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Abstract
The study proposes a novel machine learning (ML) paradigm for cardiovascular disease (CVD) detection in individuals at 
medium to high cardiovascular risk using data from a Greek cohort of 542 individuals with rheumatoid arthritis, or diabetes 
mellitus, and/or arterial hypertension, using conventional or office-based, laboratory-based blood biomarkers and carotid/
femoral ultrasound image-based phenotypes. Two kinds of data (CVD risk factors and presence of CVD—defined as stroke, 
or myocardial infarction, or coronary artery syndrome, or peripheral artery disease, or coronary heart disease) as ground 
truth, were collected at two-time points: (i) at visit 1 and (ii) at visit 2 after 3 years. The CVD risk factors were divided into 
three clusters (conventional or office-based, laboratory-based blood biomarkers, carotid ultrasound image-based phenotypes) 
to study their effect on the ML classifiers. Three kinds of ML classifiers (Random Forest, Support Vector Machine, and 
Linear Discriminant Analysis) were applied in a two-fold cross-validation framework using the data augmented by synthetic 
minority over-sampling technique (SMOTE) strategy. The performance of the ML classifiers was recorded. In this cohort 
with overall 46 CVD risk factors (covariates) implemented in an online cardiovascular framework, that requires calculation 
time less than 1 s per patient, a mean accuracy and area-under-the-curve (AUC) of 98.40% and 0.98 (p < 0.0001) for CVD 
presence detection at visit 1, and 98.39% and 0.98 (p < 0.0001) at visit 2, respectively. The performance of the cardiovascular 
framework was significantly better than the classical CVD risk score. The ML paradigm proved to be powerful for CVD 
prediction in individuals at medium to high cardiovascular risk.

Keywords Cardiovascular risk estimation · Cardiovascular disease · Three-year follow-up · Conventional risk factors · 
Ultrasound · And machine learning

Abbreviations
ANOVA  Analysis of variance
ASCVD  Atherosclerotic cardiovascular disease
AUC   Area-under-the-curve
BMI  Body mass index
CAD  Coronary artery disease
CCVRC  Conventional cardiovascular risk 

calculators
Cluster 1  Conventional office-based biomarkers
Cluster 2  Fusion of office-based biomarker and 

laboratory-based biomarkers

Cluster 3  Fusion of office-based biomarker, labora-
tory-based biomarker, and carotid ultra-
sound image phenotypes

CUSIP  Carotid ultrasound image phenotype
CV  Cross-validation
CVD  Cardiovascular disease
CVD-3YFU  Cardiovascular disease risk-three-year 

follow-up
CVD-CR  Cardiovascular disease-current risk
CVE  Cardiovascular events
DM  Diabetes mellitus
FH  Family history
FNR  False-negative rate
FPR  False-positive rate
FRS  Framingham risk score
HTN  Hypertension
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IPN  Intraplaque neovascularization
LBBM  Laboratory-based biomarker
LDA  Linear discriminant analysis
ML  Machine learning
MPH  Maximum plaque height
NPV  Negative predictive value
OBBM  Office-based biomarker
PE  Performance evaluation matrices
PPV  Positive predictive value
RA  Rheumatoid arthritis
RF  Random forest
ROC  Receiver operating-characteristics
RRS  Reynolds risk score
SCORE  Systematic coronary risk evaluation
SMOTE  Synthetic minority over-sampling technique
SMOTE 5X  Five times synthetic minority 

over-sampling
SVMrbf  Support vector machine with the radial 

basis function
TPA  Total plaque area
TRF  Traditional risk factors
WHO  World Health Organization

Introduction

Individuals with rheumatoid arthritis (RA), diabetes mel-
litus (DM), and arterial hypertension are at increased car-
diovascular disease (CVD) risk due to the accumulation of 
disease-associated or conventional CVD risk factors (e.g., 
obesity, dyslipidemia) [1, 2]. The patients with RA have a 
two- to three-fold increased risk of cardiovascular events 
(CVE) compared to the normal population [3, 4]. Further, 
RA and CVD share common risk factors such as gender, 
hyperlipidemia, hypertension, diabetes, body mass index, 
physical inactivity, and smoking, known as traditional risk 
factors (TRF). Because of this fact, most of the conventional 
cardiovascular risk calculators (CCVRC) have been adopted 
to predict the CVD risk in RA patients.

CCVRC are used to predict the CVD risk in non-RA 
and RA patients, however they often either under-estimate 
or over-estimate the CVD risk in patients [5–7]. This is 
mainly due to their dependence on TRF, which does not fully 
explain the increased CVD risk, especially in RA [3, 8–11]. 
Subclinical atherosclerosis is a common early phenomenon 
in both RA and non-RA individuals, described by the growth 
of atherosclerotic plaque [12], and can be used in CVD risk 
stratification beyond TRF.

The use of non-invasive and economical imaging 
modalities such as carotid and femoral ultrasound can 
capture the growth of atherosclerotic plaque. Two popular 
carotid ultrasound image-based phenotypes (CUSIP) such 
as carotid intima-media thickness and carotid plaque area 

are considered as the surrogate indicator of coronary artery 
disease (CAD) [13–20]. For example, RA patients report-
edly have higher values of this CUSIP compared to non-RA 
patients and, therefore, these atherosclerotic plaque-based 
phenotypes could be used for an accurate CVD risk assess-
ment [21–24]. There are two major drawbacks with CCVRC 
(i) they do not integrate CUSIP in their risk prediction model 
and (ii) they do not handle the complex nonlinear associa-
tion between several CVD risk factors and the CVE end-
points [12]. Lastly, since CCVRC is regression-based, they 
have limited capability to handle a large number of risk 
predictors.

ML-based systems have reported better and promising 
risk assessment compared to existing CCVRC in non-RA 
studies [12, 25]. We, therefore, hypothesize, that the ML-
based systems can also provide better CVD risk assessment 
in RA/non-RA patients compared to CCVRC. We further 
hypothesize that this relation holds when TRF is fused with 
CUSIP in the ML framework instead of using TRF alone. 
The objective of the proposed study is to perform ML-based 
CVD risk stratification (so-called “ML-effect”) of both RA 
and non-RA patients while handling the class imbalance 
using synthetic minority over-sampling technique (SMOTE), 
referred as “SMOTE-effect”, between binary classes (such 
as CVD and No-CVD). Furthermore, this study examined 
the performance of ML-based systems at two distinct time 
points (i) visit 1 and (ii) visit 2 (after 3-year, against three 
popular CCVRC (such as FRS, ASCVD, and SCORE), 
referred to as the “Follow-up effect”. Further, for lower cost 
reasons, especially in low-income countries, it is important 
to provide CVD risk assessment using the TRF. Therefore, 
another objective of the proposed study is to investigate the 
performance of ML-based CVD risk assessment systems 
considering (i) office-based risk biomarkers (OBBM) alone, 
(ii) using the combination of OBBM and laboratory-based 
biomarkers (LBBM), and (iii) and further using the combi-
nation of OBBM, LBBM, and CUSIP (referred as “Clus-
ter-effect”). Figure 1 shows the global architecture of the 
proposed online ML-based CVD risk stratification system. 
The CVD risk assessment on a test patient is predicted by 
fusing OBBM, LBBM, CUSIP, and transforming these by 
the offline training ML-based model. The test-classifier can 
be the same as the online classifier. The predicted CVD risk 
is depicted by the binary colour code (red-CVD or green-
No CVD).

The four main innovations of this study are as follows: 
(i) Cluster Effect: For the first time, three diverse types of 
risk predictors such as OBBM, LBBM, and CUSIP are used 
under the ML framework to predict the CVD risk in RA par-
ticipants. (ii) SMOTE Effect: To handle the problem of une-
qual classes (also categorically called class-imbalance), this 
study also shows the performance of an ML-based system 
with an imbalanced and balance dataset using the SMOTE 
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algorithm. (iii) Follow-up Effect: This is the first study that 
provided ML-based CVD risk stratification for RA patients 
at two distinct time points (visit 1: baseline (CVD-CR) 
and visit 2: 3-year follow-up (CVD-3YFU). Three popular 
ML-based algorithms (random forest (RF), support vector 
machine (SVM), and linear discriminant analysis (LDA)) 
are used to investigate the CVD risk presence of participants 
with and without RA. (iv) ML Effect: the performance of 
the ML-based CVD risk assessment system is benchmarked 
against three popular CCVRC (FRS, SCORE, and ASCVD).

Methodology

Patient demographics

This is a single-center cross-sectional design study at two 
different time points (visit 1 and visit 2). Consecutive con-
senting to participate individuals that were examined at the 
outpatient rheumatology, diabetes and hypertension clinics 
of the “LAIKO” general hospital in Athens Greece were 
recruited. All recruited participants were examined at that 
cardiovascular laboratory of our department, to have ultra-
sound tests and to optimize their cardiovascular risk strat-
ification. This study used a total of 542 Greek European 
patients, out of which—at visit 1: baseline—535 individuals 
patients were free of established CVD and 7 patients had 
CVD (CVD-CR), such as stroke, or myocardial infarction, 
or coronary artery syndrome, or peripheral artery disease, 
or coronary heart disease, or death, collectively referred 
as CVE. At visit 2, after a 3-year follow-up (3YFU), out 

of the 542 patients, 8 patients had established CVD. The 
mean age of the study participants with CVD-CR was 
53.07 ± 13.5 years (ranging between 15 and 90 years), mean 
weight was 77.27 ± 17.0 Kgs, 37.5% had hypertension, 76% 
were smokers, and 27.1% had hyperlipidemia.

Ultrasound image acquisition

Carotid and femoral atherosclerotic plaque burden is a sur-
rogate marker for CVE, which is increased in individuals 
with high CVD risk [24, 26–29]. The carotid and femo-
ral ultrasound examination in all study participants were 
performed using GE Vivid (Vivid E9 Ultrasound System, 
GE Healthcare), equipped with a linear probe-type M12L 
(5.6–14 MHz), as presented in our previous study [30]. The 
American Society of Echocardiography (ASE) guidelines 
were used for the ultrasound image acquisition. A dedicated 
and very experienced (more than 4000 patients examined) 
trained technician performed all the measurements. CUSIP 
measurements were recorded from ultrasound scans [30, 31]. 
The American Society of Echocardiography (ASE) Task 
Force [32] recommendations were used for image acquisi-
tion. The patient was made to lie in the supine position with 
the head tilted backwards for examining the carotid arter-
ies. Two-step standardized image acquisition protocol was 
adapted (i) carotid arteries were identified in a transverse 
position orthogonal to the blood flow, and (ii) probe was 
titled by  900 to acquire the far wall of the longitudinal scans 
(parallel to the blood flow) of the carotid arteries. The above 
procedure was used and discussed in our previous studies 
[33–36].

