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Physiological measurements 
in social acceptance of self driving 
technologies
Zsolt Palatinus1*, Márta Volosin1,2*, Eszter Csábi1, Emese Hallgató1, Edina Hajnal1, 
Miklós Lukovics3*, Szabolcs Prónay4, Tamás Ujházi4, Lilla Osztobányi5,6, Balázs Szabó5,6, 
Tamás Králik5,6 & Zoltán Majó‑Petri4

The goal of the present study is to examine the cognitive/affective physiological correlates of 
passenger travel experience in autonomously driven transportation systems. We investigated the 
social acceptance and cognitive aspects of self‑driving technology by measuring physiological 
responses in real‑world experimental settings using eye‑tracking and EEG measures simultaneously 
on 38 volunteers. A typical test run included human‑driven (Human) and Autonomous conditions in 
the same vehicle, in a safe environment. In the spectrum analysis of the eye‑tracking data we found 
significant differences in the complex patterns of eye movements: the structure of movements of 
different magnitudes were less variable in the Autonomous drive condition. EEG data revealed less 
positive affectivity in the Autonomous condition compared to the human‑driven condition while 
arousal did not differ between the two conditions. These preliminary findings reinforced our initial 
hypothesis that passenger experience in human and machine navigated conditions entail different 
physiological and psychological correlates, and those differences are accessible using state of the 
art in‑world measurements. These useful dimensions of passenger experience may serve as a source 
of information both for the improvement and design of self‑navigating technology and for market‑
related concerns.

Autonomous transportation is a field of innovation being rapidly advanced in the past decade. Most major car 
manufacturers are racing towards mass production of partly or fully autonomous vehicles. Moreover, mobility 
providers like Uber or Lyft have started their own programs, and tech companies like Google or Nvidia have 
also entered the field. Despite all the effort that goes into the engineering and the design of self-navigation, there 
are concerns about the general acceptance of autonomous vehicles. Those concerns include uncertainty about 
whether the general public would be willing to purchase semi or fully autonomous cars at a rate that justifies mass 
production, and ethical uncertainty about safety and responsibility, among others. Since the advent of testing 
self-driving cars in real traffic situations there have been numerous efforts to assess acceptance, anxiety, arousal, 
and other emotional aspects of this particular new  technology1. Besides asking people to report their feelings and 
experiences, a reliable source of information is the tracking of biological measures like heart rate, muscle activity, 
eye movements, or electroencephalography (EEG) signals. Up until very recently, the non-portability of certain 
advanced neurological and behavioral techniques such as motion tracking, EEG or electromyography (EMG) 
often confined these investigations to the laboratory. Instead of real-world passenger experience, researchers 
often used video recordings, virtual reality (VR) or computer  simulations2–5. However, recent improvements in 
measurement technology have made it viable to record these biological signals in the actual vehicles in focus. 
Our study is aimed at (1) establishing a viable research method for the psychological and physiological measure-
ment of passenger experience in self-navigating vehicles and (2) finding useful dimensions of covariability in the 
recorded data. To this effect, we selected an initial set of analyses that to our knowledge were likely to uncover 
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cognitive/affective patterns in the EEG and eye-tracking data. The overall aim of our research is to establish a 
set of measurements that indicate affective engagement in experiencing autonomously driven passenger cars.

Self-driving vehicles are radical innovations which according to our current knowledge will overturn the daily 
lives and decades-old habits of all people in developed countries—whether they are involved in transport as driv-
ers, cyclists, pedestrians, passengers, etc.6. Technological development related to self-driving vehicles has greatly 
accelerated recently: at present, self-driving vehicle tests are being conducted in nearly 200 cities. Hence, it seems 
that more developers are in the last phase of technical development and are getting ready to enter  production7.

With a very few exceptions, developers focus solely on technological development, however, the spread of 
self-driving vehicles depends not only on the technological development but also on legislative framework, 
infrastructure, and social  acceptance8. One of the most important factors regarding innovation diffusion are 
decisions on innovation: the acceptance or the rejection of innovations and their expansion is based on people’s 
judgments and  decisions9. Therefore, development work shall be extended in the direction of mapping social 
acceptance as accurately as possible, thereby accelerating social adaptation in the interest of the society and its 
members’ ability to process the projected drastic change. Our research was particularly aimed at finding further 
sources of information about affective engagement in a real-world situation.

