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Abstract: There is a growing interest in implantable drug delivery systems (DDS) in pharmaceutical
science. The aim of the present study is to investigate whether it is possible to customize drug
release from implantable DDSs through drug–carrier interactions. Therefore, a series of chemically
similar active ingredients (APIs) was mixed with different matrix-forming materials and was then
compressed directly. Compression and dissolution interactions were examined by FT-IR spectroscopy.
Regarding the effect of the interactions on drug release kinetics, a custom-made dissolution device
designed for implantable systems was used. The data obtained were used to construct models
based on artificial neural networks (ANNs) to predict drug dissolution. FT-IR studies confirmed the
presence of H-bond-based solid-state interactions that intensified during dissolution. These results
confirmed our hypothesis that interactions could significantly affect both the release rate and the
amount of the released drug. The efficiencies of the kinetic parameter-based and point-to-point ANN
models were also compared, where the results showed that the point-to-point models better handled
predictive inaccuracies and provided better overall predictive efficiency.

Keywords: drug–excipient interaction; polymers; nondegradable; matrix tablet; controlled release;
design of experiments; artificial neural networks

1. Introduction

Matrix tablets belong to the most popular systems for controlled delivery of drugs.
Drug liberation from porous matrices is a complex process, influenced by numerous param-
eters such as solubility, matrix porosity [1], swelling [2] and gel formation [3] of polymers.
The gel properties are influenced by particle size [1,4] or by the molecular weight of poly-
mers [5] and they generally determine the drug transport within the matrix, which may
be diffusion-driven [2], relaxation-driven [6], external mass-transport-driven or anoma-
lous [7]. Especially, the anomalous transport mechanism presupposes the presence of
interparticle interactions within the system [5,7]. Novel achievements require the reconsid-
eration of traditional thinking about inert excipients, and they turn the investigation and
utilization of drug–excipient interactions into a focus of the development of tailored drug
delivery systems.

Most of the polymers used as pharmaceutical excipients can form supramolecular
conjugates [8], and the resulting H-bond-based, ionic drug excipient [9], or excipient–
excipient [10] interactions may provide an ideal way to customize drug release. The
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formation of supramolecular interactions is most likely in dissolution or melt-based pro-
duction processes, but de Robertis et al. described the occurrence of similar interactions
in directly compressed systems [11]. In our previous study, we examined the release of
risedronate sodium from biodegradable and non-degradable implants. Although the slow-
est release rate has been shown in low porosity non-degradable systems, unexpectedly
prolonged, sustained release was observed in the degradable systems even after complete
matrix disintegration. This was due to a strong H-bond-based interaction between rise-
dronate sodium and chitosan, suggesting that the role and presence of intermolecular
interactions in the drug release rate of directly compressed matrices could be significantly
underestimated [12].

Therefore, the primary goal of the present study is to confirm the hypothesis that drug–
excipient interactions can be used to further prolong drug release from non-degradable
matrices, while the strength of the interactions can be predicted based on the acid strength
of the drugs.

To confirm the primary hypothesis, the original PVC matrix was combined with
Eudragit of different grades as a model excipient, which allowed for the development of
drug-binder interactions, which are mentioned as a favourable choice to produce controlled-
release DDSs. Weak base Eudragit E100 and acidic Eudragit L100-55 are commonly used
for oral administration, but recent reports [13–19] have investigated their applicability in
parenteral drug administration. Following intramuscular administration of Eudragit-based
nanoparticles, safety tests were performed [18] to examine liver and skeletal muscle damage
during the 6-week experiment. Tissue samples from the liver were similar to the control
group; skeletal muscle showed inflammation in the first week, which decreased by the
second week; at the end of the experiment, it became similar to the control group as well.
In the case of intravenous microparticulate administration [13], only local inflammation
was observed. Overall, the use of these materials as implantable excipients is considerable,
especially because quaternerised Eudragit can facilitate paracellular API permeation at
pH 7.4, which highlights the benefits of Eudragit copolymers.

A quality by design based approach was used to investigate the effect of critical
material attributes on the mechanical properties of the matrices, the strength of the inter-
action, and the drug release rate. Design of experiments (DoE) was used to reveal basic
relationships, while artificial neural networks (ANN) were used for the prediction of drug
dissolution of the designed matrices. ANNs are commonly used types of machine learn-
ing/deep learning methods which mimic the signal transduction and learning mechanism
of the human brain. ANNs can self-accommodate to the learning environment and are
therefore widely applied for modelling of difficult nonlinear problems in a wide range of
applications, including pharmaceutics. Previous studies [20,21] have demonstrated that
ANNs are excellent tools for modelling the mechanical properties of tablets, whereas Galata
et al. had successfully used ANNs to model drug release from hydrophilic, sustained-
release matrix systems [22] by point-to-point modelling of drug release. Nevertheless,
the question of how the developed network may be used for the modelling of general
problems remained open. A secondary objective of the present study was to reveal if the
tested material attributes will enable a generalized prediction of drug dissolution, and
furthermore, another objective was to compare the efficiency of point-to-point modelling
with another method where kinetic parameters (shape parameters of the dissolution curve)
served as output variables.