Fig. 1  The global architecture of the proposed ML-based CVD risk stratification system. CVD cardiovascular disease, ML machine learning
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Hypothesis

We hypothesize that (i) Cluster effect: the effect of CUSIP as 
a biomarker in ML framework can improve the CVD detec-
tion in RA and non-RA participants and we believe that the 
accuracy should follow the pattern (OBBM + LBBM + CUSI
P) > (OBBM + LBBM) > OBBM. (ii) Follow-up effect: using 
ML, we were able to predict CVD-3YFU, and we believe 
that the accuracy obtained for CVD-3YFU is better than 
or equivalent to CVD-CR. (iii) SMOTE effect: Since AI 
requires a larger sample size for better training and accu-
racy prediction, we use SMOTE. Therefore, we hypothesize 
that the ML risk prediction using SMOTE 5X is superior to 
ML risk prediction without SMOTE. In continuation, we 
believe that the accuracy using SMOTE 5X for CVD-CR is 
superior to accuracy without SMOTE for CVD-CR. Further, 
the accuracy using SMOTE 5X for CVD-3YFU is superior 
to accuracy without SMOTE for CVD-3YFU. Finally, the 
accuracy using SMOTE 5X for ML-CVRC is superior to 
accuracy without SMOTE for ML-CCVRC. (iv) ML effect: 
lastly, we hypothesize that ML-based calculators for CVD-
CR and CVD-3YFU scenarios are better than CCVRC.

Data preparation using SMOTE

CVD risk detection is a two-class problem. The distribution 
of participants was imbalanced. Considering CVE as an end-
point, the numbers of patients at visit 1 and visit 2 (CVD-CR 
and CVD-3YFU) setups were only seven and eight, respec-
tively. This imbalanced dataset in terms of endpoint would 
result in bias of predicting boundary separation towards the 
majority class and this affects the performance of ML clas-
sifiers. So, to overcome this imbalance class issue, we used 
a well-published and standardized technique called “syn-
thetic minority oversampling technique (SMOTE)” [37]. 
SMOTE algorithm used for balancing the risk classes and 
for data augmentation followed a nearest-neighbour tech-
nique that generated non-overlapping synthetic samples for 
the minority class. After using five times SMOTE (SMOTE 
5X) (n = 2710), the dataset was partitioned in two halves 
using a standardized two-fold cross-validation technique to 
train and evaluate the ML-based system.

Overall machine learning architecture

ML-based algorithms can learn and capture the non-linear, 
and more complex “information” which is available in the 
risk features and risk predictors (consisting of OBBM, 
LBBM, and CUSIP) when together taken as part of the input 
cohort features. ML uses the gold standards (CVE) along 
with the covariates (risk factors) to learn the behaviour and 

patterns in an offline mode to generate ML-based models. 
These are then used to transform the test patient covariates 
into a predicted risk. Such a framework is adopted for CVD-
CR setup and CVD-3YFU setu Since some of the covariates 
(features) are more powerful than other covariates, therefore, 
ML-based framework has the ability to orderly select fea-
tures to increase the overall performance. Such ML-based 
calculators are benchmarked against CCVRC.

The ML architecture follows the standardized architecture 
where the ML offline training model is generated using the 
combination of training data and CVE as ground truth [38]. 
The CVD presence risk is predicted during the online pro-
cess where the test patient data are transformed by the ML 
offline model. The accuracy of such a system is estimated 
using the K2 cross-validation (CV) protocol, where the data 
sets are divided into two parts, 50% used for training and 
the remaining 50% used for testing. This is implemented 
in the cyclic process where the test set is unique. Before 
CV execution and data partitioning, the system undergoes 
preprocessing of the data set using SMOTE algorithm. For 
optimization and preprocessing, we had used the Standard 
Scalar function for mapping the independent covariates in 
the range 0 to 1. Principal component analysis [39] with 
pooling (PCA pooling) was used to select the most signifi-
cant features. PCA pooling selects covariates according to 
the magnitude (from high to low in absolute values) of their 
coefficients. Followed by this, we used Label Encoder to 
encode class values as integers. The performance of the 
system is computed using the following parameters such 
as sensitivity, specificity, positive predictive value, nega-
tive predictive value, false-positive rate, false-negative rate, 
accuracy, and area under curve score. We benchmarked our 
ML-based calculator against CCVRC. The overall system 
architecture is shown in.

Feature selection using two methods: PCA pooling 
and mutual information

PCA pooling is a well-known feature selection technique 
[39, 40] used for minimizing the dimensionality of the data. 
On the other hand, mutual information [41] is a feature 
selection technique that shows which covariate is highly 
significant in predicting the target ground-truth label. The 
PCA pooling technique is used to increase the performance 
of the CVD-CR and CVD-3YFU by finding the best cluster 
order among the OBBM, LBBM, and CUSI The decreas-
ing order of selecting features using PCA pooling is shown 
in Table A1 of Appendix A for both CVD-CR and CVD-
3YFU. The top covariate is the highest predictive power 
(LCB PLQ) and the bottom one is the least power (Total 
number of plaques).



Rheumatology International 

1 3

Training/Testing classifiers and performance 
evaluation metrics

We used 3 types of classifiers such as random forest (RF) 
[42], support vector machine with the radial basis function 
(SVMrbf) [43, 44], and linear discriminant analysis (LDA) 
[45, 46] to perform CVD-CR and CVD-3YFU using the 
combination of 46 covariates and CVE (as ground truth) 
in the ML framework. The theory and the optimization 
parameters of these classifiers are shown in Appendix B. The 
performance evaluation metrics are shown in Appendix C. 
Further, we compare the ML calculators (RF, SVMrbf, and 
LDA) against the conventional calculators (FRS, SCORE, 
and ASCVD) [23, 47].

Experimental protocol

Experiment 1: CVD risk prediction using cross‑validation 
(PCA vs. MI)

The objective of this experiment is to predict the CVD 
risk using the K2 type of CV protocol. In this protocol, 
the patient data are equally divided into 50% training and 
50% testing; keep the ratio of CVD to non-CVD patients. 
The training model is generated (as per Fig. 2) using PCA 
training-based features, and then the model is applied to the 
test features to predict the CVD risk. A confusion matrix is 
determined along with the AUC as part of the performance. 
The objective is to compare and contrast the feature effect 
of the PCA vs. MI feature selection methods using the K2 
CV protocol.

Experiment 2: Study the effect of features on CVD risk 
prediction (Cluster Effect)

The objective of this experiment is to study the effect of the 
features on CVD risk. The accuracy, performance evaluation 
matrices, and ROC are performed for all three clusters using 
PCA pooling, K2 CV protocol, with and without SMOTE 
5X for both CVD-CR and CVD-3YFU. The accuracy of all 
three clusters was compared to study the effect of the feature.

Results

This section presents the accuracy results of the three clas-
sifiers for the CVD-CR and CVD-3YFU experiment while 
using PCA and MI-based feature extraction techniques. In 
the second part of the results, we present the cluster effect in 
SMOTE framework and compare it with without SMOTE. 
The second part of Sect. 5 presents the PE for (a) generation 
of performance matrix parameters and (b) ROC analysis. 
Finally, part three of the section demonstrate the statistical 
tests such as Tukey [48] and Shapiro-Wilks [49] for validat-
ing the significant covariates computed from Chi square (χ2) 
and ANOVA test) [50].

Baseline characteristics

In each participant, 46 variable or CVD risk factors were 
assessed and were partitioned into 3 clusters. (i) cluster 1 
included OBBM (see Table A2 of Appendix A) consist-
ing of baseline characteristics from row number R1 to row 
number R13. This consisted of risk factors such as sex, age, 
weight, height, body mass index (BMI), average systolic 
blood pressure (AvSBP), average diastolic blood pressure 
(AvDBP), heart rate (HR), family history of coronary artery 
disease (Family His CAD), current smoker, hypertension, 
diabetes, and hyperlipidemia. (ii) cluster 2 included both 
OBBM and LBBM (see Table A2 baseline characteristics 
from row number R1 to row number R34), and (iii) cluster 
3 included OBBM, LBBM, and CUSIP (Table A2 baseline 
characteristics from row number R1 to row number R46). 
There are two columns in the participant’s characteristics: 
Part A consists of data recorded at visit 1 and Part B consist 
of the same variable recorded at visit 2 (after 3-year follow-
up). Statistical tests were used to compute the p value. Note 
that in our cohort, we observed that only one more patient 
was added to the CVD pool from visit 1 to visit 2.

A. Significant CVD risk factors and established CVD as 
ground truth at visit 1

  We observed five significant covariates which had p 
value < 0.05 in visit 1 with the presence of CVD events 
as ground truth (CVD-CR): (R10) current smoker with 

Table 1  Cluster Effect: without SMOTE for CVD-CR and CVD-3YFU

RF random forest; SVMrbf support vector machine with radial basis function; LDA linear discriminant analysis; CVD-CR cardiovascular disease-
current risk; CVD-3YFU cardiovascular disease risk-three-year follow-up

SN Clusters CVD-CR CVD-3YFU

LDA SVMrbf RF LDA SVMrbf RF

1 Cluster 1 82.10 ± 14.94% 98.71 ± 0.18% 98.71 ± 0.32% 83.03 ± 13.65% 98.52 ± 0.00% 98.52 ± 0.00%
2 Cluster 2 84.69 ± 14.21% 98.71 ± 0.18% 98.71 ± 0.32% 95.02 ± 3.51% 98.52 ± 0.00% 98.52 ± 0.00%
3 Cluster 3 86.53 ± 11.99% 98.71 ± 0.18% 98.71 ± 0.32% 95.39 ± 2.77% 98.52 ± 0.00% 98.52 ± 0.00%
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p value 0.006, (R16) c-reactive protein (CRP) with 
p value 0.018, (R17) cholesterol (Chol) with p value 
0.023, (R32) low-density lipoprotein(LDL) with p value 
0.026 and (R33) urea (UA) with p value 0.033.