In the last decades of the twentieth century Information Systems (IS) were adopted in both organizational 
and domestic environments. Behavioral researchers wanted to know which factors influenced the acceptance 
and use of these new technologies. As a result, several technology acceptance research models were developed. 
Initially, there were the Theory of Reasoned Action (TRA)10, and the Theory of Planned Behavior (TPB)11. Davis 
et al.12 merged these theories into the Technology Acceptance Model (TAM). All the above-mentioned models 
assume that the actual use of a new technology depends on one’s behavioral intention (BI) to apply the technol-
ogy itself. BI is directly moderated by one’s attitude towards use (A). In the TAM model, Perceived Ease of Use 
(PEU) and Perceived Usefulness (PU) have a direct aggregated moderating effect on A. In the TAM 2 model, 
PEU is described by  Davis12; who  later13 described PU. Venkatesh et al.14 proposed a unification of the existing 
technology acceptance models and presented the Unified Theory of Acceptance and Use of Technology (UTAUT) 
adding Social Influence (SI), Facilitating Conditions (FC) and moderating variables (Age, Gender, Experience 
and Voluntariness) to the model. The UTAUT 2 research  model15 is designed to allow researchers to investigate 
consumer acceptance and the use of new technologies, adding new moderating factors (Hedonic Motivation, 
Price Value, Habit) and removing one (Voluntariness of Use) from the model.

The UTAUT 2 model is widely used to predict technology acceptance and thus future behavior. However, it 
is an interesting question how well the commonly used questionnaire survey can collect real and valid informa-
tion. Consider for example the reporting of the subject’s own emotional state (called Hedonic motivation in 
the UTAUT 2 model). Respondents often find it difficult to identify and report their current emotional states. 
This is especially true when they were asked about their future (expected) emotional states when traveling in a 
self-driving vehicle. Concurrently, Nordhoff et al.16 asked 9118 car drivers from eight European countries using 
the UTAUT2 model to explain public acceptance of conditionally automated (L3) cars and found that hedonic 
motivation was identified as the strongest predictor from all UTAUT 2 variables of individuals’ behavioral inten-
tion. Their results indicated that individuals who found conditionally automated cars to be fun and enjoyable 
were more likely to intend to use them. However, the method for measuring hedonic motivation was still the 
traditional online survey.

On this basis, it is worth considering what alternative data collection methods could be used to explore these 
emotional motivations. For this purpose, the UTAUT 2 model can be taken as a framework, where variables can 
be measured with a more holistic approach—for example, to examine emotional responses by neuroscientific 
methods rather than direct interviewing or by questionnaires based on hypothetical scenarios. Most studies on 
attitudes and trust towards autonomous technology utilize self-reporting questionnaires (e.g.,17,18). This approach 
has several limitations: first, most participants respond without any prior experience as a passenger or driver of 
self-driving vehicles. Second, social desirability factors also might bias the results, therefore the objectivity of 
such data might be questioned. Recording physiological responses like EEG, galvanic skin response (GSR) or eye 
movements might be a useful method for eliminating such biases, and results of these measurements can be eas-
ily compared with self-reported data. Although a growing amount of research attempted to measure passengers’ 
biological reactions in autonomous vehicles either utilizing EEG (e.g.3,4) or eye-tracking  methods19,20, we are 
not aware of any studies in which EEG and eye-tracking data were recorded simultaneously. Recognizing that 
real-world physiological measurements are in their infancy, we set out to explore multiple sources of biologically 
anchored information on people’s affective experiences.

