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Self-organized neuronal oscillations rely on precisely orchestrated ensemble activity
in reverberating neuronal networks. Chronic, non-malignant disorders of the brain are
often coupled to pathological neuronal activity patterns. In addition to the characteristic
behavioral symptoms, these disturbances are giving rise to both transient and persistent
changes of various brain rhythms. Increasing evidence support the causal role of these
“oscillopathies” in the phenotypic emergence of the disease symptoms, identifying
neuronal network oscillations as potential therapeutic targets. While the kinetics of
pharmacological therapy is not suitable to compensate the disease related fine-scale
disturbances of network oscillations, external biophysical modalities (e.g., electrical
stimulation) can alter spike timing in a temporally precise manner. These perturbations
can warp rhythmic oscillatory patterns via resonance or entrainment. Properly timed
phasic stimuli can even switch between the stable states of networks acting as
multistable oscillators, substantially changing the emergent oscillatory patterns. Novel
transcranial electric stimulation (TES) approaches offer more reliable neuronal control
by allowing higher intensities with tolerable side-effect profiles. This precise temporal
steerability combined with the non- or minimally invasive nature of these novel TES
interventions make them promising therapeutic candidates for functional disorders of
the brain. Here we review the key experimental findings and theoretical background
concerning various pathological aspects of neuronal network activity leading to the
generation of epileptic seizures. The conceptual and practical state of the art of
temporally targeted brain stimulation is discussed focusing on the prevention and early
termination of epileptic seizures.
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INTRODUCTION: PHYSIOLOGICAL AND
PATHOLOGICAL BRAIN OSCILLATIONS

Neuronal oscillations are rhythmic neuronal activities that
synchronize different operations within and across neuronal
networks (Buzsáki, 2009). The broadband neural signals
recorded as the potential fluctuations of the extracellular
electrical field can be analyzed to extract signals of various
frequency bands. On one hand, the low frequency local field
potentials (LFPs), representing the summed transmembrane
currents from numerous neurons and on the other hand
fast transients (lasting less than a millisecond) represent action
potentials (APs) (Buzsáki et al., 2012). Action potentials and LFPs
present in raw recording traces can be decomposed by Fourier
transformation into various frequency bands on a spectrogram
with LFPs and action potentials inhabiting distinct frequency
bands (in general < 250 Hz for physiological LFPs, and > 250 Hz
for single-unit action potentials). These can be discriminated by
applying analog or digital filtering to preferentially pass signals
in lower or higher frequency bands, respectively (Hong and
Lieber, 2019). The primary origin of neuronal oscillations is the
periodical synchronization of synaptic potentials influenced by
the periodical fluctuation of excitability in clusters of neurons.
The rhythmicity hail from network structures comprising a
variety of distinct cell types and population activities (Buzsáki
and Watson, 2012). In addition to synaptic activity extracellular
field potentials can influence the neuronal membrane potential
via ephaptic coupling resulting in altered neuronal firing
(Anastassiou et al., 2011). Hence, oscillations and neuronal
activities in the brain are cohesive and self-arranged. Oscillations
offer an effective potential mechanism for integrating the activity
of single neurons toward microcircuits and extensive functional
neuronal networks facilitating interregional communication and
information processing (Engel et al., 2001; Buzsáki and Draguhn,
2004). Oscillations indicate applicable network conditions,
impact neuronal population operations in the network; and
constitute the dynamics of macroscopic neuronal networks
intimately linked to the behavioral phenotypes on several levels
of biological systems (Leuchter et al., 2015). Therefore, the
concurrence of altered pathological oscillations and abnormal
behavioral phenotypes in neurological and psychiatric diseases is
unsurprising; these disorders can be regarded as “Oscillopathies”
(Mathalon and Sohal, 2015). Pathologic oscillations represent
multiple interactions and a causal relationship with abnormal
brain states and functions, respectively. Thus, the pathological
oscillations constitute a potential target for therapeutic
intervention by applying the recently developed time-and
space-targeted brain stimulation technologies (Berényi
et al., 2012; Vöröslakos et al., 2018), an approach termed
“Oscillotherapeutics” (Takeuchi and Berényi, 2020).