B. Significant CVD risk factors and established CVD as 
ground truth at visit 2

  There were six significant covariates which had p 
value < 0.05 in visit 2 with the presence of CVD as 
ground truth (CVD-CR): (R10) current smoker with 
p value 0.007, (R16) CRP with p value 0.008, (R17) 
Chol with p value 0.010, (R32) LDL with p value 0.017, 
(R33) UA with p value 0.040, and (R34) thyroid-stimu-
lating hormone (TSH) with p value 0.013.

Accuracy for CVD‑CR and CVD‑3YFU (MI vs. PCA 
pooling)

The accuracy comparison of Mutual Information vs. PCA 
pooling is shown in Table A3 of Appendix A. The mean 
accuracy for PCA pooling (97.98%) is superior to the mean 
accuracy of MI (97.06%) for CVD-CR and the mean accu-
racy of PCA pooling (97.48%) is also superior to the mean 
accuracy of MI (97.34%) for CVD-3YFU. All the three clas-
sifiers had greater accuracy for PCA pooling than MI for 
both the experiments (CVD-CR and CVD-3YFU). There-
fore, we had proved that feature selection using PCA pooling 
is better than MI.

Fig. 2  Overall system architecture for ML-based CVD risk strati-
fication system. ML machine learning; AUC  area-under-the-curve; 
OBBM office-based biomarkers; LBBM laboratory-based biomarker; 
CUSIP carotid ultrasound image phenotype; RF random forest; 

SVMrbf support vector machine with radial basis function; LDA lin-
ear discriminant analysis; GT ground truth; CVD cardiovascular dis-
ease
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Effect of clusters on CVD‑CR and CVD‑3YFU

This section presents the effect of the features when taken in 
the form of clusters. In Fig. 3, the bar chart shows the mean 
accuracy (in %) using SMOTE 5X for CVD-CR setup, while 
Fig. 4 shows the mean accuracy (in %) using SMOTE 5X 
for CVD-3YFU setu Both bar charts show the distribution 
of accuracy (z-axis) for the three classifiers (X-axis), for 
the corresponding clusters (Y-axis). Note that cluster 1 is 
OBBM, cluster 2 is OBBM combined with LBBM, while 
cluster 3 is OBBM, LBBM, and CUSI The bar chart for 
CVD-CR in Fig. 3 clearly shows the increase in the accuracy 
due to an increase in covariate strengths (cluster 3 > clus-
ter 2 > cluster 1). This has the same behaviour in Fig. 4 for 
CVD-3YFU. This validates our hypothesis that with an 
increase in information due to covariate, all classifiers show 
better performance. Table 1 shows the cluster effect under 
non-SMOTE conditions, while Table 2 shows the cluster 
effect under SMOTE conditions.

Performance evaluation

This section has two parts: Part A presents the performance 
metrics of three classifiers corresponding to the three clus-
ters in SMOTE 5X framework for CVD-CR and CVD-
3YFU, respectively. Part B shows the ROC curves for six 
classifiers (three ML and three CCVRC) in SMOTE 5X 
framework for cluster 1, cluster 2, and cluster 3 under CVD-
CR condition and CVD-3YFU.

Table 3 shows the performance matrices (PE) for ML 
vs. CCVRC calculators corresponding to three clusters. The 
PE metrics consists of the following attributes: sensitivity, 
specificity, false-positive rate (FPR), false-negative rate 
(FNR), positive predictive value (PPV), negative predictive 
value (NPV), accuracy, and area-under-curve (AUC) along 
with their p value and its ranges. This is represented by col-
umn C1 to column C11 in Table 3. Note that these metrics 
are computed in SMOTE 5X framework for the CVD-CR 

Fig. 3  Mean Accuracy (%) 
using SMOTE 5X for CVD-CR. 
RF: random forest, SVMrbf: 
support vector machine with 
radial basis function, LDA: 
linear discriminant analysis, 
Cluster 1: OBBM, Cluster 2: 
fusion of OBBM, and LBBM, 
and Cluster 3: fusion of OBBM, 
LBBM, and CUSIP

Fig. 4  Mean Accuracy (%) 
using SMOTE 5X for CVD-
3YFU. RF random forest, 
SVMrbf support vector machine 
with radial basis function, LDA 
linear discriminant analysis, 
Cluster 1 OBBM, Cluster 2 
fusion of OBBM, and LBBM, 
and Cluster 3 fusion of OBBM, 
LBBM, and CUSIP
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condition, while Table 4 shows the computation in SMOTE 
5X for CVD-3YFU.

ROC comparison between three types of ML vs. 
three types of CCVRC for all three clusters

A comparison between all three ML classifiers (LDA, 
SVMrbf, and RF) against three CCVRC (FRS, SCORE, and 
ASCVD) for cluster 1 (OBBM), cluster 2 (OBBM + LBBM), 
and cluster 3 (OBBM + LBBM + CUSIP) using SMOTE 5X 
framework are shown in Fig. 5(a, b, c) corresponding to 
CVD-CR). Similar ROC curves can be seen in Fig. 6(a, b, c) 
for CVD-3YFU. The ML-based classifiers performed better 
than the CCVRC and the AUC score of all three ML-based 
classifiers (0.98, p < 0.001) were greater than the AUC score 
(0.76, p < 0.001) of all three CCVRCs for all clusters.

Validation of significant covariates using Tukey/ 
Shapiro–Wilk Tests for CVD risks

In baseline characteristics, Chi square (χ2) test [50] was used 
to compare categorical covariates and the ANOVA test [51] 
was used for continuous covariates. Tukey’s range test, also 
known as “Tukey’s honestly significant difference (HSD) 
posthoc test” [48] was used to study the multiple compari-
sons of CVD risk for both CVD-CR and CVD-3YFU (see 
section S1 of the Supplementary material). Tukey’s test 
always used only those covariates that showed a highly sig-
nificant association with CVD-CR and CVD-3YFU. Sha-
piro–Wilk test [49] (Table A4), a nonparametric test was 
used to study the normality of the continuous risk covariates. 
All the continuous covariates were manifest as mean ± SD 
and categorical covariates were expressed as percentages. 
All the statistical tests were two-tailed as the significance 
cut-off is < 0.05. There were five significant covariates for 
the baseline characteristics in CVD-CR and six significant 
covariates in CVD-3YFU. Shapiro–Wilk tests were needed 
to assure that all the significant covariates from baseline 
characteristics should also be in the Shapiro–Wilk test. 
Tukey HSD posthoc is needed to show that the p value from 
baseline should be the same as p values from Tukey’s test 
for the binary-class CVD risk. The validation of significant 

covariates using Tukey HSD post hoc and Shapiro–Wilk 
test is shown in Table 5 (for CVD-CR) and Table 6 (for 
CVD-3YFU), which signifies that the covariates which had 
significant cut-off p < 0.05 from baseline characteristics are 
highly significant and validated.

Scientific validation

The validation of the CVD risk prediction system can be 
done by considering a validation database whose results 
are known prior. For our system, we used a coronary artery 
database consisting of 500 subjects having 39 covariates. 
The test participants had a carotid ultrasound which was 
conducted at the time of the angiogram [52]. There were 298 
participants who had an angiographic score of high-risk and 
202 participants had no-risk. The validation dataset for all 
participants had a mean age of 64.49 ± 10.6 years (ranging 
from 29 to 95 years), 69.8% were males, 67.59% hyperten-
sion, and 57.59% hyperlipidemia. The baseline characteristic 
of the validation coronary dataset for 500 test participants 
is shown in Table A5. There were 12 significant covariates 
that had a p value < 0.05. We had used a two-fold cross-
validation protocol (K2) along with PCA with pooling for 
best feature selection.

The performance of the cross-validation accuracy for 
all three classifiers (LDA, SVMrbf, and RF), for two-fold 
cross-validation (K2) on the validation coronary dataset, is 
shown in Table 7. In the validation dataset, the ML-based 
classifiers are also superior to the CCVRC calculators. The 
brief accuracy comparison between without SMOTE and 
with SMOTE 5X is shown in Table 7. In the validation coro-
nary dataset, SVMrbf is shown the highest performance of 
84.76% with SMOTE 5X. A brief comparison of the AUC 
score is shown in Table 8. Figure 7 shows the ROC curve 
for SVMrbf and RF in SMOTE 5X framework, both having 
the same value of 0.92.

Our validation study had similar behaviour as the experi-
mental database showing: (i) superior performance of the 
ML-based calculators against CCVRC calculators (Fig. 7), 
(ii) the performance of ML-based calculators with SMOTE 
5X is superior to the performance of the ML-based calcula-
tors without SMOTE (Table 7), (iii) AUC score of ML-based 

Table 2  Cluster Effect: with SMOTE 5X for CVD-CR and CVD-3YFU

RF random forest; SVMrbf support vector machine with radial basis function; LDA linear discriminant analysis; CVD-CR cardiovascular disease-
current risk; CVD-3YFU cardiovascular disease risk-three-year follow-up

SN Clusters CVD-CR CVD-3YFU

LDA SVMrbf RF LDA SVMrbf RF

1 Cluster 1 83.59 ± 0.19% 99.19 ± 0.22% 99.37 ± 0.56% 84.26 ± 0.26% 99.41 ± 0.07% 99.56 ± 0.00%
2 Cluster 2 94.30 ± 1.48% 99.93 ± 0.00% 99.85 ± 0.00% 94.93 ± 2.19% 99.73 ± 0.07% 99.76 ± 0.04%
3 Cluster 3 95.33 ± 1.48% 99.93 ± 0.07% 99.93 ± 0.07% 95.48 ± 1.78% 99.85 ± 0.07% 99.85 ± 0.07%
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calculators with SMOTE 5X is superior to ML-based cal-
culators without SMOTE (Table 8). Thus, the validation 
proved our hypothesis to be true.