Eye movements indicating emotional and cognitive transitions. Muscle movements in perceptual 
systems including the head, hands, and feet have been established to indicate cognitive and affective states and 
transitions. Spectral analyses of head movements and eye movements were repeatedly shown to indicate inten-
tional, goal related cognitive transitions such as problem solving, recognition, or comprehension. The general 
reasoning behind using complexity measures and spectrum analysis on continuous physiological data focuses 
on the source of cognitive and emotional change. Such changes are likely to be distributed within the complex 
network of physical, electro-chemical, nervous, muscular, and behavioral interactions. These are fundamen-
tal to complex systemic behavior, such as weather patterns, ecological dynamics, stock market fluctuations, or 
functions of the nervous system. Natural systems often exhibit power-law distributions, and the variation of 
their components is correlated across both spatial and temporal  scales21,22. These correlations allow inquiry into 
the number and strength of interactions between the active components. In recent years, the concept of mul-
tifractality has become more popular in modeling, exploration, and prediction of complex dynamical system 
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 behavior23,24. In psychology, multifractal concepts and tools became available right after the introductory reports 
(i.e.25) and they were followed by tutorials and practical  guidance26,27.

Differences in the distribution of fractal dimension and the width of the multifractal spectrum have been 
reported as significant and reliable markers in various cognitive tasks including problem  solving28, magnitude 
 perception29,30, perceptual  intent31, visual  recognition32,  comprehension33, and  memory34. Recent works more 
specifically related to the cognitive/affective domain also emphasize useful dimensions in the multifractal spec-
trum of eye-movements35–37. Inspired by these relatively recent findings, our experimental research methods on 
the eye-tracking data included fractal and multifractal analysis.

EEG signatures of emotional and cognitive transitions. The human brain is constantly active, result-
ing in electrical signals that can be measured from the scalp by EEG. The EEG oscillations are mainly classified 
according to their frequency bands: for example, the delta band is referred to as activation below 4 Hz, the theta 
band reflects activity between 4 and 8 Hz, the alpha band between 8 and 12 Hz, beta between 13 and 30 Hz, and 
activity higher than 20 Hz is referred to as the gamma  band38.

Numerous studies target EEG correlates of emotional and motivational states by differences in alpha band 
power between the right and left  hemispheres39,40. Frontal alpha asymmetry is a result of the subtraction of left 
frontal alpha power from right frontal alpha power after log-transforming the values to normalize distributions 
(log F4 minus log F3). The result is referred to as relative left or relative right frontal activity: when the result is 
more positive, relative left activation is present and when the result is more negative, relative right activation is 
present. High scores therefore indicate more positive or approaching attitudes while lower scores indicate more 
negative or withdrawal  attitudes40–42.

When classifying mental states or cognitive processes from relaxed to alerted or stressed states, usually the 
ratios of higher frequency (beta, gamma) and lower frequency (alpha, theta) powers are  compared3,43. Lower 
frequencies are dominating in more relaxed states and sleep while higher frequencies are present in more aroused 
or stressed states. For example, increased beta/alpha  ratio3,44, decreased alpha/beta and theta/beta  ratio45 or 
increased relative gamma  ratio46 were found to correlate with stress level. Higher relative gamma was also 
detected during enhanced attention and  concentration3.

A growing number of studies recorded EEG while participants were exposed to self-driving technology, 
mostly by sitting in a  simulator2–5. For example, Park and  colleagues4 found an increasing beta-to-alpha power 
ratio when a participant was passively watching positive scenarios (the car performing smoothly on a highway) 
and negative scenarios (the same car driving erratically and violating common rules of the road) of self-driving 
cars, revealing elevated stress levels when the participants were exposed to simulated dangerous situations. In 
a similar simulator study, the most effective takeover warning signals were accompanied by enhanced ratios of 
higher frequencies, suggesting enhanced stress, attention, and  alertness3.

Most recently, Seet et al.5 investigated the impact of autonomous vehicle malfunction on human trust by com-
bining EEG and self-reported questionnaires in a simulation environment. During the simulation, participants 
actively drove the vehicle in an urban environment and from time to time, scenarios with malfunctions (e.g., the 
vehicle drove at high speed through junctions or even crashed) occurred. In the Conditional Automation Driving 
phase, participants were able to take over control when needed, while in the Full Automation Driving condition 
no takeover function was present. Results showed that participants’ preference was significantly higher toward 
the situation when they were able to take over control. Besides, the frontal alpha power reduction in the right 
but not in the left hemisphere during malfunctions in the fully automated condition can also be interpreted as 
an enhanced motivation of the driver towards controlling the vehicle.