2. Materials and Methods
2.1. Materials

Aceclofenac (ACE) was a kind gift from ExtractumPharma Ltd. (Budapest, Hungary),
while diclofenac sodium (DIS), paracetamol (PAR) and polyvinyl chloride (polymerization
degree: 60–150) (PVC) were kindly gifted by Gedeon Richter Plc. (Budapest, Hungary). A
powder form of Eudragit E100, Eudragit EPO (EE) and Eudragit L100-55 (EL) was supplied
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by Evonik Industries AG (Essen, Germany). The main physicochemical properties of raw
materials are summarized in Table 1.

Table 1. Physicochemical properties of raw materials.

Paracetamol Diclofenac Sodium Aceclofenac EUDR-E EUDR-L PVC

Solubility (pH
7.4)

18–21
mg/mL

5.15
mg/mL

4.0–12.8
mg/mL

<10 µg/mL
(>pH 5)

<0.03 mg/mL
(>pH 6) <10 µg/mL

logP 0.34 3.10 4.16 - - -

pKa 9.46 4.00 3.44 10 6 -

H+ acceptor 2 2 4 3/n* 3/n * -

H+ donor 2 2 2 0/n* 1/n * -

Rotable bonds 3 3 5 - - -

* x/n: represents the number of H+ acceptor/donor groups per monomer.

2.2. Methods
2.2.1. Tablet Preparation

Tablets were prepared according to a mixed 2- and 3-level factorial design, where the
acidic or basic nature of excipients (e.g., the use of Eudragit E or L) was studied as 2-level,
while the acidic strength of API, the weight ratio of excipients and the applied compression
force were studied as 3-level factors. The detailed experimental plan is shown in Table 2.

Table 2. DoE plan.

Compression Pressure
(MPa) (x1)

Eudragit/PVC Ratio
(%/%) (x2) API (x3) Eudragit Type (x4)

Level Value Level Value Level Value Level Value

−1 75

−1 25/75

−1 Paracetamol
−1 Eudragit E

+1 Eudragit L

0 Diclofenac Sodium
−1 Eudragit E

+1 Eudragit L

+1 Aceclofenac
−1 Eudragit E

+1 Eudragit L

0 50/50

−1 Paracetamol
−1 Eudragit E

+1 Eudragit L

0 Diclofenac Sodium
−1 Eudragit E

+1 Eudragit L

+1 Aceclofenac
−1 Eudragit E

+1 Eudragit L

+1 75/25

−1 Paracetamol
−1 Eudragit E

+1 Eudragit L

0 Diclofenac Sodium
−1 Eudragit E

+1 Eudragit L

+1 Aceclofenac
−1 Eudragit E

+1 Eudragit L
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Table 2. Cont.

Compression Pressure
(MPa) (x1)

Eudragit/PVC Ratio
(%/%) (x2) API (x3) Eudragit Type (x4)

Level Value Level Value Level Value Level Value

0 225

−1 25/75

−1 Paracetamol
−1 Eudragit E

+1 Eudragit L

0 Diclofenac Sodium
−1 Eudragit E

+1 Eudragit L

+1 Aceclofenac
−1 Eudragit E

+1 Eudragit L

0 50/50

−1 Paracetamol
−1 Eudragit E

+1 Eudragit L

0 Diclofenac Sodium
−1 Eudragit E

+1 Eudragit L

+1 Aceclofenac
−1 Eudragit E

+1 Eudragit L

+1 75/25

−1 Paracetamol
−1 Eudragit E

+1 Eudragit L

0 Diclofenac Sodium
−1 Eudragit E

+1 Eudragit L

+1 Aceclofenac
−1 Eudragit E

+1 Eudragit L

+1 375

−1 25/75

−1 Paracetamol
−1 Eudragit E

+1 Eudragit L

0 Diclofenac Sodium
−1 Eudragit E

+1 Eudragit L

+1 Aceclofenac
−1 Eudragit E

+1 Eudragit L

0 50/50

−1 Paracetamol
−1 Eudragit E

+1 Eudragit L

0 Diclofenac Sodium
−1 Eudragit E

+1 Eudragit L

+1 Aceclofenac
−1 Eudragit E

+1 Eudragit L

+1 75/25

−1 Paracetamol
−1 Eudragit E

+1 Eudragit L

0 Diclofenac Sodium
−1 Eudragit E

+1 Eudragit L

+1 Aceclofenac
−1 Eudragit E

+1 Eudragit L

Powder mixing was made with a Paul Schatz principle based 1.5 L mixer (Inversina,
BioEngineering, Wald, Switzerland) at 45 rpm for 8 min and then for another 2 min with
the addition of 1% magnesium stearate as lubricant. The mixtures were compressed with
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an instrumented Kilian SP 300 hydraulic press (IMA Kilian GmbH & Co., KG, Cologne,
Germany) using 7 mm-diameter punches with a bevelled edge. The mixtures were loaded
into the die manually then compressed in a semi-automatic ’jogging’ mode with the
application of 2.9, 8.7, or 14.4 kN compression force (75, 225 and 375 MPa compression
pressure, respectively).