Discussions

This is the first pilot study of its kind where the CVD pres-
ence can be detected using current covariates using two-
time points (i) visit 1 current CVE as ground truth, and (ii) 
visit 2 (3-year follow-up) CVE as ground truth. The Athe-
roEdge™ 3.0 (ML) used 46 covariates having both non-
RA and RA patients. Using SMOTE framework and feature 
extraction paradigms such as PCA pooling or MI, our system 

was able to generate superior performance with cross-val-
idation K2 protocol while validating the following hypoth-
esis: (i) Cluster Effect: The ML classifiers showed superior 
performance when carotid image phenotypes were fused 
with conventional and laboratory-based risk factors, unlike 
without carotid image phenotypes(Table 9); (ii) SMOTE 
Effect: CVD detection was superior in SMOTE framework, 
unlike in non-SMOTE framework, both when using cur-
rent CVE (Table 10) or 3YFU CVE (Table 11) (iii) Follow-
up Effect: CVD risk prediction using 3-year CVE showed 
equal or superior to CVD risk prediction with current CVE 
(Table 12); (iv) ML Effect: ML-based calculators showed 
superior performance compared to CCVRC (Table 13). The 
overall ML-based framework is automated and uses the 

Fig. 5  AUC curve for (a) Cluster 1, (b) Cluster 2, and (c) Cluster 3, 
respectively for CVD-CR; RF random forest; SVMrbf support vector 
machine with radial basis function; LDA linear discriminant analysis; 

AUC  area-under-curve; FRS Framingham Risk Score; SCORE sys-
tematic coronary risk evaluation, ASCVD atherosclerotic cardiovascu-
lar disease
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Scikit-learn technique [53], which is an open-source library 
using Python. Our ML-based framework is user-friendly, 
feasible and very flexible to run.

Benchmarking

There are not many AI techniques for the CVD risk 
assessment in cohorts that include rheumatology patients. 

Fig. 6  AUC curve for (a) Cluster 1, (b) Cluster 2, and (c) Cluster 3, 
respectively for CVD-3YFU. RF: random forest; SVMrbf: support 
vector machine with radial basis function; LDA: linear discriminant 

analysis; AUC: area-under-curve; FRS Framingham Risk Score; 
SCORE systematic coronary risk evaluation, ASCVD atherosclerotic 
cardiovascular disease

Table 5  Validating significant 
covariates using Tukey’s 
HSD & Shapiro–Wilk test for 
CVD-CR

Curr-Smoker Current Smoker; CRP C-reactive protein; Chol cholesterol; LDL low-density lipoprotein; UA 
uric acid

SN Covariate Type Tukey’s Test Shapiro–Wilk Test Baseline (Chi-square 
and ANOVA)

Validated

1 Curr-Smoker 0.006  < 0.0001 0.006 ✓
2 CRP 0.018  < 0.0001 0.018 ✓
3 Chol 0.023  < 0.0001 0.023 ✓
4 LDL 0.026  < 0.0001 0.026 ✓
5 UA 0.033  < 0.0001 0.033 ✓
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However, AI techniques have been used to assess the sever-
ity of RA without considering the CVD risk [54–56]. Some 
of the reasons were that there is not much trend between 
people to estimate rheumatoid arthritis in patients due to 
bone join, and there is not much direct link between heart 
diseases on bone problems. This kind of research needs very 
dedicated follow-up and more money is needed for bone pain 
than for heart diseases. Because of that weak link, there are 
very few papers on rheumatology patients, that is why there 
are only seven patients in our rheumatology database who 
had CVD risk assessment [17, 57].

Six out of ten authors have used SVM classifiers for the 
prediction of CVD/stroke risk assessment. Further, five out 
of ten authors used follow-up CVE. Seven out of ten had 
used conventional cardiovascular risk factors as feature 
types, and three out of ten had used PCA-based technique 
for the selection of features. The similarity between other 
authors’ studies and our study is that we had used follow-up 

CVE, PCA-based technique for features selection, and SVM 
classifier for the prediction of CVD risk assessment (see 
Table 14, benchmarking).

A series of ML-based publications were proposed by 
Suri and Jamthikar, which are being summarized as fol-
lows: Jamthikar et al. [58] showed the usage of ML-based 
system (called AtheroRisk-integrated from AtheroPoint, 
Roseville, CA) performs better than the conventional cal-
culator using PCA-based feature extraction system in K10 
paradigm. The database used 13 current risk factors and 34 
carotid image-based phenotypes, totalling 47 covariates. The 
authors used event-equivalent gold standard (EEGS) as per-
centage stenosis in the carotid artery. The ML-framework 
used RF classifier leading an AUC of ML system: 0.80 (95% 
CI: 0.77–0.84) against AUC for CCVRC: 0.68 (95% CI: 
0.64–0.72), showing an improvement of 18%. The method-
ology neither used SMOTE, nor the ground truth had CVE. 
Further, the system did not consist of RA patients. In another 

Table 6  Validating significant 
covariates using Tukey’s HSD 
& Shapiro–Wilk test for CVD-
3YFU

Curr-Smoker Current Smoker; CRP C-reactive protein; Chol cholesterol; LDL low-density lipoprotein; UA 
uric acid

SN Covariate type Tukey’s test Shapiro–Wilk test Baseline (Chi square 
and ANOVA)

Validated

1 Curr-Smoker 0.007  < 0.0001 0.007 ✓
2 CRP 0.008  < 0.0001 0.008 ✓
3 Chol 0.010  < 0.0001 0.010 ✓
4 LDL 0.017  < 0.0001 0.017 ✓
5 UA 0.040  < 0.0001 0.040 ✓
6 TSH 0.013  < 0.0001 0.013 ✓

Table 7  CV accuracy (%) for coronary data without and with 
SMOTE 5X for K2

RF random forest; SVMrbf support vector machine with radial basis 
function; LDA linear discriminant analysis; 5X five times

SN Classifiers Without 
SMOTE

With SMOTE 
5X

% Improvement

1 LDA 64.80 ± 0.00% 70.48 ± 0.95% 0.08
2 SVMrbf 65.20 ± 3.20% 84.76 ± 1.59% 0.23
3 RF 65.20 ± 3.20% 81.75 ± 1.27% 0.20

Table 8  AUC score for coronary data without and with SMOTE 5X 
for K2

RF random forest; SVMrbf support vector machine with radial basis 
function; LDA linear discriminant analysis; 5X five times

SN Classifiers Without 
SMOTE

With 
SMOTE 5X

% Improvement

1 LDA 0.67 0.76 0.11
A2 SVMrbf 0.53 0.92 0.42
3 RF 0.64 0.92 0.30

Fig. 7  AUC curve for K2 and SMOTE 5X for the validation coronary 
dataset. RF: random forest; SVMrbf: support vector machine with 
radial basis function; LDA linear discriminant analysis; AUC  area-
under-curve; FRS Framingham Risk Score; SCORE systematic coro-
nary risk evaluation; ASCVD atherosclerotic cardiovascular disease
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Table 9  Hypothesis: Cluster effect (Cluster3 > Cluster2 > Cluster1) using accuracy with SMOTE 5X

RF random forest; SVMrbf: support vector machine with radial basis function; LDA linear discriminant analysis; CVD-CR cardiovascular dis-
ease-current risk; CVD-3YFU cardiovascular disease risk-three-year follow-up

Clusters CVD-CR CVD-3YFU

LDA SVMrbf RF LDA SVMrbf RF

Cluster 1 (C1) 83.59 ± 0.19% 99.19 ± 0.22% 99.37 ± 0.56% 84.26 ± 0.26% 99.41 ± 0.07% 99.56 ± 0.00%
Cluster 2 (C2) 94.30 ± 1.48% 99.93 ± 0.00% 99.85 ± 0.00% 94.93 ± 2.19% 99.73 ± 0.07% 99.76 ± 0.04%
Cluster 3 (C3) 95.33 ± 1.48% 99.93 ± 0.07% 99.93 ± 0.07% 95.48 ± 1.78% 99.85 ± 0.07% 99.85 ± 0.07%
Hypothesis 

(C3 > C2 > C1)
✓ ✓ ✓ ✓ ✓ ✓

Table 10  Hypothesis: SMOTE 5X performance is superior tow/o SMOTE for CVD-CR

RF random forest; SVMrbf support vector machine with radial basis function; LDA linear discriminant analysis; CVD-CR cardiovascular disease-
current risk; CVD-3YFU cardiovascular disease risk-three-year follow-up

Clusters W/o SMOTE With SMOTE 5X Hypothesis

LDA SVMrbf RF LDA SVMrbf RF

Cluster 1 82.10 ± 14.94% 98.71 ± 0.18% 98.71 ± 0.32% 83.59 ± 0.19% 99.19 ± 0.22% 99.37 ± 0.56% ✓
Cluster 2 84.69 ± 14.21% 98.71 ± 0.18% 98.71 ± 0.32% 94.30 ± 1.48% 99.93 ± 0.00% 99.85 ± 0.00% ✓
Cluster 3 86.53 ± 11.99% 98.71 ± 0.18% 98.71 ± 0.32% 95.33 ± 1.48% 99.93 ± 0.07% 99.93 ± 0.07% ✓

Table 11  Hypothesis: SMOTE 5X performance are superior to w/o SMOTE for CVD-3YFU

RF random forest; SVMrbf support vector machine with radial basis function; LDA linear discriminant analysis; CVD-CR cardiovascular disease-
current risk; CVD-3YFU cardiovascular disease risk-three-year follow-up

Clusters W/o SMOTE With SMOTE 5X Hypothesis

LDA SVMrbf RF LDA SVMrbf RF

Cluster 1 83.03 ± 13.65% 98.52 ± 0.00% 98.52 ± 0.00% 84.26 ± 0.26% 99.41 ± 0.07% 99.56 ± 0.00% ✓
Cluster 2 95.02 ± 3.51% 98.52 ± 0.00% 98.52 ± 0.00% 94.93 ± 2.19% 99.73 ± 0.07% 99.76 ± 0.04% ✓
Cluster 3 95.39 ± 2.77% 98.52 ± 0.00% 98.52 ± 0.00% 95.48 ± 1.78% 99.85 ± 0.07% 99.85 ± 0.07% ✓

Table 12  Hypothesis: performance of CVD-3YFU is better or equivalent to CVD-CR

RF random forest; SVMrbf support vector machine with radial basis function; LDA linear discriminant analysis; CVD-CR cardiovascular disease-
current risk; CVD-3YFU cardiovascular disease risk-three-year follow-up

Clusters CVD-CR CVD-3YFU Hypothesis

LDA SVMrbf RF LDA SVMrbf RF

Cluster 1 83.59 ± 0.19% 99.19 ± 0.22% 99.37 ± 0.56% 84.26 ± 0.26% 99.41 ± 0.07% 99.56 ± 0.00% ✓
Cluster 2 94.30 ± 1.48% 99.93 ± 0.00% 99.85 ± 0.00% 94.93 ± 2.19% 99.73 ± 0.07% 99.76 ± 0.04% ✓
Cluster 3 95.33 ± 1.48% 99.93 ± 0.07% 99.93 ± 0.07% 95.48 ± 1.78% 99.85 ± 0.07% 99.85 ± 0.07% ✓