Although a compelling advantage of studies utilizing simulators is that they offer high control settings in lab 
environments, this control comes at the cost of ecological  validity47,48. Since real-world physiological measure-
ments in autonomous navigation systems is a relatively new area, our hypotheses were outlined carefully. First, 
we expected our complexity measure—multifractal spectrum width—to be sensitive to differences in the human 
driver versus autonomous driving conditions. Wider spectra indicate more types of causal relationships shap-
ing the fluctuations of the eye movements. Substantial differences between the two conditions may signal that 
the autonomous condition is significantly different from the eye movements in the usual passenger experience. 
Second, we expected to find that the novelty and excitement of the experience would manifest itself in higher 
levels of valence and arousal in the EEG data. Third, we expected that some personality or anxiety measures in 
psychological surveys would correlate with physiological measures.

Methods
Participants and procedure. For the present study, 38 healthy adults volunteered (mean age: 30.947 years, 
SD = 7.414 years, 13 females, 4 left-handed). All of them reported normal or corrected-to-normal vision and 
hearing and no psychiatric or neurological problems. Participants received no monetary compensation and all 
of them gave written informed consent prior to the study. The experiment was conducted in accordance with the 
Declaration of Helsinki and the protocol was approved by the United Ethical Review Committee for Research 
in Psychology (EPKEB), Hungary. EPKEB ref. number 2020-89, approved on 07/06/2020 (http:// epkeb. ttk. hu/).

Before the experiment, participants were required to fill personality and demographic questionnaires via an 
online form. Because the focus of the present study is to measure physiological correlates of those experienc-
ing autonomous drive, we present the details on questionnaire data in the Supplementary Information. The 
experiment took place at Szeged Airport (ICAO: LHUD), an airport serving Szeged, a city in Csongrád-Csanád 
county, Hungary. The airport has one asphalt paved runway designated 16R/34L which measures 1185 by 30 m. 
The runway and a service road leading to the runway were used for the tests. Before the test runs in the vehicle 
(TESLA Model X) participants were debriefed and both the eye-tracking glasses and the EEG electrodes were 

http://epkeb.ttk.hu/
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mounted. Eye-tracking and EEG data were routed into two separate portable laptop computers. First, a baseline 
measurement was applied to map participants’ reactions to visual stimuli approximately 60–70 cm distance 
from the display. Twenty-three pictures with different valence and arousal evoking values were selected from the 
Open Affective Standardized Images Set  (OASIS49). Each picture was presented for 5 s, followed by a blank black 
screen for another 5 s. Participants were instructed to relax and look freely at pictures without any additional 
task. Baseline measurement lasted about 4 min.

After the baseline measurement, the participant, the driver and two experimenters with the recording comput-
ers entered the vehicle. The driver was seated in the driver’s seat (front left) and the participant was seated in the 
passenger’s seat (front right) while the two experimenters were seated in the back seat operating the recording 
equipment. The participant was instructed to relax and behave like a passenger in general while minimizing 
movement. The route was taken twice: first, a professional driver was driving (Human condition), and in the 
second round, the self-driving mode was switched on and the driver released the steering wheel (Autonomous 
condition). The bird-eye view of the route used in the experiment is presented in Fig. 1. Both types of blocks 
lasted about 2 to 3 min and were recorded separately. Before and after the two runs, participants filled out the 
Positive and Negative Affect Scale (PANAS).

Measures and data analyses. Eye tracking recording. For eye tracking we used the Core System manu-
factured by Pupil Labs (Berlin, Germany) attached to a portable laptop computer. This system has two cameras: 
one is positioned forward to record the field of view of the wearer in HD video at 30 Hz, and a second infrared 
camera recorded the participant’s eye movements. Pupil Player software developed by the manufacturer (version 
3.3, https:// pupil- labs. com/ produ cts/ core/), was used to determine the movement of the eyes in 3D.

Preprocessing data. The raw data of the time series of the xy pupil positions were transcoded into a single 
one-dimensional vector, indicating the intensity of the movements without regard to movement directionality. 
Data recorded at each trial were divided into a first half of the run (before the car took a U turn at the end of the 
runway) and a second half (after the U turn) (see Fig. 1).