2.2.2. Physical Properties

The physical characterization of tablets was made with a Kraemer UTS tablet tester
(Kraemer Elektronik GmbH, Germany). Mass, hardness, thickness and diameter were
measured. The true density of matrices (ρtrue) was determined with a helium gas pyc-
nometer (AccuPyc 1330, Micromeritics, Norcross, GA, USA), while apparent density (ρapp)
was calculated from their mass and physical dimensions. Then, porosity (ε) was obtained
according to the following equation (Equation (1)):

ε = 1− (ρapp/ρtrue) (1)

2.2.3. Physicochemical Characterization

For the specific identification and characterization of interactions, FT-IR spectra were
acquired. ZeSe HATR accessory was used, and measurements were taken with a resolution
of 4 cm−1, a scan number of 128, with CO2 and H2O correction. Spectral data were
evaluated with SpectraGryph software v1.2.10 (Dr. F. Menges, Berchtesgaden, Germany).

2.2.4. Dissolution Tests

According to the requirements of implantable matrix systems, a custom-made disso-
lution tester was applied, imitating the dissolution environment of the tissue matrix and
the shearing properties of other flow-through equipment [13]. Tablets were placed into
Erlenmeyer flasks containing 50 mL of pH 7.4 phosphate buffered saline solution. The dis-
solution medium was circulated with an Alitea-XV (Alitea, Sweden) peristaltic pump using
a flow rate of 2 mL/min. Due to the vast number of samples to be studied, 24 h dissolution
tests were conducted for all compositions to obtain the most important kinetic parameters,
and only those samples were selected afterwards for a one-week study in which the lowest
release rates were observed. The concentration gradient was continuously maintained
by mimicking the time related systemic renewing of the body fluids. Therefore, in the
24 h long experiments 2.5, 5, 5, 5, 10, and 20 mL samples were taken and replaced with fresh
medium after 15 and 30 min and 1, 2, 4, and 8 h, respectively, while the last samples were
taken after 24 h. In the case of the one-week study, 5, 5, 10, 20, 35, 35, and 35 mL volumes
were sampled and refreshed as above after 1, 2, 4, 8, 24, 48, and 72 h, respectively, while the
last samples were taken after 168 h. From each composition, three parallel measurements
were taken. Quantitative analysis was made with a ThermoGenesys UV-spectrometer
at a wavelength of 274 nm for aceclofenac, 276 nm for diclofenac sodium and 244 nm
in the case of paracetamol. The dissolution kinetics was characterized according to the
Korsmeyer–Peppas equation (Equation (2)).

Mt/M0 = ktn (2)

where M0 is the initial drug amount in the matrix, Mt is the drug amount at the given
time (t), k is the dissolution rate constant and n is the release exponent regarding the
diffusion mechanism.

2.2.5. Design of Experiments and Artificial Neural Networks

DoE analysis and ANN modelling were performed with Statistica v.13.5.0.17 (Tibco
Software Inc., Palo Alto, CA, USA). Compression pressure (x1), amount of excipient (x2),
API (x3) and excipient used (x4) were examined as independent factors, while hardness (y1),
porosity (y2) and release rate (y3) were used as optimization parameters in the DoE analysis.
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The secondary objective of the present study was to compare the effectiveness of
various modelling approaches to enable generalized prediction of drug dissolution rates
from different matrices. In kinetic-based modelling, the release rate and release exponent
were used as the output of the ANN model, while in point-to-point modelling, the dissolved
amount of drug at the various sampling times was applied according to Galata et al. [22],
which included 7 data points. Our hypothesis is that kinetic-based modelling allows for
a simplified network structure and faster generalization. To clarify the importance of
different input parameters for predictive accuracy, 3 different parameter combinations were
used to train the ANNs for both kinetic based and point-to-point modelling. A list of inputs
used in the different training approaches is provided in Table 3, while a detailed data set
for training, testing, and validating ANNs is provided in Table S1.

Table 3. Input variables of the various ANN training approaches.

Modelling
Type

Approach 1 Approach 2 Approach 3 Approach 4 Approach 5 Approach 6

Kinetic Based Kinetic Based Kinetic Based Point-to-Point Point-to-Point Point-to-Point

Input
variable

Drug x x

Drug
solubility (mg/mL) x x x x

Drug pKa x x x x

Excipient x x

Excipient
solubility (mg/mL) x x x x

Excipient pKa x x x x

Excipient
amount (%) x x x x x x

Compression
pressure (MPa) x x x x x x

Hardness x x

Porosity x x

Peak Shift x x x x x x

Feed-forward, back-propagation multilayer perceptron networks were developed in
all cases. The networks were trained with BFGS algorithm. The number of hidden neurons
was gradually increased in a dynamic system depending on the number of input and
output neurons: I + O − 3 ≤ n ≤ I + O + 1, where I is the number of inputs O is the number
outputs and n is number of hidden neurons; thus, the hidden neuron number varied from
4–8, 6–10, 8–12, 9–13, 11–15, 13–17 in cases of approach 1–6, respectively.

A multistart method including 10,000 networks was applied using the automated
neural networks module of Statistica with each hidden neuron number, including a training
approach to screen the best performing network with different initialization patterns and
activation functions for hidden and output neurons. The training was stopped when
the root mean square error (RMSE) of test the dataset reached its minimum. The 5 best
performing networks from each multistart run were retained for further analysis.

