Ca2+ were prepared using the robot. The
45Ca2+-uptake assay was performed for 10 min at room temper-

ature using 1.33 mCi/ml of 45Ca2+ in 100 ml final volume/well.

To stop 45Ca2+ uptake and remove the free isotope, cells were

washed three additional times and then lysed in 80 ml/well lysis

buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% Triton X-

100, 0.1% SDS, 5 mM EDTA) for 30 min. Seventy ml aliquots of

the solubilized cell extracts were mixed with 100 ml aliquots of

Keratinocytes and TRPV1
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Optiphase Supermix scintillation cocktail (Perkin Elmer/Wallac

Inc., Boston, MA) and counted in a Wallac Microbeta Trilux 1450

liquid scintillation counter (Perkin-Elmer).

Vanilloid-induced Ca2+-cytotoxicity assay
Cells were seeded at 30 000 cells/well 24 h before adding

RTX/CAP dilutions in duplicates or quadruplicates, then the

plates were incubated for further 24 hr at 37uC. Cell survival was

determined by the colorimetric MTS assay according to the

instructions of the manufacturer (Promega, Madison, WI).

Determination of changes in [Ca2+]i

HaCaT cells and primary keratinocytes were plated onto non-

coated sterile glass coverslips at a density of ,400.000 cells/cm2 and

were investigated after 48 hours. Prior to the optical measurements,

cells were incubated in culture medium containing 5 mM fluo-4 AM

and 0.025% (w/v) Pluronic F-127 for 1 h, in dark, at room

temperature. Subsequently, cells were washed in Tyrode medium for

10 min. Optical measurements were performed using an Olympus

IX 71 inverted microscope (Olympus, Rungis, France). The

coverslips were placed into a slotted bath chamber (37uC) at the

microscope stage and cells were superfused with Tyrode alone for at

least 10 min (control period). CAP (2 mM) was administered in the

superfusion buffer for 10 min. At the end of the assay, in situ

calibration was performed with the addition of 50 mM ionomycin.

Changes in the intracellular free calcium [Ca2+]i were determined by

a single channel photon counting system. Cells (,30/assay) in the

75*75 mm frame were illuminated at 485 nm and the emitted light

was recorded at 535 nm. Raw data were recorded with HaemoSys

(Experimetria, Hungary) and analyzed. The results were corrected

with the decrease of fluorescence intensity in the case of untreated

cells caused by bleaching and, probably, dye efflux due to the activity

of efflux pumps.

Cobalt histochemistry
TRPV1e/HACaT, HaCaT and NHEK cells that had attached

to the coverslips were washed in buffer A (in mM: NaCl, 57.5;

KCl, 5; MgCl2, 2; HEPES, 10; glucose, 12; sucrose, 139; pH 7.4)

for 2 min. Cells were then incubated at 37uC in cobalt-uptake

solution (buffer A+5 mM CoCl2) containing 50 mM RTX for

10 min. Following a brief wash in buffer A, the water-soluble

cobalt taken up by the cells was precipitated by 0.12% ammonium

polysulphide (Sigma-Aldrich) put into buffer A, which resulted in

the formation of dark, water-insoluble CoS in TRPV1 positive

cells. Cells were fixed in 4% formaldehyde and mounted on glass

slides using Kaiser’s Glycerol-Gelatine (Merck, Darmstadt, FRG).

Cells were examined by a Nikon light microscope (Melville, NY).

Synchronization of HaCaT keratinocytes, and detection of
TRPV1 transcript level

Briefly, HaCaT keratinocytes were synchronized by contact

inhibition and serum starvation as it was described in details in a

previous publication [30]. The culture was released from the

quiescent state by passaging (0 h) and grown for 168 h. The

various states of HaCaT keratinocyte proliferation and differen-

tiation were monitored by propidium-iodide staining (data not

shown). Samples for mRNA expression studies were taken at time

points 0, 12, 24, 36, 48, 72, 96, 168 h, and total RNA was purified

by TRIzol reagent following the instructions of the manufacturer

(Invitrogen, Carlsbad, CA, ). cDNA was generated with oligo(dT)