Data analysis. Multifractal analysis of each half run was applied using the Chhabra and Jensen (CJ)  method50. 
This is a canonical “direct” algorithm for calculating the multifractal-spectrum width that samples measure-
ment series at progressively larger scales. Empirical examples suggest that the CJ method is suitable for assess-
ing biological movements similar to the movement of the eye. To assess participants’ reactions before and after 
the U turn in the Human and Autonomous conditions, Condition (Human/Autonomous) × Part (First/Second) 
repeated measures ANOVA was applied.

EEG recording. Continuous EEG data was recorded at a 200  Hz sampling rate with a portable OpenBCI 
4-channel Ganglion board utilizing Lab Streaming Layer (LSL) from OpenBCI GUI. Four gold cup electrodes 

Figure 1.  Birdseye view of the runway and the service road used in the experiment. Yellow arrows indicate the 
outbound path towards the end of the runway (First part), white arrows indicate the inbound path back to the 
starting position (Second part). Source: Google Earth (n.d.). [Google Earth map of Szeged Airport]. Retrieved 
June 10, 2022, from https:// earth. google. com/ web/@ 46. 24993 219,20. 09495 634,79. 94030 556a,1403. 84271 
768d,35y,- 117. 93221 529h,45. 00445 248t,0r.

https://pupil-labs.com/products/core/
https://earth.google.com/web/@46.24993219,20.09495634,79.94030556a,1403.84271768d,35y,-117.93221529h,45.00445248t,0r
https://earth.google.com/web/@46.24993219,20.09495634,79.94030556a,1403.84271768d,35y,-117.93221529h,45.00445248t,0r
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were attached to participants’ heads with conductive paste (Ten20) in accordance with the 10–20  system51 to F3, 
F4, FPz and Oz. Two additional electrodes were attached to the left and right mastoids serving as reference and 
ground electrodes, respectively. Impedances were kept below 30 kΩ.

Preprocessing data. The continuous EEG was filtered offline; a bandpass filter (7–48  Hz, 9th order Butter-
worth) was applied to the data as this particular range characterized the frequencies of our interest. After filter-
ing the whole blocks, continuous data were segmented into 4 s long epochs with 2 s overlapping parts. Epochs 
with a signal range exceeding ± 100 µV (typically due to movement or blink artefacts) were excluded from fur-
ther analysis. Power spectral densities (PSD) were calculated to alpha (8–12 Hz), beta (13–30 Hz) and gamma 
(30–45  Hz) band ranges utilizing the Welch method. For each epoch, an index for valence (affectivity) and 
arousal were computed. Affectivity corresponded to frontal alpha asymmetry and was calculated as the differ-
ence between  log10 transformed values of F4 and F3 with higher values representing more positive emotional 
 valence41. As higher frequencies were found to index a more aroused state in frontal  areas3,45, arousal was defined 
as the ratio of PSD in the beta and gamma range to the alpha range at the averaged F3 and F4 electrodes. Both for 
affectivity and arousal, outlier epochs which deviated from the participants’ mean at least by 3 SD were removed 
before averaging data. As with the eye-tracking data, the first and second halves of each condition were also aver-
aged separately and submitted to statistical analysis as described later.

Statistical analyses. Similar to eye tracking data, differences between the first and second halves of the route 
were compared in the two conditions by Condition (Human/Autonomous) × Part (First/Second) ANOVAs sepa-
rately for frontal alpha asymmetry (affectivity) and arousal values. Interactions were followed up with paired 
t-tests. Statistical analyses were conducted in R (version 4.0.552). Generalized eta-square (η2

G) effect  sizes53,54 and 
statistical  power55 are also reported.

Results
Eye tracking results. Multifractal spectra of one-dimensional eye displacement data were calculated for 
the first and second halves of each trial (Part). Out of the 38 participants, in five cases our equipment pro-
duced suboptimal data quality with less than 0.800 mean confidence level in capturing the real position of the 
pupil (where 1 designates maximum confidence). These five cases were excluded from further eye-tracking 
based data analyses. Differences were compared for Part (First/Second) and Condition (Human/Autonomous) 
in a repeated measures ANOVA, showing a significant Condition main effect: (F(1, 32) = 40.816, p < 0.001, 
η2

G = 0.205, power = 96%), suggesting a narrower MF spectrum when the car was driving in autonomous mode. 
No other effects were significant.