The prediction performance of the networks was evaluated based on network perfec-
tion, which is the mean R2 of the observed vs. predicted data of each output neuron, and
on the RMSE of predictions on the validation subset.
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3. Results and Discussion
3.1. Physical Parameters

The physical parameters of the tablets are shown in Table 4, while the statistical
evaluation of the effect of compression pressure (x1), amount of excipient (x2), API (x3)
and excipient used (x4) on hardness (y1) and porosity (y2) of the various compositions
are displayed in Equations (3) and (4), respectively. The presented equations provided
the best fit; for the equations containing the full set of the acquired factor effects and their
interactions, please see the Supplementary Materials. The significant factors and factor
interactions are highlighted in boldface in all cases.

y1 = 110.11 + 47.02x1 + 9.46x1
2 + 19.31x2 − 10.04x3 − 29.78x4 + 2.45x1x2 + 2.45x1

2x2

+ 2.29x1
2x2

2 − 6.31x1x3 − 4.29x1
2x3 + 4.96x1x3

2 − 3.62x1
2x3

2 − 3.32x2x3
2 − 11.48x2x4 −

2.24x2
2x4 − 2.33x3x4 + 6.83x3

2x4

R2 = 0.9743 adj. R2 = 0.9599 MS Res = 123.02

(3)

y2 = 0.133 − 0.053x1 − 0.023x1
2 − 0.046x3 + 0.018x4 + 0.024x1x2 − 0.019x1x2

2 +

0.012x1
2x3 + 0.011x1

2x3
2 − 0.014x1x4 − 0.033x2x3 − 0.009x2x3

2 + 0.010x2
2x3

2 −

0.009x2x4 + 0.016x2
2x4

R2 = 0.7627 adj R2 = 0.6775 MS Res = 0.0023

(4)

Table 4. Physical parameters of matrices.

Eudragit/PVC
Ratio (%/%)

Compression
Pressure

(MPa)
Composition Mass

(mg)
Hardness

(N) Porosity Composition Mass
(mg)

Hardness
(N) Porosity Composition Mass

(mg)
Hardness

(N) Porosity

25/75
75

PAR-
PVC-EL

147.0 15.0 0.307

DIS-
PVC-EL

152.1 8.0 0.423

ACE-
PVC-EL

144.5 13.5 0.279

225 147.9 114.3 0.136 135.2 118.5 0.125 131.4 68.2 0.077

375 141.6 109.1 0.118 202.6 140.7 0.082 131.2 103.6 0.067

50/50
75 149.0 18.7 0.290 154.2 34.0 0.236 152.7 22.9 0.232

225 135.9 95.8 0.122 138.7 92.0 0.128 137.8 65.8 0.104

375 142.2 133.6 0.111 146.9 134.4 0.058 142.4 71.3 0.097

75/25
75 147.0 28.2 0.306 153.8 27.3 0.026 147.7 15.2 0.027

225 151.7 132.6 0.118 136.9 97.0 0.137 134.9 90.7 0.086

375 149.7 153.8 0.091 121.5 153.8 0.100 137.1 116.7 0.060

25/75
75

PAR-
PVC-EE

154.8 113.6 0.223

DIS-
PVC-EE

150.4 94.4 0.092

ACE-
PVC-EE

147.3 93.4 0.106

225 142.5 166.6 0.126 129.0 130.7 0.098 151.2 159.1 0.038

375 136.1 184.5 0.098 130.7 173.7 0.113 152.7 164.7 0.014

50/50
75 149.0 50.1 0.191 151.7 57.4 0.210 151.1 67.6 0.141

225 152.2 146.7 0.109 138.8 102.6 0.101 137.6 87.5 0.068

375 145.2 161.8 0.105 138.7 153.8 0.080 139.0 143.6 0.071

75/25
75 149.5 128.6 0.282 137.4 102.9 0.147 146.3 131.2 0.102

225 137.0 192.4 0.131 135.8 160.6 0.121 145.9 187.9 0.011

375 148.6 211.2 0.115 151.7 201.0 0.046 141.7 192.8 0.011

The porosity of the system exhibited a well-established logarithmic correlation with tablet
hardness (Figure 1), and the increase in pressure resulted in stronger matrices and decrement in
porosity. Nevertheless, there were some outliers, where tablets with low breaking hardness showed
extremely low porosity. In such cases, radically increased dwell time was required to avoid critical
tableting problems, e.g., capping, lamination, cracking, or picking. This phenomenon caused poorer
fitting accuracy in case of porosity (y2) values; thus, the results of the statistical analysis and the
related conclusions should be treated with caution.

The results revealed that matrices made of EE could reach higher breaking hardness and lower
porosity than the tablets made of EL. From the aspect of different weight ratios, the general conclusion
is that the composites containing more methacrylate copolymer and less PVC appeared to be the
strongest systems with the least porosity, while the 25:75 Eudragit–PVC ratio showed the lowest
values and the highest porosity. The mean values showed that paracetamol formed the hardest, and
aceclofenac formed the weakest, matrices, but in contrast with the general expectations, this was not
directly proportional to the drug release rate, which supports our primary hypothesis that besides the
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matrix porosity the physicochemical properties of the applied materials, the presence of drug–carrier
interactions may considerably influence drug release.
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3.2. Investigation of Drug–Carrier Interactions
The FT-IR spectra of the compressed samples were used to reveal the presence of the drug–

excipient interactions. The method is well applicable in various fields where chemical interactions are
the area of interest [23,24]; the present analysis focuses on selected wavenumber ranges reasonably,
where signals of H-bond forming groups can be found.