Table 13  Hypothesis: ML-based calculators are better than CCVRC calculators (using AUC score)

RF random forest; SVMrbf support vector machine with radial basis function; LDA linear discriminant analysis; CVD-CR cardiovascular disease-
current risk; CVD-3YFU cardiovascular disease risk-three-year follow-up

Clusters ML-based calculators CCVRC calculators Hypothesis

LDA SVMrbf RF FRS SCORE ASCVD

CVD-CR 0.99 1.00 1.00 0.79 0.72 0.77 ✓
CVD-3YFU 0.98 1.00 1.00 0.80 0.73 0.77 ✓



Rheumatology International 

1 3

study, Jamthikar et al. [59] showed the use of an ML-based 
classifier called Random Forest for CVD risk prediction 
using 38 covariates that consisted of 13 conventional risk 
factors and 25 CUSIP (6 types of current CUSIP, 6 types of 
10-year CUSIP, 12 types of quadratic CUSIP (harmonics), 

and age-adjusted grayscale median). Using RF classifier and 
Jack Knief (JK) protocol, the ML-based CVD risk assess-
ment system showed an improvement of (~ 57%) against 
the conventional system (AUC = 0.99, p value < 0.001 

Table 14  Benchmarking against ML-based CVD/stroke risk assessment in non-RA cohorts

SN serial num, Nop number of patients, FU follow-up, CVD cardiovascular disease, CUS carotid ultrasound, LD lumen diameter, LR logis-
tic regression, FDR Fisher discriminant ratio, WRS: Wilcoxon rank-sum, GS/GT labels: gold standard/GT labels, PCA: principal component 
analysis, MDMST: minimal depth of maximal subtree, SVMC support vector machine classifier, GMM: Gaussian mixture model, DA discrimi-
nant analysis, RBPNN: Radial basis probabilistic neural network, I-bf: Image-based features, DT Decision tree, K-NN K-Nearest Neighbors, NB 
Naïve Bays, FC Fuzzy Classifier, FA first author, QNN: quantum neural network, MLP: multilayer perceptron, RFC: random forest classifier, 
SOM self organization map, IGR: information gain ranking, DB: database, CCVRC: conventional cardiovascular risk calculators, ANN: artifi-
cial neural network, DWT: discrete wavelet transform, HoS higher-order spectra, FT: features types, CCVR-F: conventional cardiovascular risk 
factors, ACC : accuracy, Se: sensitivity, Sp: specificity, AUC : area under the curve, BS Brier score, PCRS: pooled cohort risk score, and FRS: 
Framingham risk score, C-Index: Concordance index, NW: near walls, FW: far walls

C1 C2 C3 C4 C6 C7 C8 C9 C10
SN FA(Year) Nop FT Selected Fea-

tures
Classifiers GS/GT Label PE Benchmarking 

Against

R1 Gastounioti 
et al. [61]

56 Kinematics 
Features

FDR, PCA, 
WRS

SVM FU data labels ACC: 88% DT, K-NN, DA, 
PNN

R2 Unnikrishnan 
et al. [62]

2406 CCVR-F NA SVM FU data labels Se: 68.2%, Sp: 
85.9%, AUC: 
0.71

FRS

R3 Weng et al. [63] 378,256 CCVR-F - RFC, LR, GBM, 
ANN

FU data labels AUC: 0.764 PCRS

R4 Venkatesh et al. 
[64]

6814 CCVR-F, I-bf, 
& Serum 
Biomarkers

MDMST RFC, Cox, 
LASSO-cox, 
AIC-Cox 
backward 
regression

FU data labels C-Index: 0.81, 
BS: 0.083

PCRS & FRS

R5 Araki et al. [65] 204 I-bf Statistical Test SVM LD-based risk 
labels

ACC: NW: 
95.08%, FW: 
93.47%

–

R6 Banchhor et al. 
[69]

22 Texture & wall-
based features

PCA SVM Carotid plaque 
burden

ACC: 91.28%
AUC: 0.91

–

R7 Kakadiaris et al. 
[70]

6459 CCVR-F - SVM FU data labels Se: 86%, Sp: 
95%, AUC: 
0.92

PCRS

R8 Jamthikar et al. 
[58]

202 CCVR-F and 
CUS I-bf

PCA polling RF Carotid stenosis 
Surrogate 
endpoint of 
CVD

AUC of ML 
system: 0.80 
(95% CI: 
0.77–0.84) 
AUC for 
CCVRC: 
0.68 (95% CI: 
0.64–0.72)

–

R9 Jamthikar et al. 
[59]

202 CCVR-F and 
CUS I-bf

Logistic Regres-
sion

RF LD as Surrogate 
endpoint of 
CVD

AUC: 0.99 
(p < 0.001)

–

R10 Jamthikar et al. 
[60]

202 CCVR-F and 
CUS I-bf

– SVM Surrogate end-
point of CVD

AUC: 0.88 
(p < 0.001)

13 CCVRC

R11 Proposed Study 542 OBBM, LBBM, 
CUSIP

PCA pooling 
& MI

RF, SVMrbf, 
LDA

CVE: (MI, or 
stroke, or 
Death), and 
FU data labels

ACC: 98.40% 
for CVD-
CR and 
98.38% for 
CVD-3YFU, 
AUC: 0.96 
(p < 0.0001)

CCVRC (FRS, 
SCORE, and 
ASCVD)
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vs. AUC = 0.63, p value < 0.001), while considering 202 
patients.

Jamthikar et al. [60], further showed the advantage of 
fusing carotid image-based phenotypes in ML frame-
work using SVM. The authors compared their ML system 
against 13 types of conventional CVD risk calculators 
having the following performances (AECRS2.0 (AUC 
0.83, p < 0.001), QRISK3 (AUC 0.72, p < 0.001), WHO 
(AUC 0.70, p < 0.001), ASCVD (AUC 0.67, p < 0.001), 
FRS-cardio (AUC 0.67, p < 0.01), FRS-stroke (AUC 0.64, 
p < 0.001), MSRC (AUC 0.63, p = 0.03), UKPDS56 (AUC 
0.63, p < 0.001), NIPPON (AUC 0.63, p < 0.001), PRO-
CAM (AUC 0.59, p < 0.001), RRS (AUC 0.57, p < 0.001), 
UKPDS60 (AUC 0.53, p < 0.001), and SCORE (AUC 0.45, 
p < 0.001). The cohort consisted of 202 Japanese patients 
(156 M/46F) having a mean age of 69 ± 11 years. Their sys-
tem showed an improvement of 42% increase in performance 
having an AUC of 0.88 (p < 0.001). Gastounioti et al. [61] 
showed the advantage of kinematic features of the athero-
sclerotic plaque for 56 patients from two different hospitals 
with 15 computer-aided diagnoses (CAD) schemes in an 
ML-based framework with several cross-validation strate-
gies. They used Fisher Discriminant Ratio (FDR), PCA, and 
Wilcoxon Rank-Sum (WRS) for selecting features with fol-
low-up ground truth for the prediction of CVD risk assess-
ment and they got 88% accuracy. Their methodology nei-
ther used CCVRC calculators, nor they had shown a feature 
effect. Further, the system did not consist of RA patients.

Unnikrishnan et al. [62] showed the study of cardiovas-
cular risk assessment in 2406 participants with conven-
tional cardiovascular risk factors in ML-based framework 
using Support Vector Machine classifier (SVM) classifier, 
benchmarking against Framingham risk score. Using SVM, 
the ML-based CVD risk assessment showed an AUC of 
0.71, 68.02% sensitivity (Se), and 85.9% specificity. Their 
methodology neither used feature selection technique nor 
had shown the effect of different clusters. Weng et al. [63] 
showed the improvement of cohort study for cardiovascular 
risk prediction in 378,256 patients from UK family practices 
using random forest classifier (RFC), logistic regression 
(LR), gradient boosting machines (GBM), benchmarking 
against pooled cohort risk score (PCRS), got an overall AUC 
of 0.764. They neither used feature selection technique nor 
had benchmarking ML-based calculators against CCVRC. 
Further, their framework did not consist of RA patients.

Venkatesh et al. [64] predicted the six cardiovascular 
outcomes in comparison to standard cardiovascular risk 
scores and they had used 6814 test patients from the MESA 
(Multi-Ethnic Study of Atherosclerosis), aged between 45 
and 84 years, from four different ethnicities, and six dif-
ferent centres across the United States. Using ML-based 
framework with Minimal Depth of Maximal Subtree as fea-
ture selection, random survival forests technique performed 

better than established risk scores with increased prediction 
accuracy, concordance index (C-Index) of 0.81, and Brier 
Score (BS) of 0.083. Araki et al. [65] showed the study of 
both the near and far walls of the carotid artery in Stroke risk 
assessment for 204 patients with Image-based features (I-bf) 
using Statistical Test as feature selection technique. Using 
SVM, they got an accuracy of 95.08% in near walls, 93.47% 
in far walls, respectively.

A special note on SMOTE

SMOTE [37, 66], also known as synthetic minority over-
sampling technique, is a well-known oversampling method 
where the synthetic samples were generated for the minority 
class. It is used for augmentation and for solving imbal-
ance problems and is preferred in a generalized framework. 
While using SMOTE 5X, there is an increase of perfor-
mance accuracy for (i) LDA classifier from 86.53% to 
95.33%, (ii) SVMrbf classifier from 98.71% to 99.93%, (iii) 
RF classifier from 98.71% to 99.93% for the current CVD-
CR setu The same behaviour was observed when using the 
CVD-3YFU setup, where the accuracy increased in (i) LDA 
classifier from 95.39% to 95.48%, (ii) SVMrbf classifier 
increased from 98.52% to 99.85%, and (iii) RF classifier 
increased from 98.52% to 99.85%. This is because SMOTE 
creates the sample of the minority class, augment the data-
set, and this technique helped to overcome the overfitting 
problem.