and random hexamer primers from 1 mg total RNA, using the

iScriptTM cDNA synthesis kit of Bio-Rad Laboratories (Hercules,

CA, USA) in a final volume of 20 ml. Real-time RT-PCR

experiments were performed to quantify the abundance of TRPV1

and TRPV1b splice variants. Primers and probe specific for human

TRPV1 were: 59-GTGCACTCCTCGCTGTACGA-39 and 59-

CACCTCCAGCACCGAGTTCT-39 forward and reverse primers

respectively, and the TaqMan probe used was 59-FAM-TGTC-

CTGCATCGACACCTGCGAG-TAMRA-39. Primers and probe

specific for human TRPV1b were: 59-GAATGACGCCGCT-

GGCT-39 and 59-CAGCGGCRCCACCAAGAG-39 forward and

reverse primers respectively, and the TaqMan probe used was 5-

9FAM-GGGAAGATCGGGAATCGCCACGA-TAMRA-39 [31].

Real-time RT-PCR reactions were performed using iQ Supermix

and an iCycler (Bio-Rad Laboratories).

Data were compared using repeated measures (ANOVA)

followed by Dunnett’s post hoc test test to determine statistical

differences after multiple comparisons (STATISTICA). Probabil-

ity values of less than 0.05 tests were considered significant, and all

data was compared to day 0 values.

Induction of differentiation of normal human
keratinocytes by Ca2+-treatment

Normal human epidermal keratinocytes were isolated and

cultured as described previously [32]. Briefly, human epidermal

cells were obtained from healthy individuals undergoing plastic

surgery after informed consent according to Institutional Review

Board protocol. After removal of the subcutaneous tissue and

much of the reticular dermis, the tissue samples were cut into small

strips and incubated in DispaseH solution (grade II; Roche

Diagnostics, Mannheim, Germany) overnight at 4uC. On the

following day, the epidermis was peeled off the dermis, and was

incubated in 0.25% trypsin solution (Sigma-Aldrich) at 37uC for

30 min and aspirated using a Pasteur pipette to aid cell

dissociation. The viability of the cells was always .95% as

determined by Trypan blue exclusion. A suspension of primary

epidermal cells was prepared in keratinocyte serum-free medium

(Keratinocyte SFM, Invitrogen; supplemented with antibiotic/

antimycotic solution, Sigma-Aldrich) at a density of 46104 cells/

cm2 in 75 cm2 tissue culture flasks (Corning, Corning, NY).

Human epidermal keratinocytes were cultured in Keratinocyte-

SFM in a humidified atmosphere containing 5% CO2. The

medium was changed every 2 days.

In third passage, the cells were grown up to 80–90% confluence

in 25 cm2 tissue culture flasks (Corning). At this point (day 0) they

were fed with calcium-free keratinocyte SFM (GIBCO/BRL and

Invitrogen), supplemented or not with 1.7 mM CaCl2. Elevation a

of the calcium level in culture has been shown to induce

differentiation of human keratinocytes [33]. The culturing media

was changed on day 1, 2, 4, 6, 8, 10, when samples were also taken

for mRNA expression experiments. RNA was isolated, cDNA was

generated, and real-time RT-PCR for the detection of TRPV1

splice variants were performed as described for HaCaT keratino-

cytes. The differentiation process was monitored by following the

involucrin mRNA expression of the cells using real-time RT-PCR

(data not shown). Involucrin, a major protein of the cornified

envelop was defined as marker for keratinocyte terminal

differentiation [34].

Protein Extraction and Western Blot
Human trigeminal ganglions were excised from cadavers after

obtaining the proper ethical clearance from the institutional

ethical board of the University of Szeged. Tissue samples were

homogenized in modified RIPA buffer (50 mM Tris-HCl,

140 mM NaCl, 5 mM EDTA, 1% TritonX-100, Protease

Inhibitor Coctail - Roche) and incubated on ice for 15 minutes

to let lysis proceed. All samples were precleared by centrifugation

Keratinocytes and TRPV1
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(159 12000 g at 4uC) before determining protein concentrations

using the BCA method (Sigma). PAGE was done as described in the

Protein Electrophoresis technical manual of Amersham Biosciences.