Weak signal intensities were observed in the -OH stretching region (3000–3600 cm−1, data not
displayed) for all samples, which made the drawing of proper consequences about the interaction
status impossible. The further analysis therefore focuses on the C=O stretching (1600–1800 cm−1)
and the β-OH (β-NH) deformation vibration (1200–1600 cm−1) regions.

According to our primary hypothesis, the interaction potential of the studied APIs decreases in
the order of ACE > DIS >> PAR, and stronger interactions are expected with EE than with EL in all
cases. The results generally confirmed this hypothesis.

Figure 2 displays the IR spectra of ACE-PVC-EE composition, which exhibits intensive signs of
drug–polymer interactions. In the carbonyl signal (C=O stretching) region, EE has a characteristic
peak at 1722 cm−1, while the ACE at 1712 and at 1769 cm−1 belong to the dimerized and monomer
forms, respectively. The monomeric peak of ACE (1769 cm−1) exhibits decreasing intensity with the
increasing amount of EE (Figure 2), indicating strong conjugation between the drug and excipient.
Some further changes, such as the shifting of the deformation vibration of the HNC bonds at
1415 cm−1 appears to shift to 1420 cm−1, which indicates that the corresponding molecular parts may
take part in the interaction.
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Figure 2. FT-IR spectra (1400–1800 cm−1 range) of the ACE (black), ACE-PVC:EE 75:25 (red), ACE-
PVC:EE 50:50 (green), ACE-PVC:EE 25:75 (deep blue), EE (light blue) and PVC (purple) samples;
multicursor indicates the place of peak shift in the spectrum.
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As was expected, ACE exhibited fewer signs of interactions in relation to the acidic EL polymer
(Figure 3). The presence of mild interactions by increasing the amount of the EL is supported by the
slight shift of the carbonyl signal to 1715, 1717 and 1719 cm−1 in the cases of 75:25, 50:50 and 25:75
PVC:EL ratios, respectively, and indicated increasing strength of interactions, which is also supported
by the decreasing intensity of the unassociated acidic carbonyl absorption peak which appears at
1769 cm−1.
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Figure 3. FT-IR spectra (1400–1800 cm−1 range) of the ACE (black), ACE-PVC:EL 75:25 (red), ACE-
PVC:EL 50:50 (green), ACE-PVC:EL 25:75 (deep blue), EL (light blue) and PVC (purple) samples;
multicursor indicates the place of peak shift in the spectrum.

The β-OH vibration of EL appears at 1472.2 cm−1, which cannot be seen clearly in the spectra
of matrices. A slight shift of the peak at 1415.3 towards 1417.8 cm−1 can be recognised, which may
reflect some further changes in the environment of the diphenylamine group of the drug. This finding
is in accordance with the observation of Liu et al., who confirmed that EL may form H-bond based
interactions under proper circumstances [25].

To clarify the importance of the solid-state interactions, and to analyse the effect of the dissolu-
tion medium on the strength of interactions, the following experiment was performed. Tablets were
dipped into pH 7.4 buffer for 30 min to achieve a complete moisturization of the sample, then the
excess of the water was removed, and the samples were measured with FT-IR. Nevertheless, since the
presence of water in the pores completely masked the signals in the 3000–3600 and 1550–1700 cm−1

regions, the samples were dried in desiccator for 24 h and measured again.
Figure 4 displays that the strength of intermolecular interactions has increased as an effect of

water absorption. The characteristic peaks of HCN bonds from 1434 cm−1 was shifted to 1451 cm−1,
while the peak at 1420 cm−1 shifted to 1405 cm−1. The characteristic peak of C-N stretching at
1252 cm−1 shifted to 1272 cm−1. These changes may also be observed in case of the dried samples,
despite some re-organization due to water loss.
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In the case of EL containing samples (Figure 5), similar changes may be observed in the
characteristic peaks of HCN vibrations: the peak at 1438 cm−1 shifts to 1425 cm−1 and its intensity
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increases considerably, while and C-N stretching signal, which may be found at 1279 cm−1, shifts to
1291 cm−1.
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As expected, the matrices prepared with DIS exhibited fewer spectral changes after compression,
primarily due the weaker acidity of the drug, but the higher porosity may also play a possible role
in this phenomenon. Similarly, as in the ACE-containing compositions, the most obvious changes
may be found in the C=O stretching region. The characteristic peak doublet may be found at
1555 and 1571 cm−1, where the shift of the peak intensities in the direction of 1571 cm−1 may be
observed with increasing Eudragit content. As expected, the shift is less intensive in the case of
EL-containing compositions (Figure S1) than in EE-containing ones (Figure S2). Some further signs of
mild interactions and increased intramolecular association of the C-O bond region of EE-containing
matrices may also be observed (Figure S2). The characteristic peak of DIS at 1279 cm−1 and of EE at
1269.5 cm−1 overlap around 1274 cm−1 in accordance with the increasing amount of EE.