A special note on CVD risk assessment 
during follow‑up

Even though the performance of classifiers in the CVD-
3YFU set-up is equal to or better than CVD-CR, the num-
ber of CVE in both scenarios is very low. Only 7 out 542 
had CVE in the CVD-CR setup, while 8 out of 542 had 
CVE in the CVD-3YFU setu This puts a strain on the ML 
classification system even if the SMOTE is activated. Note 
that in most of the clinical trials the CVE is typically < 5%, 
however, in our case, this is < 1.5%. This is one of the major 
weaknesses of our study. One solution would be to partner 
with other clinical centres which have a larger number of 
CVE. The second solution would be having a longer period 
of follow-up, however, this puts the constraint on the eco-
nomics of healthcare. From the ML perspective, we success-
fully demonstrated that ML is stable and comparable in both 
scenarios (CVD-CR and CVD-3YFU) and easily extendable 
for larger period follow-up.

Strengths/Weakness/Extensions

ML-based CVD risk prediction is superior to CCVRC and 
can handle the non-linearity between the covariates, CVE 
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in CVD-CR setup and CVD-3YFU setu This puts ML-
based designs very effective and powerful when carotid 
ultrasound image-based phenotypes are integrated with 
the conventional and laboratory-based biomarkers. Fur-
ther, SMOTE adds a powerful incentive when the sample 
size is small. The proposed system demonstrated a clear 
design where the future follow-ups CVD risks can be com-
puted using the ML framework. While the four hypotheses 
were validated statistically, our dataset had limited cases 
of CVE cases during CVD-CR and CVD-3YFU setups. 
This was partially compensated by the SMOTE-based strat-
egy and the SMOTE-based methodology was better in all 
the classification models. Since this is the first pilot study, 
there is a clear need for extensions to our models. A larger 
number of classification models can be tried, optimize the 
SMOTE paradigms, better cross-validation frameworks can 
be applied, and ensemble methods can be developed for 
the rheumatology framework. There is surely a potential 
of collecting multicenter RA and non-RA datasets to mix-
match the training model designs and even try the AI under 
unseen paradigms in big data framework [65]. Lastly, the 
machine learning models can be extended to deep learning 
frameworks [67, 68].

Conclusions

The proposed study is the first pilot study that used an ML-
based system for CVD detection that used data at two differ-
ent time points to establish associations between character-
istics and current cardiovascular events or 3-year follow-up 
cardiovascular events. Three kinds of classifiers—Random 
Forest, Support Vector Machine, and Linear Discriminant 
Analysis were designed in SMOTE framework and com-
pared against conventional cardiovascular disease CVD risk 
prediction calculators such as FRS, SCORE, and ASCVD. 
Our system demonstrated through-and-through the valida-
tion of the 4-hypothesis labelled as cluster-effect, SMOTE-
effect, ML-effect, and follow-up effect. While using 46 
covariates in 542 patients, the CVD-CR system showed the 
mean accuracy and AUC as 98.40% and 0.98 (p < 0.0001), 
while the CVD-3YFU showed the mean accuracy and ACU 
of 98.39% and 0.98 (p < 0.0001). The ML system was effec-
tive, clinically reliable, and reasonably fast (less than one 
second) during online prediction.

Appendix A

See Tables 15, 16, 17, 18, 19.

Table 15  Ordered list of covariates (selected feature) using PCA 
pooling

CVD-CR CVD-3YFU

Covariates New SN (Old 
SN)

Covariates New SN (Old 
SN)

LCB PLQ 1 (38) K 1 (24)
Height 2 (3) Tg 2 (18)
RICA PLQ 3 (42) CPK 3 (30)
CRP 4 (32) RCCA PLQ 4 (40)
K 5 (24) LCB PLQ 5 (38)
CPK 6 (30) WBC 6 (21)
RCCA PLQ 7 (40) ESR 7 (23)
Tg 8 (18) HDL 8 (17)
WBC 9 (21) Height 9 (3)
Gluc 10 (13) RICA PLQ 10 (42)
LICA PLQ 11 (39) RCB PLQ 11 (41)
Na 12 (25) Na 12 (25)
Urea 13 (27) LCCA PLQ 13 (37)
ESR 14 (23) BMI 14 (4)
PL 15 (22) RCFA PLQ 15 (44)
Diabetes T2D 16 (11) LICA PLQ 16 (39)
HR 17 (7) Crp 17 (32)
RCB PLQ 18 (41) Age 18 (1)
HDL 19 (17) Sex 19 (0)
LCCA PLQ 20 (37) Hypertension 20 (10)
Hg 21 (20) HR 21 (7)
RCFA PLQ 22 (43) PLT 22 (22)
Create 23 (26) Hg 23 (20)
BMI 24 (4) Gluc 24 (13)
Age 25 (1) HCT 25 (19)
AvDBP 26 (6) Create 26 (26)
HCT 27 (19) Urea 27 (27)
TSH 28 (33) Diabetes T2D 28 (11)
Hypertension 29 (10) LCFA PLQ 29 (43)
UA 30 (31) Alt 30 (29)
AvSBP 31 (5) AvDBP 31 (6)
LCFA PLQ 32 (43) UA 32 (31)
Alt 33 (29) TSH 33 (33)
Current Smoker 34 (9) AST 34 (28)
Sex 35 (0) 2PLQ 35 (34)
Hyperlipidemia 36 (12) 1FH CAD 36 (8)
AST 37 (28) Weight 37 (2)
2PLQ 38 (34) AvSBP 38 (5)
1FH CAD 39 (8) Current Smoker 39 (9)
LDL 40 (16) HbA1c 40 (14)
HbA1c 41 (14) Ldl 41 (16)
4C-PLQ 42 (35) Hyperlipidemia 42 (12)
Weight 43 (2) 4C-PLQ 43 (35)
Chol 44 (15) Chol 44 (15)
5F-PLQ 45 (36) 5F-PLQ 45 (36)
3TNPLQ 46 (45) 3TNPLQ 46 (45)
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Table 15  (continued)
SN: Serial Number
1 FH CAD: family history of coronary artery disease
2 PLQ: plaques (Y/N)
3 TNPLQ: total number of plaques
4 C-PLQ: carotid plaque
5 F-PLQ: femoral plaque
AvSBP average systolic blood pressure; Av.DBP average diastolic 
blood pressure; HR heart rate; LCCA PLQ left common carotid artery 
plaque; LCB PLQ left carotid bulb; LICA PLQ left internal carotid 
artery; RCCA PLQ right common carotid artery plaque; RCB PLQ 
right carotid bulb; RICA PLQ right internal carotid artery; Gluc 
glucose; Chol cholesterol; LDL low-density lipoprotein; HDL high-
density lipoprotein; HbA1c hemoglobin A1c; PLT platelet count 
test; ESR erythrocyte sedimentation rate; K potassium; Na Sodium; 
AST aspartate aminotransferase; ALT alanine aminotransferase; CRP 
C-reactive protein; TSH thyroid-stimulating hormone; UA uric acid

Table 16  Baseline characteristics for the rheumatology data for CVD-CR and CVD-3YFU

SN Parameter Overall (542) CVD-CR classes (No CVD and CVD) CVD-3YFU classes (No CVD and CVD)

No CVD (535) CVD (7) p value No CVD (534) CVD (8) p value

Cluster 1: Baseline parameters (OBBM)
 R1 Sex (male) 311(57.38%) 307(98.71) 4(1.29) 0.831 306(98.39) 5(1.61) 0.934
 R2 Age (years) 53.07 ± 13.5 52.99 ± 13.5 58.86 ± 11.3 0.253 53.00 ± 13.5 57.75 ± 11.0 0.323
 R3 Weight (kg) 77.27 ± 17.0 77.26 ± 17.1 78.04 ± 14.4 0.904 77.24 ± 17.1 79.47 ± 14.0 0.713
 R4 Height (meter) 1.65 ± 0.1 1.65 ± 0.1 1.63 ± 0.1 0.568 1.65 ± 0.1 1.63 ± 0.1 0.538
 R5 BMI (kg/m2) 28.17 ± 5.3 28.16 ± 5.3 29.14 ± 4.3 0.626 28.15 ± 5.3 29.71 ± 4.3 0.406
 R6 AvSBP (mmHg) 130.61 ± 19.1 130.60 ± 19.2 130.86 ± 14.4 0.972 130.60 ± 19.2 130.62 ± 13.5 0.998
 R7 AvDBP (mmHg) 78.44 ± 11.0 78.44 ± 11.1 78.86 ± 8.1 0.920 78.43 ± 11.1 79.25 ± 7.7 0.835
 R8 HR (bpm) 68.31 ± 10.5 68.37 ± 10.4 64.14 ± 11.7 0.290 68.38 ± 10.5 63.75 ± 11.0 0.215
 R9 1FH CAD (%) 72(13.3%) 71(98.6%) 1(1.4%) 0.630 70(97.2%) 2(2.8%) 0.646
 R10 Current Smoker ┼ 0.76 ± 0.8 0.75 ± 0.8 1.57 ± 0.7 0.006 0.75 ± 0.8 1.50 ± 0.7 0.007
 R11 Hypertension (mmHg) 203(37.5%) 198(97.5%) 5(2.5%) 0.140 197(97.0%) 6(3.0%) 0.065
 R12 Diabetes T2D (mg/dl) 0.36 ± 0.7 0.36 ± 0.7 0.29 ± 0.5 0.785 0.36 ± 0.7 0.25 ± 0.4 0.663
 R13 Hyperlipidemia (%) 147(27.1%) 143(97.3%) 4(2.7%) 0.171 142(96.6%) 5(3.4%) 0.062