EEG results. Affectivity values are presented in Fig. 2a while arousal values are presented in Fig. 2b. Because 
of the extensive amount of movement artefacts (more than 60% of the segments), and because of technical 

Figure 2.  EEG correlates of passengers’ experience in the autonomous vehicle. Light blue bars denote the 
first part and dark blue bars denote the second part of the ride in the Human and Autonomous condition. 
Participants were characterized with frontal alpha asymmetry (a) and arousal (b) scores. Whiskers indicate the 
standard error of the mean; star sign denotes significant (p < 0.05) differences.
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problems during the data acquisition (lost connection between the OpenBCI board and computer during the 
ride), data of 7 persons were excluded from EEG analysis. That is, EEG analysis was performed on data of 31 
participants (22 males, 9 females, mean age = 31.258 years, SD = 7.806, range: 22–57 years).

Affectivity (frontal alpha asymmetry). The Condition × Part ANOVA showed a significant Condition main 
effect: (F(1, 30) = 9.871, p = 0.004, η2

G = 0.019, power = 100%), suggesting larger avoidance, and less positive reac-
tions when the car was driving in autonomous mode. Furthermore, the significant Condition × Part interac-
tion was significant as well: F(1, 30) = 6.292, p = 0.018, η2

G < 0.001, power = 54%). The follow-up t-tests indicated 
that while the first part of the ride was similar in both conditions (t(30) = 1.692, p = 0.101, power = 56%), par-
ticipants’ reactions were more negative after the U turn in the Autonomous condition (t(30) = 3.780, p < 0.001, 
power = 100%). The Part main effect was not significant (F(1, 30) = 0.003, p = 0.958, η2

G < 0.001, power = 5%).

Arousal. The Condition × Part ANOVA showed no significant differences, suggesting that arousal was similar 
in the two conditions (Condition main effect: F(1, 30) = 3.295, p = 0.080, η2

G = 0.005, power = 83%) and during 
the two parts of the ride (Part main effect: F(1, 30) = 3.834, p = 0.059, η2

G = 0.004, power = 46%). The Condi-
tion × Part interaction was not significant either: F(1, 30) = 0.217, p = 0.066, η2

G < 0.001, power = 7%.

Discussion
The present study aimed to investigate people’s experiences and feelings while being a passenger of an autono-
mous vehicle as indexed by MF power and EEG spectral density patterns and by self-reported questionnaires. 
We found an overall narrower MF spectrum width in the Autonomous condition. Regarding EEG, frontal alpha 
asymmetry values were higher in the Human condition compared to the Autonomous condition, while arousal 
levels did not differ between the two conditions.

Eye-tracking data indicated an overall narrower MF spectrum width in the Autonomous condition. Beyond 
the obvious usefulness of a seemingly reliable biological index of the travelling conditions the direction of this 
difference holds further questions. Narrower spectra are often characterized as indicative of fewer governing 
forces in the dynamical system. Arguably, the movement structure of the car in self-driving condition could be 
governed by fewer degrees of freedom compared to the neuro-muscular system of a human driver. Alternatively, 
heightened alertness in the unfamiliar autonomous condition may have resulted in lower variability in eye move-
ments. This strong effect may even be related to both factors at the same time. More testing is required to identify 
the discrepancy, which in turn may possibly provide a meaningful measure in the future.