Protein samples were separated on 8% polyacrylamide gels, then

transferred to Millipore Immobilon PVDF membrane using Tris-

Glycine transfer buffer (0.192 M Glycine, 25 mM Tris, 20%

MetOH). Transfer was followed by blocking of the membrane (309

at RT in 5% dry milk TBS-T), incubation with primary antibody

(overnight at 4uC, in 0.5% BSA TBS-T), secondary antibody (2 h at

RT, in 1% dry milk TBS-T), results were revealed using the ECL

method (SuperSignal West Chemiluminescent Substrate - Pierce,

Hyperfilm ECL - Amersham). TBS: 50 mM Tris, 140 mM NaCl,

pH 7.6; TBS-T: TBS with 0.5% Tween-20. Antibodies used and

their dilutions: TRPV1 - 1:1000 (ABR Affinity Bioreagents #PA1-

748), ß-actin - 1:1000 (Sigma #A5060), and anti-rabbit HRP -

1:10000 (Sigma #A6154, respectively).

Flow cytofluorometry
For assessing the dependence of vanilloid cytotoxicity on the

expression level of the TRPV1 receptor, 3T3 fibroblasts stably

expressing variable levels of an YFP-tagged TRPV1 construct

were incubated with 0.1, 1 or 10 mM capsaicin for 309 then

propidium iodide was added at 3 mM end concentration and

capsaicin-induced necrosis was detected with flow cytofuorometry.

Results

When exposed to RTX/CAP, cells expressing functional

TRPV1 receptor undergo a rapid elevation of [Ca2+]i, leading

to membrane disruption and exceptionally rapid necrosis

occurring within minutes. Taken into account the very rapid

cytotoxic effect, we have chosen a 24 h colorimetric cell survival

assays for assessing the presence of a classic TRPV1 receptor on

RTX-treated primary keratinocytes, normal and differentiated

HaCaT cells, as well as on HaCaT cells transformed with TRPV1.

Only the TRPV1-transfected HaCaT cells were sensitive to

TRPV1-dependent cytotoxicity induced by vanilloids applied at

pharmacological concentrations, corroborating our hypothesis on

the lack of functional TRPV1 receptor. Normal human epidermal

keratinocytes were sensitive only to very high concentrations of

RTX. This concentration (16 mM), however, is very close to that

(50 mM) established in a study describing a non-TRPV1 mediated

cytotoxic action of vanilloids [35] (Fig. 1A). Each keratinocyte type

was sensitive to the highest concentration of capsaicin

(300 mM)(Fig. 1B). This capsaicin concentration, 300 mM, was

equally toxic to avian cells expressing a well-described capsaicin-

insensitive TRPV1 [2], and even to insect cells (the sf9 cell line),

obviously negative for a mammalian type TRPV1 (Fig. 1C.).

Using flow cytofluorometry we assessed how the cytotoxic effect

of TRPV1 agonists depends on the TRPV1 expression level and

concentrations of agonists. Capsaicin applied at pharmacological

concentrations only killed HaCaT cells expressing the TRPV1-

YFP fusion protein above a certain threshold level, while low

TRPV1 positive cells were resistant to the applied capsaicin

concentrations, 0.1–10 mM (Fig. 2).