Cluster 2: OBBM + LBBM
 R14 Gluc (mmol/l) 102.61 ± 31.5 102.55 ± 31.6 107.14 ± 28.2 0.703 102.58 ± 31.6 104.75 ± 27.2 0.847
 R15 HbA1c (mg/dl) 5.94 ± 0.9 5.93 ± 0.9 6.23 ± 0.7 0.372 5.93 ± 0.9 6.14 ± 0.7 0.511
 R16 Chol ┼ (mg/dl) 202.93 ± 37.9 203.36 ± 37.6 170.57 ± 46.7 0.023 203.44 ± 37.6 168.88 ± 43.9 0.010
 R17 LDL┼ (mg/dl) 125.02 ± 32.1 125.37 ± 31.9 98.14 ± 34.9 0.026 125.42 ± 31.9 98.25 ± 32.7 0.017
 R18 HDL (mg/dl) 57.23 ± 15.2 57.30 ± 15.2 52.29 ± 16.6 0.386 57.33 ± 15.1 50.75 ± 16.1 0.224
 R19 Tg (mg/dl) 110.10 ± 57.2 110.17 ± 57.4 104.71 ± 39.9 0.802 110.21 ± 57.4 102.62 ± 37.7 0.710
 R20 Hct (mg/dl) 41.27 ± 3.5 41.29 ± 3.5 39.84 ± 2.4 0.285 41.29 ± 3.6 39.92 ± 2.2 0.281
 R21 Hg (mg/dl) 13.69 ± 1.7 13.70 ± 1.7 12.89 ± 1.0 0.220 13.70 ± 1.7 12.99 ± 1.0 0.252
 R22 WBC (K/ul) 6836.75 ± 1766.9 6838.22 ± 1777.5 6724.29 ± 483.4 0.866 6830.06 ± 1769.1 7283.75 ± 1547.7 0.472
 R23 PLT (mg/dl) 248.89 ± 68.0 248.69 ± 68.0 264.29 ± 69.4 0.548 248.82 ± 68.0 253.62 ± 70.8 0.843
 R24 ESR (mm/hr) 15.46 ± 13.1 15.34 ± 12.6 24.71 ± 33.8 0.060 15.35 ± 12.6 23.00 ± 31.9 0.102
 R25 K (mEq/l) 4.38 ± 0.3 4.38 ± 0.3 4.31 ± 0.2 0.595 4.38 ± 0.3 4.39 ± 0.2 0.939
 R26 Na (mEq/l) 140.70 ± 2.0 140.70 ± 2.0 141.10 ± 1.7 0.592 140.69 ± 2.0 141.34 ± 1.7 0.360
 R27 Create (mEq/l) 0.85 ± 0.2 0.85 ± 0.2 0.90 ± 0.2 0.536 0.85 ± 0.2 0.89 ± 0.2 0.631
 R28 Urea (mg/dl) 33.36 ± 9.4 33.30 ± 9.4 37.93 ± 9.7 0.194 33.29 ± 9.4 37.44 ± 9.2 0.215
 R29 AST (u/l) 21.25 ± 7.9 21.23 ± 7.9 22.61 ± 3.0 0.646 21.25 ± 7.9 21.29 ± 4.5 0.990
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Table 16  (continued)

SN Parameter Overall (542) CVD-CR classes (No CVD and CVD) CVD-3YFU classes (No CVD and CVD)

No CVD (535) CVD (7) p value No CVD (534) CVD (8) p value

 R30 ALT (u/l) 24.51 ± 14.5 24.54 ± 14.6 22.71 ± 4.1 0.742 24.55 ± 14.6 21.75 ± 4.6 0.589
 R31 CPK (mg/l) 95.62 ± 67.7 95.94 ± 68.1 71.07 ± 13.4 0.335 95.96 ± 68.1 73.19 ± 13.8 0.346
 R32 UA┼ (mg/l) 4.60 ± 1.2 4.61 ± 1.2 3.62 ± 0.3 0.033 4.61 ± 1.2 3.72 ± 0.4 0.040
 R33 CRP┼ (mg/l) 4.27 ± 5.5 4.20 ± 5.4 9.19 ± 11.4 0.018 4.19 ± 5.4 9.41 ± 10.7 0.008
 R34 TSH (mlU/l) 1.62 ± 0.7 1.61 ± 0.7 1.78 ± 0.3 0.558 1.61 ± 0.7 2.27 ± 1.3 0.013

Cluster 3: OBBM + LBBM + CUSIP
 R35 2PLQ  (mm2) 260(48.0%) 255(98.1%) 5(1.9%) 0.384 254(97.7%) 6(2.3%) 0.236
 R36 4C-PLQ  (mm2) 187(34.5%) 183(97.9%) 4(2.1%) 0.385 182(97.3%) 5(2.7%) 0.192
 R37 5F-PLQ  (mm2) 190(35.1%) 187(98.4%) 3(1.6%) 0.971 186(97.9%) 4(2.1%) 0.604
 R38 LCCA PLQ  (mm2) 15(2.8%) 15(100.0%) 0(0.0%) 0.478 15(100.0%) 0(0.0%) 0.545
 R39 LCB PLQ  (mm2) 119(22.0%) 117(98.3%) 2(1.7%) 0.973 117(98.3%) 2(1.7%) 0.825
 R40 LICA PLQ  (mm2) 39(7.2%) 39(100.0%) 0(0.0%) 0.996 38(97.4%) 1(2.6%) 0.917
 R41 RCCA PLQ  (mm2) 11(2.0%) 11(100.0%) 0(0.0%) 0.334 11(100.0%) 0(0.0%) 0.394
 R42 RCB PLQ  (mm2) 132(24.4%) 129(97.7%) 3(2.3%) 0.481 128(97.0%) 4(3.0%) 0.198
 R43 RICA PLQ  (mm2) 25(4.6%) 25(100.0%) 0(0.0%) 0.748 25(100.0%) 0(0.0%) 0.824
 R44 LCFA PLQ  (mm2) 139(25.6%) 137(98.6%) 2(1.4%) 0.797 136(97.8%) 3(2.2%) 0.715
 R45 RCFA PLQ  (mm2) 164(30.3%) 162(98.8%) 2(1.2%) 0.752 161(98.2%) 3(1.8%) 0.951

 R46 3TNPLQ  (mm2) 1.19 ± 1.6 1.19 ± 1.6 1.29 ± 0.9 0.867 1.18 ± 1.6 1.62 ± 1.2 0.429

┼  Significant cutoff of risk covariate is p < 0.05
1 FH CAD family history of coronary artery disease
2 PLQ plaques (Y/N)
3 TNPLQ total number of plaques
4 C-PLQ: carotid plaque
5 F-PLQ: femoral plaque
AvSBP: average systolic blood pressure; Av.DBP: average diastolic blood pressure; HR: heart rate; LCCA PLQ: left common carotid artery 
plaque; LCB PLQ: left carotid bulb; LICA PLQ: left internal carotid artery; RCCA PLQ: right common carotid artery plaque; RCB PLQ right 
carotid bulb; HbA1c hemoglobin A1C; RICA PLQ right internal carotid artery; Gluc glucose; Chol: cholesterol; LDL low-density lipoprotein; 
HDL high-density lipoprotein; Tg triglyceride; Hct hematocrit; HbA1c hemoglobin A1c; PLT platelet count test; ESR erythrocyte sedimentation 
rate; K potassium; Na Sodium; AST aspartate aminotransferase; ALT alanine aminotransferase; CRP C-reactive protein; UA uric acid

Table 17  Accuracy comparison 
MI (with top 50% MI scores) vs. 
PCA pooling

FS feature selection, RF random forest; SVMrbf support vector machine with radial basis function; LDA 
linear discriminant analysis; CVD-CR cardiovascular disease-current risk; CVD-3YFU cardiovascular dis-
ease risk-three-year follow-up

Classifiers CVD-CR CVD-3YFU

No FS MI PCA pooling No FS MI PCA pooling

RF 97.26% 98.53% 98.71% 98.53% 98.53% 98.52%
SVMrbf 95.59% 96.32% 98.71% 97.06% 98.53% 98.52%
LDA 95.59% 96.32% 96.53% 94.85% 94.96% 95.39%
Mean 96.15% 97.06% 97.98% 96.81% 97.34% 97.48%
SD 0.01 0.01 0.001 0.02 0.02 0.02
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Table 18  Shapiro Test p values 
for 46 covariates in CVD-CR 
and CVD-3YFU frameworks

1 FH CAD: family history of coronary artery disease
2 PLQ: plaques (Y/N)
3 TNPLQ: total number of plaques; 4C-PLQ carotid plaque; 5F-PLQ femoral plaque; AvSBP average systolic blood 
pressure; Av.DBP average diastolic blood pressure; HR heart rate; LCCA PLQ left common carotid artery Plaque; 
LCB PLQ left carotid bulb; LICA PLQ left internal carotid artery; RCCA PLQ right common carotid artery plaque; 
RCB PLQ right carotid bulb; RICA PLQ right internal carotid artery; Gluc glucose; Chol cholesterol; LDL low-den-
sity lipoprotein; HDL high-density lipoprotein; HbA1c hemoglobin A1c; PLT platelet count test; ESR erythrocyte 
sedimentation rate; K potassium; Na Sodium; AST: aspartate aminotransferase; ALT alanine aminotransferase; CRP 
C-reactive protein; TSH thyroid-stimulating hormone; UA: uric acid

SN Covariates CVD-CR CVD-3YFU

Overall No CVD CVD Overall No CVD CVD

R1 Sex  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R2 Age  < 0.0001  < 0.0001 0.400  < 0.0001  < 0.0001 0.700
R3 Weight  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R4 Height  < 0.0001  < 0.0001 0.500  < 0.0001  < 0.0001 0.400
R5 BMI  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R6 AvSBP  < 0.0001  < 0.0001 0.200  < 0.0001  < 0.0001 0.200
R7 AvDBP  < 0.0001  < 0.0001 0.200  < 0.0001  < 0.0001 0.300
R8 HR  < 0.0001  < 0.0001 0.300  < 0.0001  < 0.0001 0.200
R9 1FH CAD  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R10 Current Smoker  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R11 Hypertension  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R12 Diabetes T2D  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R13 Hyperlipidemia  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R14 Gluc  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R15 HbA1c  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R16 Chol  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R17 LDL  < 0.0001  < 0.0001 0.300  < 0.0001  < 0.0001 0.200
R18 HDL  < 0.0001  < 0.0001 0.900  < 0.0001  < 0.0001 0.900
R19 Tg  < 0.0001  < 0.0001 0.900  < 0.0001  < 0.0001 0.900
R20 HCT  < 0.0001  < 0.0001 0.500  < 0.0001  < 0.0001 0.400
R21 Hg  < 0.0001  < 0.0001 0.500  < 0.0001  < 0.0001 0.900
R22 WBC  < 0.0001  < 0.0001 0.200  < 0.0001  < 0.0001  < 0.0001
R23 PLT  < 0.0001  < 0.0001 0.100  < 0.0001  < 0.0001 0.100
R24 ESR  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R25 K  < 0.0001  < 0.0001 0.100  < 0.0001  < 0.0001 0.200
R26 Na  < 0.0001  < 0.0001 0.300  < 0.0001  < 0.0001 0.200
R27 Create  < 0.0001  < 0.0001 0.100  < 0.0001  < 0.0001  < 0.0001
R28 Urea  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R29 AST  < 0.0001  < 0.0001 0.200  < 0.0001  < 0.0001 0.500
R30 ALT  < 0.0001  < 0.0001 0.800  < 0.0001  < 0.0001 0.500
R31 CPK  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R32 UA  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R33 CRP  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R34 TSH  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R35 2PLQ  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R36 4C-PLQ  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R37 5F-PLQ  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R38 LCCA PLQ  < 0.0001  < 0.0001 1.000  < 0.0001  < 0.0001 1.000
R39 LCB PLQ  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R40 LICA PLQ  < 0.0001  < 0.0001 1.000  < 0.0001  < 0.0001  < 0.0001
R41 RCCA PLQ  < 0.0001  < 0.0001 1.000  < 0.0001  < 0.0001 1.000
R42 RCB PLQ  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R43 RICA PLQ  < 0.0001  < 0.0001 1.000  < 0.0001  < 0.0001 1.000
R44 LCFA PLQ  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R45 RCFA PLQ  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
R46 3TNPLQ  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001 0.200
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Table 19  Baseline 
characteristics for the validation 
coronary database