The significantly higher frontal alpha asymmetry values in the Human than in the Autonomous condition 
suggest that participants’ affect was less positive in the autonomous mode. Despite the scarcity of literature on 
frontal alpha asymmetry related to self-driving vehicles, this pattern is comparable with results of Abdur-Rahim 
et al.2 who found enhanced right frontal activation when participants drove autonomous wheelchairs through 
a narrow path. However, in their  study2, in the self-driving mode EEG signals were insufficient to predict stress 
but GSR signals indicated higher stress levels, probably due the lack of control over the vehicle. In contrast, Seet 
et al.5 demonstrated decreased alpha power in the right frontal areas when participants had no option to take 
over the drive of an autonomous car which suggests that participants felt motivated to control the driving. They 
also speculated that frontal alpha activity might be a neural correlate of trust in autonomous vehicles as it was 
modulated by the urge to take over control of the vehicle. Even though no dangerous situations were indicated in 
the present study, participants were not able to control the car either. Therefore, observing the lack of control over 
the vehicle in the Autonomous condition could lead to lower alpha asymmetry scores, implying lower trust and 
less positive feelings, which was more pronounced in the second part of the ride. This is in line both with survey 
and behavioral results in the literature. Several survey studies suggest that societies are neutral or even resistant 
toward AV in  general56–60. Regarding behavioral results, Xu et al.1 found that directly experiencing autonomous 
technology increased trust, but decreased interest in fully automated driving technology. The authors explained 
these results with subject expectations being too high due to media hype, or with imperfect  technology1. The 
role of imperfect technology was supported by further results: exposing participants to AV malfunctions as a 
passenger at a test track led to significant decrease in trust and attitude and increased negative  affect48. In the 
present study, the vehicle was unable to perform every maneuver (for example full turnabouts) either. According 
to subjects’ reports it did not drive as smoothly as with a human driver, which could contribute to more negative 
affect in the Autonomous condition. There is evidence that different driving styles and human driver conditions 
are detectable in the movement patterns of the  vehicle61,62. This may provide another possibility to improve user 
experience in autonomous vehicles by fine tuning their steering, accelerating and decelerating patterns to the 
point that it resembles human driving more closely, without sacrificing any  benefits63.

In contrast with frontal alpha asymmetry, and unsurprisingly, a high arousal level was retained during the 
whole experiment. This conforms to the literature as well: despite the entirely safe and predictable rides, being a 
passenger in an autonomous car mounted with EEG and an eye-tracker could be an exciting experience either 
in a positive or negative way, leading to constantly enhanced arousal and  alertness3,44,47.

Although the present study was launched as a pilot project, it has numerous strengths. We measured EEG and 
eye movements simultaneously, which combined with self-report evaluations allowed us to reveal relationships 
between these three methods. In contrast to the majority of studies applying VR or other simulation  settings2–5, 
the present study was carried out in a real-world environment in an autonomous vehicle. Though measure-
ments could not be conducted in traffic due to safety reasons, simply experiencing the ride can be evaluated as 
ecologically valid.

There are several limitations of the present study: Firstly, most of our analyses can be regarded as explo-
rational, especially the correlations between biological signals and personality traits (see Supplementary 
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Information)—suitable for a pilot study but more systematic and hypothesis-driven testing is needed for more 
reliable results. Secondly, to keep gradual change from the baseline to Human and Autonomous modes, the order 
of the conditions was the same for all participants. This order effect can explain for example the decreasing frontal 
alpha asymmetry to the Autonomous condition: the motivation or the positive affectivity which was present at 
the beginning could attenuate to the end of session, especially when participants’ expectations of the autonomous 
technology were not met. In the future, at least the order of the Human and Autonomous conditions should be 
balanced. A third weakness was that participants were highly motivated volunteers, which could significantly 
impact both their neural responses and attitudes.

In summary, the present study demonstrated differences in eye-movement patterns and neural correlates 
between experiencing human- and self-driven modes of autonomous vehicles. Our preliminary findings sug-
gest that although participants’ affectivity was slightly less positive in the autonomous mode, they were more 
aroused, which is also compatible with personality traits and subjective reports. With respect to the UTAUT2 
model, our results clearly indicated that neuropsychological and behavioral data collection and analysis may 
indeed enhance the predictive power and usefulness of traditional data collection methods especially in the 
affective domain. Furthermore, it also might contribute to the debate on the presence of a general acceptance 
factor (GAF) of  technology64,65. Future studies need to investigate the exact relationship between different fac-
tors more systematically and ideally in circumstances that are, within safety measures, even more comparable 
with real life driving scenarios. The differences in neural signatures might be useful and promising for exploring 
neural correlates of trust and acceptance of autonomous vehicles.

Data availability
The datasets generated during and/or analyzed during the current study are available in the OSF repository, 
(https:// osf. io/ dhcaf/? view_ only= a12e1 50a53 a9458 5a325 97c12 9ee5d 4f). Codes used in the analyses of the data-
sets are available from the corresponding author on reasonable request.
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