We detected the presence of both TRPV1 and the dominant

negative TRPV1b transcripts by real-time RT-PCR using primers

and TaqMan probes specific either to TRPV1 or TRPV1b

transcripts. The abundance of TRPV1 compared to TRPV1b was

obvious as it was detected in other tissues [31]. The Ca2+ induced

differentiation of cultured keratinocytes was accompanied with

slight changes at the level of both transcripts (Fig 3A) with

differences among various donors, depending on the level of

differentiation in the adjacent cultures that was monitored by

involucrin expression (data not shown). While only slight changes

were detected in the transcript level of TRPV1 after HaCaT cells

exited the quiescent state and serum induced cell division occurred

(Fig 3B), the level of TRPV1b transcript increased significantly

and remained elevated throughout the experiment. The point-by-

point statistical comparison of TRPV1b transcript levels revealed

that the expression was significantly elevated at all time points

compared to day 0. The gross differences of deltaCT values of

TRPV1 and TRPV1b both in keratinocytes and HaCaT cells

suggest thirty-, and one thousand-fold differences in transcript

levels, respectively. The amount of mRNA was compared in

samples from cultured keratinocytes, human HaCaT cells and

human trigeminal ganglion. The level of the TRPV1 transcript in

keratinocytes was orders of magnitudes lower than that in

trigeminal ganglion. The level of TRPV1b transcript was

Figure 1. Keratinocytes were not killed by low dose vanilloids.
Primary human keratinocytes (NHEK), proliferating and differentiating
HaCaT keratinocytes, TRPV1-expressing HaCaT keratinocytes, HEK293
human embryonal cells, NIH3T3 mouse fibroblasts and sf9 insect cells
were grown for 24 hr on 96-well plates in the presence of indicated
concentrations of RTX (A) and CAP (B, C). Cell survival was evaluated by
the MTS bioassay. Only HaCaT cells stably transformed with TRPV1
transgene were sensitive to cytotoxicity triggered by low dose
vanilloids, while normal keratinocytes were only killed by extremely
high vanilloid doses, likewise toxic to the negative control insect cells,
HEK293 or NIH3T3 cells. Data from a representative experiment
repeated three times with similar results is shown. Values are shown
as means6SD. (*: p,0.05, t-test).
doi:10.1371/journal.pone.0003419.g001
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Figure 2. Transformed cells expressing low levels of TRPV1 were resistant to TRPV1-mediated capsaicin toxicity. NIH3T3 mouse
fibroblasts expressing variable levels of TRPV1-YFP fusion protein were incubated in the absence of capsaicin (A) or with different capsaicin
concentrations, 0.1 mM (B), 1 mM (C), 10 mM (D) for 309, then propidium iodide was added and the flow-cytofluorometric analysis was performed. The
M1 and M2 regions contain the intact (propidium iodide negative) TRPV1-YFP high and low positive cells, respectively. Only TRPV1 high positive cells
were sensitive to dose dependent, TRPV1 mediated killing by capsaicin (E).
doi:10.1371/journal.pone.0003419.g002
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approximately the same both in human trigeminal ganglion and in

HaCaT (Fig. 3C). Unlike its mRNA, TRPV1 protein was

detectable only in samples extracted from human trigeminal

ganglion (TG). (Fig. 4).

To further test vanilloid sensitivity, we determined the endo- and

exovanilloids-induced 45Ca2+-uptake of keratinocytes and rat DRG

neurons in a robot-based bioassay. Neither primary keratinocytes nor

HaCaT cells showed 45Ca2+ influx in response to vanilloids. On the

other hand, a HaCaT cell line established to express TRPV1

ectopically and primary DRG culture readily showed 45Ca2+ influx

upon challenge with these agonists. The used concentrations of

agonists (CAP 2 mM, RTX 0.5 mM, N-arachidonoyl-dopamine

50 mM, Anandamide 50 mM at pH 5.5) were higher than the half-

effective concentrations for both rat and human TRPV1 receptor

determined by us or found in literature [29,36,37]. The 45Ca2+-influx

was completely abrogated by capsazepine (IC50<10 mM at 2 mM

CAP), a bona fide channel blocker of TRPV1 (Fig 5). Differentiated

HaCaT cells were also found to lack capsaicin-induced or RTX-

induced Ca2+-uptake (data not shown). Our genetic construct

contains a Zn2+-inducible promoter, therefore, TRPV1 could be

expressed at different levels. Higher levels positively correlated only

with increased Vmax, and not with EC50 of the agonists (EC50

2.6 nM, RTX and 70 nM, CAP) in Ca2+-influx assays.