Abbreviations: AP, action potential; AR, autoregressive; AUC, area under
the curve; CRG, Cognitive Rhythm Generator; DBS, deep brain stimulation;
DLPFC, dorsolateral prefrontal cortex; ECG, electrocardiogram; EEG,
electroencephalogram; ETP, educated temporal prediction; EPSC, excitatory
postsynaptic current; FC, functional connectivity; FFT, Fast Fourier transform;
ISP, intersectional-short pulse; LFP, local field potential; HD-tDCS, high definition
transcranial direct current stimulation; HD-tACS, high definition transcranial

EPILEPSY

Epilepsy is a typical oscillopathy, where the altered neuronal
activity results in altered oscillations leading to impaired
brain functions. Epilepsy is a common neurological disease
characterized by a chronic susceptibility to develop recurring
epileptic seizures (Fisher et al., 2014). An epileptic seizure is
a temporal behavioral alteration that can mediate objective,
noticeable (e.g., muscular contractions) or subjective, covert
manifestations (e.g., loss of consciousness). These alterations are
presumably generated by hypersynchronous neural activities in
various brain networks. Electroencephalography (EEG) is a non-
invasive method which, measures the electrical activity of large,
synchronously firing populations of neurons with electrodes
placed on the scalp. The synchronized neural activity is evident
in EEG or intracerebral LFP records during seizures (termed
ictal periods) and will lead to specific behavioral manifestations,
such as tonic and clonic convulsions among others. Effective
pharmacotherapy and neurosurgical intervention in epileptic
patients can systematically decrease the occurrence rate of
electrographic and behavioral seizures (Glauser et al., 2006).
In addition, time-targeted intervention of the abnormal neural
oscillations characterizing preictal or ictal states can curtail
their behavioral manifestation (Morrell, 2011) indicating a
causal association between pathological oscillations and the
symptoms of epilepsy.

CLINICAL SIGNIFICANCE

The Role of the Hippocampus in
Temporal Lobe Epilepsy
Temporal lobe epilepsy (TLE) is frequently pharmaco-resistant
and its uncontrolled generalized seizures increase the risk of
sudden unexpected death in epilepsy (Bone et al., 2012; Massey
et al., 2014). Surgical resection of the seizure focus is irreversible,
massively invasive and can frequently lead to cognitive disorders
(Hamberger and Drake, 2006). Furthermore, its implementation
in patients with ambiguous or multifocal bilateral TLE is not
feasible (Berg et al., 2003; Holmes et al., 2003). Multiple studies
have shown altered functional networks in TLE, including those
explicitly involving the seizure focus in the hippocampus (Bettus
et al., 2010; Englot et al., 2016). Functional network alterations
have been reported to relate to neurocognitive disability and
surgical treatment outcome (Holmes et al., 2014; Morgan
et al., 2017, 2020b). On the other hand, it is well known
that physiological hippocampal function requires a complex
and particular spatiotemporal activation system (Cooper and
Ritchey, 2019). Even in the case of high frequency oscillations
the phase coherence of these signals fluctuates on the order of
seconds. A recent study showed that increases in the variance

alternating current stimulation; MDD, major depressive disorder; MRI, magnetic
resonance imaging; PFC, prefrontal cortex; ROC, receiver operating characteristic;
SED, spontaneous epileptiform discharge; STN, subthalamic nucleus; tACS,
transcranial alternating current stimulation; tDCS, transcranial direct current
stimulation; TES, transcranial electrical stimulation; TI, temporal interference;
TLE, temporal lobe epilepsy; TMS, transcranial magnetic stimulation.
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of signal fluctuations occurring at the hippocampal seizure
focus in patients with TLE might contribute to disruptions in
physiological functional connectivity (FC) network dynamics
that contribute to decreases in static hippocampal FC on fMRI
scans (Morgan et al., 2020a).

We have previously shown that closed-loop electrical
stimulation of the medial septum can quickly terminate
intrahippocampal seizures while also suppressing their secondary
generalization in a rat kindling model (Takeuchi et al., 2021). Still,
as was the case for DBS, further translational research is required
to employ the transcranial techniques.