The observed interactions were strongly intensified by the dipping. The ratio of the associated
C=O groups increased for both EE- and EL-containing matrices (Figure S3 and Figure S4, respectively),
which is well visible from the increasing intensity of the associated C=O peak at 1555 cm−1 and
1549 cm−1 for EE and EL, respectively. Further changes such as the increasing intensity of the peak at
1410 cm−1 and a peak shift from 1234 to 1248 cm−1, associated with the βNH and C-N stretching
vibration, respectively, indicates that under these circumstances, the secondary amino group of DIS
was also involved in the association with EE. In the case of EL, the corresponding changes may be
found at 1409, 1232, and at 1250 cm−1. Other peak shifts from 1168 to 1197 cm−1 and from 1190 to
1198 cm−1 for EE and EL, respectively, confirm the presence of intermolecular associations from the
side of the polymers.

In the case of PAR-containing compositions, they exhibit no obvious signs of interactions in
case of EL- (Figure S5) or EE- (Figure S6) containing compositions. The only mentionable change
is the slight shift of a C-N stretching peak (PAR) from 1221 to 1224 or 1226 cm−1, in the case of EL-
and EE-containing compositions, respectively. This finding was in accordance with our primary
hypothesis and with the finding of Obediat et al., who also observed no interactions between EE and
PAR in compressed matrix systems [26].

Nevertheless, after dipping the tablets into the dissolution medium, considerable changes were
observed in the FT-IR spectra for both the EE- and EL-containing samples. The shift of the peaks from
1504 to 1512 cm−1 and from 1432 to 1454 cm−1 indicates the participation of the secondary amide
group, while the shift of the peak from 1224 to 1239 cm−1 refers on the involvement of the phenolic
-OH group into intermolecular associations (Figure S7). The shift of the characteristic peak of EE from
1170 to 1147 cm−1 suggests that the drug is connected to tertiary amino groups of the polymer.

The above-mentioned changes may be observed in case of EL-containing samples (peak shifts
from 1504 to 1514 cm−1, from 1434 to 1424 cm−1 and from 1224 to 1240 cm−1), while the shift of
the characteristic peak of EL from 1169 to 1186 cm−1 indicates that the carbonyl side groups of the
polymer are involved into the association (Figure S8).

Overall, the results confirmed that solid-state drug-polymer interactions may be presented after
direct compression of the materials, which were in accordance with the findings with de Robertis
et al. [11]. The weak solid-state H-bonds may further strengthen during the dissolution process and
may influence the drug release rate [12], or in some cases, it may even turn into the formation of
polyelectrolyte complexes, as was observed by Pavli et al. [27].



Pharmaceutics 2022, 14, 228 11 of 16

3.3. Dissolution Tests and Kinetic Study
The drug release kinetics were evaluated with the use of the Korsmeyer–Peppas model (Table 5),

which is the most regular type of dissolution in the case of hydrophilic matrix systems. It can be
noticed from the results that the dissolution followed non-Fickian diffusion. Most n values represent
non-Fickian kinetics, except for those below 0.45. In the case of cylindrical shapes, Fickian diffusion
has a value of 0.45, and for spherical shapes, this value is 0.43. The reason for having smaller values
than the limitations of the model is due to the polydisperse nature of the system [28]. Particle size
has a major influence on the release exponent. In addition, the geometry of tablets slightly varies
from an ideal cylindrical shape.

Table 5. Release rates and release exponents derived from the Korsmeyer–Peppas model (24 h long test).

Eudragit/PVC
Ratio
(%/%)