Fluorimetric Ca2+ imaging assays were carried out with

indicator dye-loaded cells that can reflect subtle changes in

[Ca2+]i, with higher sensitivity than either isotope influx

determination in high number of cells or agonist-induced

cytotoxicity quantified by photometric methods. Both primary

human keratinocytes and HaCaT cells were tested after preload-

ing with Fluo4 in an imaging setup. While TRPV1 transfected

cells exposed to CAP showed readily detectable fluorescence

changes, neither normal HaCaT cells, nor primary keratinocytes

responded to this algesic vanilloid substance, whereas ionomycin

treatment of cells showed that the test system is functional and

Ca2+ signal can be detected (Fig. 6).

Previous to discovery of TRPV1 capsaicin-induced Co2+-uptake

was routinely used to identify inflammatory pain nociceptive

neurons by histochemistry [10,38–41]. In our study we found

positive staining of TRPV1e/HaCaT and rat DRG primary

culture cells treated with RTX. Non-transfected HaCaT and

NHEK cells didn’t show any TRPV1 positive staining (Fig. 7).

Discussion

Although its mechanism of action is debated, capsaicin is used

as a topical analgesic for various cutaneous disorders [42,43]. It is

thought that prolonged repetitive applications of capsaicin depletes

substance P (SP) and other neuropeptides existing in the small-

diameter afferent fibers [44], and then desensitizes TRPV1

receptor/cation channel [45]. Although transient, functional

desensitization induced by low dose vanilloids does exist [46,47],

we think that the pain relieving effect of vanilloids, i.e., extremely

high doses of capsaicin or lower doses of the more potent vanilloid

RTX are not based on desensitization based on signaling events,

Figure 3. Keratinocytes express low levels of the full length TRPV1 transcript together with transcript of the TRPV1b dominant
negative splice form. Detection of TRPV1 transcript in differentiating human cultured keratinocytes (NHEK) (A) and HaCaT cells (B) by real-time RT-
PCR. TRPV1 threshold cycle numbers normalized to the internal control 18S rRNA (delta CT) are plotted. The amount of mRNAs is inversely
proportional to the plotted threshold cycle numbers. Data are presented as means of three independent experiments. (*: p,0.05, Dunnet test). The
amount of mRNA was also compared in samples from cultured keratinocytes, human HaCaT cells and human trigeminal ganglion (C). The schematic
model of TRPV1 and TRPV1b is shown in the corresponing graphs.
doi:10.1371/journal.pone.0003419.g003
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generally transient and reversible. One of us earlier proved that

vanilloids may specifically ablate primary afferent nociceptors [6].

In accordance with this, systemic RTX-treated animals remained

insensitive to vanilloids in their whole life. In contrast, a lower dose

of RTX injected in the paw causes only a reversible inactivation (3

weeks) of nerve endings removing only the vanilloid sensitive axons

remote to the neuronal cell body [6], allowing for of axon

regeneration. Importanly, even when TRPV1 positive neurones

were deleted, no non-neuronal side effects were detected.

Validation of vanilloid resistance of non-neuronal cell types would

provide important safety data, expanding the currently claimed

potential of the molecular neurosurgery technology.

Here we showed that RTX did not harm keratinocytes,

suggesting that capsaicin can be replaced in the dermatological

practice as soon as this agent will be registered as drug. Due to

better therapeutic window RTX can be applied topically to nerve

endings in the skin to alleviate neuropathic pain and severe

inflammations.