┼  Significant cutoff of risk covariate is p < 0.05 (12 covariates); 1ADba: Ave Dias before angio; 2ASba: 
Avg Sys before angio; 3FHPCVD: Family Hx of Premature CVD; 4FHD: Family Hx of Diabetes; 5HCRI: 
HMG-Co Reductase Inhibitors (Statins); 6OAA: Other Antilipemic Agents (not statins); 7CCB: Calcium 
Channel Blockers; 8AP/AC: Anti-Platelet/Anti-Coagulants; 9AANSAIDS: Anti-Anginals and NSAIDS; 
10  N-IDM: Non-Insulin Diabetes Medications; MPH: maximum plaque height; TPA: total plaque area; 
IPN: intra-plaque neovascularization, NSAIDS: non-steroidal anti-inflammatory drugs; ARB: angiotensin 
receptor blocker; ACE: angiotensin-converting enzyme; BMI: body mass index, T1D: Type 1 diabetes, 
T2D: Type 2 diabetes

SN Parameter Overall AngioScore classes (2 class) p value

No-Risk High Risk

R1 Age┼ 64.49 ± 10.5 62.76 ± 10.9 65.67 ± 10.1 0.002
R2 Caucasian 486(97.2%) 195(40.1%) 291(59.9%) 0.641
R3 1ADba 76.74 ± 13.7 76.84 ± 14.0 76.67 ± 13.5 0.897
R4 Pre-Diabetic 20(4.0%) 7(35.0%) 13(65.0%) 0.787
R5 Diabetes T1D 5(1.0%) 3(60.0%) 2(40.0%) 0.660
R6 Diabetes  T2D┼ 114(22.8%) 33(28.9%) 81(71.1%) 0.006
R7 Diabetes (any)┼ 118(23.6%) 36(30.5%) 82(69.5%) 0.016
R8 Hypertension 338(67.6%) 126(37.3%) 212(62.7%) 0.050
R9 Hyperlipidemia┼ 288(57.6%) 98(34.0%) 190(66.0%) 0.001
R10 2ASba 135.35 ± 21.4 135.01 ± 20.9 135.59 ± 21.8 0.767
R11 Current  Smoker┼ 100(20.0%) 29(29.0%) 71(71.0%) 0.013
R12 Casual Smoker 15(3.0%) 5(33.3%) 10(66.7%) 0.765
R13 Previous Smoker 218(43.6%) 87(39.9%) 131(60.1%) 0.916
R14 Smoking  Hx┼ 330(66.0%) 120(36.4%) 210(63.6%) 0.014
R15 Sex┼ 349(69.8%) 119(34.1%) 230(65.9%)  < 0.0001
R16 GFR┼ 78.96 ± 18.2 81.02 ± 17.6 77.57 ± 18.4 0.037
R17 Creatinine┼ 83.99 ± 22.6 80.89 ± 20.9 86.10 ± 23.4 0.011
R18 Obesity 215(43.0%) 98(45.6%) 117(54.4%) 0.050
R19 BMI 30.41 ± 6.3 30.82 ± 6.6 30.14 ± 6.0 0.228
R20 3FHPCVD 146(29.2%) 62(42.5%) 84(57.5%) 0.614
R21 4FHD 195(39.0%) 76(39.0%) 119(61.0%) 0.670
R22 Drinks/wk 4.86 ± 10.4 4.64 ± 9.2 5.00 ± 11.1 0.706
R23 Angina 124(24.8%) 47(37.9%) 77(62.1%) 0.584
R24 Family Hx of CVD 321(64.2%) 123(38.3%) 198(61.7%) 0.240
R25 5HCRI┼ 272(54.4%) 94(34.6%) 178(65.4%) 0.005
R26 6OAA 9(1.8%) 4(44.4%) 5(55.6%) 0.926
R27 ACE Inhibitors 191(38.2%) 72(37.7%) 119(62.3%) 0.382
R28 ARBs Angiotensis 45(9.0%) 13(28.9%) 32(71.1%) 0.136
R29 Alpha-Blockers 30(6.0%) 10(33.3%) 20(66.7%) 0.534
R30 Beta-Blockers┼ 236(47.2%) 77(32.6%) 159(67.4%) 0.001
R31 7CCB 93(18.6%) 37(39.8%) 56(60.2%) 0.987
R32 8AP/AC┼ 368(73.6%) 131(35.6%) 237(64.4%)  < 0.0001
R33 Diuretics 99(19.8%) 41(41.4%) 58(58.6%) 0.908
R34 9AANSAIDS 81(16.2%) 29(35.8%) 52(64.2%) 0.425
R35 Insulin 38(7.6%) 10(26.3%) 28(73.7%) 0.095
R36 10 N-IDM 72(14.4%) 22(30.6%) 50(69.4%) 0.087
R37 MPH 2.64 ± 1.4 2.59 ± 1.3 2.67 ± 1.4 0.570
R38 TPA 47.68 ± 44.3 45.08 ± 41.7 49.45 ± 45.9 0.280
R39 IPN 1.16 ± 0.8 1.11 ± 0.8 1.19 ± 0.8 0.240
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Appendix B

Three Classifiers

A. Random forest
  RF is an ensemble ML-based learning algorithm that 

is comprised of various decision trees (DT). Each DT in 
the RF classifier receives a complete covariate set and 
performs the classification of the CVD risk. It follows a 
voting-based method, where the independent risk pre-
dictions by all DT are combined, and final risk predic-
tion is performed using majority voting. Table 20 shows 
the set of tuning parameters used in the RF classifier.

B. Support Vector Machine with radial the basis function
  Support Vector Machine (SVM) splits the input data-

set samples into two classes that maximize the margin 
between two classes using optimal decision boundary. 
The classification framework is binary and was per-
formed using a “one-vs-all” method. When the input 
dataset is non-linear (linearly inseparable), we use ker-
nel functions such as RBF (kernel = “RBF”). When the 
input dataset is linearly separable, we use the linear 
kernel function (kernel = “linear”). We used a “Rand-
omizedSearchCV” algorithm with RBF kernel for the 
optimization of tuning parameters. The three optimized 
tuning parameters used for the SVM classifier with the 
“RBF” kernel are provided in Table 21.

C. Linear discriminant analysis
  Linear discriminant analysis (LDA)is a dimensionality 

reduction method and is a generalization of Fisher LDA. 
This is an ML-based paradigm and is used to find the 
linear combination of covariates that classify into binary 
class or multiclass, where each class has equal covari-
ance matrices. The set of optimized tuning parameters 
required for the LDA classifier are provided in Table 22.

Appendix C

Performance evaluation metrics

The performance of all three ML-based classifiers (LDA, 
SVMrbf, and RF) and all three CCVRC calculators (FRS, 
SCORE, and ASCVD) [23, 47] was assessed using various 
metrics such as sensitivity, specificity, false-positive rate 
(FPR), false-negative rate (FNR), positive predictive value 
(PPV), negative predictive value (NPV), accuracy and area-
under-the-curve (AUC). The AUC score for all the matrices 

was computed using a 2X2 confusion matrix that contains 
false-positive (FP), false negative (FN), true-positive (TP), 
and true-negative (TN). The 2X2 confusion matrix com-
pares the two categorical covariates— ground-truth labels 
and the predicted risk labels from the ML-based classifiers. 
The true-positive (TP) shows the total number of times the 
classifier has correctly recognized the positive class and 
the true-negative (TN) shows the total number of times the 
classifier has correctly recognized the negative class. The 
false-positive defines the total number of times the classifier 
has correctly allocated a positive label to the patient with 
respect to the actual negative ground-truth label. Similarly, 
the false-negative defines the total number of times the clas-
sifier has correctly allocated a negative label to the patient 
with respect to the actual positive ground-truth label. Since 
we have binary-class risk labels, we first compute confusion 

Table 20  Optimized tuning parameters of the RF algorithm

SN Tuning parameter Optimized value

1 Total number of trees 617
2 Maximum depth 142
2 Minimum sample split 7
3 Minimum sample leaf 4
4 Criterion Gini

Table 21  Three optimized tuning parameters of the SVM algorithm

SN Tuning parameters opti-
mized 
value

1 Kernel Radial 
basis 
func-
tion 
(RBF)

2 C 2
3 Gamma 0.1

Table 22  Three optimized tuning parameters of the LDA algorithm

SN Tuning Parameters Optimized Value

1 Solver Singular value 
decomposition

2 Tol 1.0e-4
3 Store Covariance False
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matrices and the corresponding four sets of TP, TN, FP and 
FN, then we use these four sets to find the performance 
matrices involving sensitivity, specificity, FPR, FNP, PPV, 
NPV, and accuracy (Table 23).

In this study, we also calculate the receiver operating 
characteristics (ROC) curve. It is a plot between the true-
positive rate and the false-positive rate. In other word, it is 
a plot between sensitivity and 100-specificity of the prob-
ability predictions of the ML classifiers at various cut-off 
points. Every point on the ROC curve indicates the sensitiv-
ity/specificity pair at the cut-off point. The upper left corner 
of the plot shows 100% sensitivity and specificity.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00296- 021- 05062-4.
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