Compression
Pressure

(MPa)
Composition R2 k n Composition R2 k n Composition R2 k n

25/75
75

PAR-PVC-EL

0.9230 5.7937 0.3858

DIS-PVC-EL

0.9966 0.0419 0.9833

ACE-PVC-EL

0.9945 0.4184 0.7325

225 0.9840 1.4970 0.5635 0.9997 0.0092 1.1609 0.9979 0.0540 0.9340

375 0.9870 1.7224 0.5345 0.9999 0.0054 1.2765 0.9976 0.0850 0.8940

50/50
75 0.9410 6.8732 0.3534 0.9867 1.4394 0.4317 0.9994 0.1289 0.8756

225 0.9845 1.6004 0.5377 0.9979 0.0265 0.9560 0.9691 0.1877 0.8271

375 0.9712 1.5522 0.5594 0.9942 0.0435 0.9105 0.9899 0.0829 0.8931

75/25
75 0.9920 1.7155 0.5058 0.9789 1.5287 0.5567 0.9906 0.2466 0.7311

225 0.9974 0.7570 0.6298 0.9902 0.1828 0.7850 0.9990 0.2002 0.7389

375 0.9928 1.5108 0.5239 0.9976 0.2207 0.6573 0.9991 0.2055 0.7260

25/75
75

PAR-PVC-EE

0.9936 0.9010 0.5693

DIS-PVC-EE

0.9660 1.3715 0.2623

ACE-PVC-EE

0.9998 0.0376 0.5936

225 0.9977 0.6775 0.5774 0.9609 1.4599 0.2306 0.9933 0.0097 0.7596

375 0.9755 0.8078 0.5483 0.9286 1.4502 0.2176 0.9820 0.0106 0.7241

50/50
75 0.9915 1.1441 0.5441 0.9974 1.7063 0.2739 0.9877 0.2063 0.4619

225 0.9973 0.4156 0.6751 0.9846 0.9046 0.3542 0.9972 0.0704 0.5474

375 0.9978 0.3755 0.6785 0.9823 0.9284 0.3404 0.9969 0.0805 0.4910

75/25
75 0.9920 1.6898 0.5056 0.9867 1.5953 0.3265 0.9839 0.2829 0.6100

225 0.9983 0.7675 0.5535 0.9659 1.0545 0.3185 0.9933 0.1695 0.5134

375 0.9918 0.8430 0.5239 0.9641 1.5575 0.2903 0.9670 0.2069 0.4661

The PAR-loaded matrices released the most drugs from 40% to 90% within 24 h, the acidic
ACE-containing ones released between 2% and 80%, and the DIS-loaded systems released 6–50%.
These differences cannot be explained with the different solubilities of the APIs since the applied
dissolution environment ensures sink conditions for all tested drugs, and therefore the solubility may
not be a limiting factor.

Nevertheless, the results of statistical analysis (Equation (5)) revealed that the main governing
forces of the drug dissolution rate (y3) are the physicochemical properties, especially the acidic
strength of the drug (x3) and the applied compression force (x1), which confirm that the release rate
is primarily determined by the porosity of the tablets, since PAR loaded matrices have the lowest
hardness and highest porosity (Table 3.).

y3 = 0.937 − 0.380x1 − 0.284x1
2 − 0.804x3 + 0.185x4 − 0.242x1x2

2 + 0.403x1x3+

0.116x1x3
2 + 0.289x1

2x3 − 0.208x1x4 − 0.181x1
2x4 − 0.241x2x3 − 0.135x2x3

2+

0.197x2x4 + 0.116x2
2x4 − 0.440x3x4 − 0.427x3

2x4

R2 = 0.7669 adj R2 = 0.6661 MS Res = 0.5176

(5)

The amount of excipient (x2), and excipient used (x4) exhibited non-significant effects on the
dissolution rate, but regarding the significant factor interactions, the compressibility of the API and
its possible chemical interactions with the polymer have considerable influence on drug liberation.
To confirm this observation and to minimize the effect of the mechanical differences, the dissolution
rates of tablets with similar porosities (0.13 ± 0.02) were compared (Figure 6a).
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The results met the expectations since EE-based compositions exhibited considerably lower
dissolution rates in all cases. Furthermore, in contrast to the observation of Mustafine et al., where in
the case of acidic APIs, a dissolution rate of 100% was expected between 2 to 8 h with the application
of EE and EL [29], slower dissolution was achieved with all tested systems, which also supports the
importance of drug–matrix interactions on the dissolution rate.

The amount of the released drug decreased to 50.6% from 78.5%, to 10.9% from 45.7% and
to 6.2% from 58.5% in the cases of PAR-, DIS- and ACE-containing systems, respectively, if EL was
switched to EE in the matrix (Figure 6b–d). This may be partially explained by the increased hardness
and smaller overall porosity of EE-containing samples, but the tendency is the same if the dissolution
rates of samples with similar porosities are compared. In contrast, the observed results are in good
accordance with the strength of drug–carrier interactions, since stronger interactions were expected
between the acidic drugs and the alkaline EE. This finding supports our previous observation on the
role of in situ forming drug–polymer interactions in drug dissolution [12] and were in accordance
with the similar findings of Priemel et al. [30] and Mustafine et al. [31].

Finally, to confirm that the interaction-based matrix design is a suitable approach for long-
term drug delivery, one-week long dissolution studies were also performed with some selected
compositions. The detailed results can be found in the supplementary material.

3.4. ANN Modelling
ANN modelling was performed for a dual purpose: to cross check the DoE-based results on the

importance of various descriptors on drug dissolution and to compare the effectiveness of kinetic-
based and point-to-point approaches in the predictability of the dissolution data. The use of various
predictor sets may help the further clarification in which material attributes a play crucial role in the
dissolution of the developed implantable matrices.

The results revealed that the overall perfection of point-to-point modelling was significantly
(p < 0.05) better than kinetic parameter-based models (0.92 ± 0.02 and 0.87 ± 0.03, respectively). No
significant difference was observed between the prediction performance of retained networks related
to the applied hidden neuron number (Table S3); the results were inconsistent and more dependent
on network initialization. Similarly, the use of the various predictor sets caused no considerable
change in the overall prediction performance, but an interesting difference was observed between the
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point-to-point and kinetic parameter-based models when the prediction performance was compared
on the train, test, and validation subsets. In the case of kinetic parameter-based modelling, the
RMSE of predictions on train (0.22 ± 0.08, 0.15 ± 0.07, 0.09 ± 0.05) and test (0.30 ± 0.04, 0.29 ± 0.05,
0.19 ± 0.05) datasets were significantly improved in order of Approach 1, 2 and 3, respectively, while
no significant change was observed in the validation dataset. In contrast, for point-to-point modelling,
the RMSE of predictions on train and test datasets remained unchanged, while it was a significant
improvement on the validation dataset (328 ± 19, 235 ± 18, 158 ± 10) in order of approaches 5, 4,
and 6, respectively.