We validated here with different experimental means the

previous hypothesis that TRPV1 mRNA expressed both in

proliferating and in differentiated keratinocytes as well as in

HaCaT cells does not confer agonist-mediated increase in [Ca2+]i

and subsequent cell death, analogous to that observed during

TRPV1+ sensory neuron depletion. These results draw attention

Figure 4. The TRPV1 protein level in the keratinocytes was
under detection limit in Western blotting assay. Proteins were
extracted from human trigeminal ganglion (TG), primary human
keratinocytes (NEHK) and the HaCaT cell lines. With a commercially
available polyclonal antibody only the TG expressed 94 kDa TRPV1 can
be detected (A). The equal loading of protein extracts was validated by
b-actin (,50 kDa), a common, ubiquitously expressed cytoskeletal
protein (B).
doi:10.1371/journal.pone.0003419.g004

Figure 5. Neither endo-, nor exo-vanilloids caused 45Ca2+-influx in keratinocytes. Primary human keratinocytes (NHEK), primary culture of
DRG neurons, HaCaT keratinocytes and TRPV1 transformed HaCat keratinocytes were seeded in 96-well plates, then incubated for 10-min with
different TRPV1 agonists (capsaicin, CAP; resiniferatoxin, RTX; N-arachidonoyl-dopamine, NADA; Anandamide, ANA) and combinations of agonists and
antagonists (CAP or RTX+capsazepine, capZ) in the presence of 45Ca2+. Cell-bound radioactivity was measured with liquid scintillation. The bars
represent mean scintillation counts per minute (c.p.m.)+SD of eight parallel samples from a representative experiment repeated three times with
similar results.
doi:10.1371/journal.pone.0003419.g005

Figure 6. Fluorometric Ca2+ imaging showed no capsaicin-
induced Ca-signal in keratinocytes. Primary human keratinocytes
and HaCaT cells were loaded with Fluo4-AM Ca2+-indicator then imaged
in an appropriately equipped fluorescence microscope setup. The bars
represent the increase in fluorescence upon capsaicin (2 mM) treatment
as a % of the fluorescence increase after ionomycin treatment (50 mM).
While TRPV1 transformed cells exposed to CAP showed readily
detectable fluorescence changes, neither untransformed HaCaT cells,
nor primary keratinocytes responded to this algesic vanilloid substance.
Values are shown as means6SD for 6 measurement. The significance of
differences compared with TRPV1e/HaCaT was determined with the
paired t-test, *P,0.05.
doi:10.1371/journal.pone.0003419.g006
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again to a paradox that have recently been generated by a number

of conflicting observations from other laboratories working with

various diagnostic means to characterize molecular phenotype,

such as screens of TRPV1+ in various cells and tissue types.

Vanilloids in high concentrations, due to distant homology to

flavonoids, important co-factors in various red/ox systems, induce

apoptosis in number of different cell types by causing either

mitochondrial depolarization [35], or inhibition of electron

transport in the plasma membrane [48]. Thus, high doses of

vanilloids (i.e. 20–100 mM) do not require expression of TRPV1

for the cytotoxic effect. In fact, we could elicit non-TRPV1

mediated cell loss with [RTX].16 mM and [CAP].200 mM,

respectively, to demonstrate this phenomenon. Under the noted

threshold values, however, these vanilloids were harmless to cells

lacking TRPV1 expression. The dose of RTX causing non-

TRPV1-mediated cytotoxicity was ,104 fold higher than that

(1 nM) inducing TRPV1-dependent Ca2+-cytotoxicity in bona fide

DRG sensory neurons [5] and ,108 fold higher than the dose

(0.1 pM) necessary to induce Ca2+-cytotoxicity in a cell line

ectopically overproducing TRPV1. Our results obtained in insect

cells, an obviously TRPV1 negative control, also demonstrated the

lack of receptor specificity of high-dose vanilloids. The dose of

CAP concentrations causing non TRPV1 mediated cytotoxicity

was ,105 fold higher than the dose (1 nM) necessary to induce

TRPV1-dependent cytotoxicity in TRPV1 transfected cell lines.

All together, this means that RTX has a broader therapeutic

window than CAP, making it a more desirable candidate for

human clinical application.

We showed evidences that agonist-dependent, receptor-medi-

ated cytotoxic effect requires a threshold-level expression of

TRPV1. Prolonged exposure to relatively high concentration of

RTX (i.e. low micromolar) is definitely tolerated by keratinocytes

in cell culture. Levels of TRPV1 transcript in keratinocytes,

however, were orders of magnitudes lower than in human

trigeminal ganglion neurons. Conceivably, TRPV1 protein

expression below the threshold required for vanilloid sensitivity

may explain unresponsiveness to vanilloids.

However, other factors may also contribute to vanilloid

insensitivity. TRPV1 is not the only member of the TRP family

of ion channels. Functional TRPV1 is most likely a homotetramer

[49], although the existence of hetero-multimers of TRPV1 with

other members of the TRPV subfamily is possible. TRPV1 is

reportedly co-expressed with other isotypes with variable stochio-

metry in keratinocytes and other vanilloid resistant cells. For

example, TRPV2 co-expression was reported in rat DRG and

brain [50], and TRPV4 in a subset of nociceptive neurons where it

sensitizes effects of prostaglandin PGE2 in inflammatory thermal

hyperalgesia [51]. These isotypes obviously do not have dominant

negative effect in C-type sensory neurons localized in ganglia of

the peripheral nervous system or at least not at that stochiometry

and levels they are expressed. Occurrence of TRPV3 and TRPV4

has been reported in keratinocytes; TRPV4 in suprabasal

keratinocytes, whereas TRPV3 selectively in the basal layers of

the epidermis [52,53]. The presence of these receptors might have

interfered with heat sensitivity assays assessing TRPV1 function-

ality in earlier studies. Their different chemical sensitivity makes

Figure 7. Cobalt histochemistry did not show functional TRPV1 in keratinocytes. A: TRPV1e/HaCaT and rat DRG culture (insert) treated with
50 mM RTX in the presence of cobalt cations shows dark CoS precipitate. B: TRPV1e/HaCaT without RTX C–D: HaCaT and NHEK treated with 50 mM
RTX did not produce the characteristic precipitate formed in the presence of intracellular cobalt cations. Bar represents 0.2 mm.
doi:10.1371/journal.pone.0003419.g007
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these TRP receptors easily distinguishable from TRPV1. Impor-

tantly, due to their different ligand specificity, they might not play

a role in the response to transdermal vanilloids. On the other

hand, TRPV1 might be capable of forming hetero-oligomeric

complexes either with TRPV3 or TRPV4, as demonstrated in

ectopic expression systems [54], yet functionality of these

receptor/channels not entirely known. Co-localization of TRPV1

and TRPV1b, its splice variant in the same cell confers a dominant

negative effect and receptor inactivation in the nervous system as

well as in other tissues [31] and this rule may apply to TRPV1+
keratinocytes, in which we determined unequivocal presence of

TRPV1b. Alternatively, resistance to vanilloids can appear due to

lack of cyclin dependent kinase 5 signal transduction pathway, a

protein kinase upstream to TRPV1 that might also necessary for

channel opening [55].

Last but not least, the discrepancy between our results and

observation of others’ could be caused by false positive signals

produced by antibodies that not entirely specific to TRPV1 and

can cross-react with other TRP isotypes. Commercially, up till

now, only polyclonal antibodies were available that prepared

against peptide antigens. Linear epitopes frequently results in

antibodies of suboptimal specificity and selectivity and not even

ideal for semi-quantitative determination of the TRPV1 protein.

Dendritic cells seem to be an example of such false positive

determination of TRPV1 [56,57]. Likewise, in a number of other

papers, keratinocytes show negative TRPV1 immuno-staining,

such as immuno-positive nerve endings surrounded by apparently

unstained keratinocytes, suggesting that their anti-peptide poly-

clonal TRPV1 antibody does not recognize the protein (or its

tissue-specific splice form) in non-neuronal cells [4,58,59].

To fully characterize functionality, we have to take into

consideration that there are two pools of TRPV1 in a cell: one

in the plasma membrane (TRPV1PM) and the other in the

endoplasmic reticulum (TRPV1ER) [5]. 45Ca2+- or Co2+-uptake

assays can reveal the function of TRPV1PM alone, while,

flourometric Ca2+-imaging depicts the combinations of the

TRPV1PM and TRPV1ER receptor populations. In keratinocytes

we neither have found vanilloid-induced TRPV1 mediated

response in our short term 45Ca2+- or Co2+-uptake assays nor

any positive evidence of intracellular free Ca2+ mobilization.