Nevertheless, despite that the observed differences can be stated, the use of continuous inputs
with appropriate descriptors of the tablet texture (hardness, porosity) enabled for the best prediction
performance for both point-to-point and kinetic parameter-based approaches, despite the fact that
the texture parameters exhibited relatively low importance in predictivity according to the results of
the global sensitivity analysis (Table S4).

The results of the global sensitivity analysis, which show the relative importance of various
predictors (inputs) on prediction outcome, are partly consistent with the results of the experimental
design. The greatest effect was observed for drug solubility, but the pKa of the excipients and the peak
shift indicating drug–excipient interactions exhibited similar importance versus the compression
pressure, tablet texture or the amount of excipient (Table S4).

To ultimately compare the prediction effectiveness of point-to-point and kinetic parameter-
based modelling approaches, the best performing networks (best overall training perfection and
lowest prediction error on validation dataset, with no negative prediction values) were selected for
both modelling approaches. The best network for kinetic parameter-based modelling had nine input,
seven hidden and two output neurons, with logistic activation on hidden and exponential on output
neurons (training perfection: 0.9103, validation error: 0.0760). The structure of the best point-to-point
network was nine input, sixteen hidden, and seven output neurons, with exponential activation on
hidden neurons and logistic on output neurons (training perfection: 0.9286, validation error: 83.06).
Figure 7 shows the predicted dissolution curves of the best and worst predicted cases.
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Figure 7. Observed and predicted dissolution curves of case 43 (a), case 36 (b), case 24 (c) and
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predicted data points; red line: fitted model on predicted data points; blue line: predicted model.
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It is clearly visible that the point-to-point modelling approach showed more consistent accuracy,
especially in cases where drug release was nearly linear (Figure 7a,c). In other cases, the most
considerable inaccuracies were observed at the 2, 4, and 8 h data points. Nevertheless, the predicted
results were closer to the observed ones as for kinetic parameter-based models.

The main problem of the kinetic parameter-based approaches is that the dissolution data
obtained show large differences; thus, the corresponding dissolution rates were scattered by two
orders of magnitude. This posed a certain limitation on the predictivity since small inaccuracies in the
predicted values of low release rates resulted in predictions of 3-5-fold faster or slower dissolution
(Figure 7a,c). The prediction of release exponents, which scattered in a significantly smaller range,
was more accurate, but the presence of small inaccuracies can also cause large differences between
the observed and predicted data at the end of the dissolution curves. It can be stated that the obtained
models provide the desired accuracy only in the first 4–8 h of dissolution (Figure 7b,d).

4. Conclusions
The present study introduced a comprehensive systematic approach for the investigation of

the role of chemical interactions between APIs and excipients in directly compressed matrices. With
the help of FT-IR studies, it was confirmed that solid-state interactions may be induced in directly
compressed matrix systems. The results also confirmed that the presence of solid-state interactions
may not always present in directly compressed systems, but their presence will definitely predict
strong in situ forming interactions during the drug dissolution process. The interactions are mostly
H-bond based, but the forming of polyelectrolyte complexes cannot be excluded. The results of
both DoE analysis and the ANN modelling supported our primary hypothesis that API-excipient
interactions have a considerable effect on drug release by retaining the drug in the matrix.

The secondary hypothesis that kinetic parameters can be effectively used as an output in
predicting drug release during ANN modelling has not been substantiated. The simplified structure
did not result in a faster generalization of the network, and due to the wide scatter of the output results,
small variations in the predicted release rate caused a high degree of uncertainty in the predicted
dissolution curves. In contrast, when a point-to-point approach is used, the difference between the
observed and predicted data at a given time can be compensated for at other time points. Therefore,
applying a point-to-point approach provides greater reliability and more reliable predictions.

Nevertheless, the above-mentioned limitations can be overcome by increasing the number of
cases, which makes it possible to fill in the gaps in the training data set. Therefore, the combination
of interaction factors and ANN-based modelling may be a promising way to design extended-release
products, especially implantable systems with tailored dissolution properties.
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FT-IR spectra (650-1800 cm-1 range) of the DIS (black); DIS-PVC:EE 75:25 (red); DIS-PVC:EE 50:50
(green); DIS-PVC:EE 25:75 (deep blue); EE (light blue) and PVC (purple) samples; Figure S3. FT-IR
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FT-IR spectra of Dis-PVC:EL 75:25 samples: original (black), dipped (red), and dried (green); Figure
S5: FT-IR spectra (650-1800 cm-1 range) of the PAR (black); PAR-PVC:EL 75:25 (red); PAR-PVC:EL
50:50 (green); PAR-PVC:EL 25:75 (deep blue); EL (light blue) and PVC (purple) samples; Figure S6:
FT-IR spectra (650-1800 cm-1 range) of the PAR (black); PAR-PVC:EE 75:25 (red); PAR-PVC:EE 50:50
(green); PAR-PVC:EE 25:75 (deep blue); EE (light blue) and PVC (purple) samples; Figure S7. FT-IR
spectra of Par-PVC:EE 75:25 samples: original (black), dipped (red), and dried (green); Figure S8.
FT-IR spectra of Par-PVC:EL 75:25 samples: original (black), dipped (red), and dried (green); Table S2.
Release rates and release exponents derived from the Korsmeyer-Peppas model (1-week-long test);
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