Previous studies with comparable means demonstrated that a

minor fraction of keratinocytes may exhibit a CAP-induced

fluorometric Ca2+ influx signal similar to that demonstrated by one

of us in TRPV1+ DRG neurons. However, majority of the

population showed a rather spontaneous Ca2+ signal, again a

typical biomarker of false positive membrane activity, neutral to

either presence or absence of a vanilloid agonist [21,23].

In whole-cell voltage clamp functional bioassays carried out in

mouse keratinocytes CAP has evoked little if any Ca2+-response,

even concentration raised up to 10 mM (i.e. CAP’s ED50 = 0.3 mM

in TRPV1+ DRG neurons) [26] Nevertheless, the CAP-evoked

intracellular Ca2+ increase is not a specific marker for TRPV1

function, especially if applied in high doses. TRPV1 negative cell

lines, such as activated T-lymphocytes, and Jurkat cells show readily

intracellular Ca2+-elevation upon treatment with 200 mM CAP [48],

obviously, a mechanism distinct of vanilloid-induced receptor

mediated cation uptake. Endogenous activation of TRPV1 has

been suggested to lead to Ca2+-dependent production of proin-

flammatory mediators such as prostaglandin E2 and interleukin-8

[21]. Our experiments in keratinocytes suggest that the increase of

pro-inflammatory mediators is attributable to a TRPV-independent,

yet not fully characterized cell necrotic pathway.

Our validated, high sensitivity and specificity bioassays proved

keratinocytes completely vanilloid resistant. Importantly, the

functional TRPV1 in keratinocytes could have made them a

problematic target seemingly able to generate unwanted side effects

and prevent future use of either transdermal capsaicin or RTX.

Based on our data here, together with the lack of effect in skin

determined in knockout or RTX-treated mice in vivo [13,14]

keratinocytes can be safely spared from vanilloid-induced, recep-

tor-mediated cytotoxicity and cell death, even when the most potent

agonist RTX will be employed in molecular neurosurgery as

proposed previous to these studies. The skin side effects of

transdermal capsaicin observed in clinical practice thus seem to be

entirely caused by the affected sensory nerves, especially to to the

CGRP and substance P liberated in an entirely TRPV1- and sensory

nerve dependent manner, not separable from the therapeutic effect.

Two approaches might be envisageable for alleviating these side

effects – one is substitution of capsaicin with more potent vanilloids

that would rapidly kill the sensory nerves, thus paradoxically

decreasing the pain sensation and local inflammation. The second is

concomitant use of local anesthetic agents (lidocain) acting

downstream of the TRPV1 receptor. [18]

It is important to note that, in spite of the assumed presence of

TRPV1 receptor in the brain [9,60,61], capsaicin (100 nM–

100 mM) and RTX (100 nM) failed to alter the basal intracellular

Ca2+-levels in the rat hippocampal nerve terminals [62]. Likewise,

the presence of TRPV1 transcript as shown here and reported in

cases of other cell types not necessarily means sensitivity to potent

vanilloid phytotoxins. Immunoreactivities that have recently

reported in number of diverse cell types and identified in various

central nervous system neurons can be misleading and are only

just another false positive biomarker of TRPV1. Since our

Western-blotting using protein extract from keratinocytes was

negative to TRPV1, we can not exclude the possibility that

keratinocytes do not express TRPV1 at a meaningful protein level

at all. Therefore, study of functionality in addition to diagnostics is

needed for better understanding of the in vivo status of TRPV1. All

together these results may explain the relatively modest neural/

non-neuronal side effects of the RTX-mediated molecular

neurosurgery that systemically can create ‘‘chemical knockout’’

with lack of major behavioral deviances. Our observations here

are also corroborated by the lack of obvious phenotype in

TRPV12/2 mice.
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