Absence Epilepsy
TES has already been proven to successfully reduce the duration
of spike-and-wave discharges (the electrographic hallmarks of
human absence epilepsy) in a rodent model of generalized
epilepsy (Berényi et al., 2012). Its efficient clinical application
will rely on closed-loop feedback stimulation of the target
circuits, as their modulation can interfere with the emerging
pathological pattern (Berényi et al., 2012; Kozák and Berényi,
2017). In addition, closed-loop seizure suppression using
TES can remain effective for long periods (i.e., months)
(Kozák and Berényi, 2017).

Other Neuropsychiatric Disorders
Many neurological and psychiatric disorders are related
to clinically discernible, altered brain dynamics. These
pathological oscillations may be a target for therapeutic
intervention for the disorders using time-and space-targeted
brain stimulation technologies.

Major depressive disorder (MDD) is a common and chronic
psychiatric disorder characterized by excessive feelings of sadness
and low mood (American Psychiatric Association, 2013). The
most relevant oscillopathic features of MDD are: increased
alpha-band (8–13 Hz) activity in the temporo-parietal area,
elevated frontal theta-band (4–7 Hz) activity, alpha frontal
asymmetry (left hemispheric hypoactivity and right hemispheric
hyperactivity expressed as theta, alpha and beta band activities)
and decreased gamma band activity in the neocortex (Baskaran
et al., 2012; Eidelman-Rothman et al., 2016; Fitzgerald and
Watson, 2018). These features relate to MDD symptoms
and predict the efficiency of pharmacological treatment and
electroconvulsive therapy. In addition, a causal relationship
between oscillopathies and symptoms of (major) depression may
exist. Indeed, restoration of the frontal alpha symmetry using
anodal tDCS on the dorsolateral prefrontal cortex (DLPFC)
(Loo et al., 2012) and neurofeedback improved the symptoms of
depression (Mennella et al., 2017). These pathological oscillations
can be targeted using pharmacological and electrical stimulation
methods in combination with cognitive (behavioral) methods to
alleviate depression symptoms (Leuchter et al., 2015).

Posttraumatic stress disorder (PTSD) is a widespread
neuropsychiatric disorder with a high burden of disease. Primary
symptoms include anxiety, cognitive impairments, mood changes
and consistent avoidance of trauma-related stimuli (American
Psychiatric Association, 2013). The panic, fear, and sympathetic
response to the trigger stimulus results from altered activity in

the amygdala (Cisler et al., 2015). Deficiency of fear extinction is
also a salient feature of PTSD. Closed-loop intervention can rely
on real-time correlates of neural network activation and various
symptoms. In PTSD patients hyperactivity characterizes resting
magnetoencephalography (MEG) recordings of the amygdala,
the hippocampus, and the insular cortex (Huang et al., 2014).
Altered activity also characterizes EEG recordings of PSTD
patients i.e., intrinsic sensory hyperactivity in the visual cortex
(suppressed alpha power) and decreased alpha power-mediated
inhibition to the frontal cortex (Clancy et al., 2017). Closed-loop
stimulation of the amygdala can reduce dysregulated amygdala
responses (Stidd et al., 2013; Koek et al., 2016).

NETWORK MODELS OF PATHOLOGICAL
PATTERNS AND WHAT CAN WE
CONCLUDE FROM THEM

Cellular Activity Underlying Seizures and
Epilepsy
Generally, epilepsy is thought to root in neuronal
hyperexcitability (Fisher et al., 2005). Several underlying
mechanisms have been proposed based mainly on the results
obtained from animal models, including impaired inhibition
(Bekenstein and Lothman, 1993) or a change in excitatory
neurons’ intrinsic conductances, leading to an overall increase of
network output and synchrony (Avoli et al., 2005). Monitoring
the activity of single neurons in the human brain can reveal
important aspects of brain function. However, it is more
challenging to identify the role of individual neurons in epilepsy
primarily because of the sparseness of seizures and the technical
limitations of long-term single-unit recordings. There are far
more studies concerning the interictal neuronal activity in
human epilepsy, which revealed significant differences between
affected and non-affected areas, including differences in firing
rates, bursting and synchrony (Staba et al., 2002; Gast et al.,
2016). The few successful attempts in which the ictal activity
of single neocortical or hippocampal neurons was recorded
revealed surprising results. Synchronous firing of neighboring
neurons was rarely seen except at the onset of ictal events (Wyler
et al., 1982). Seizures can provide intense and synchronous, yet
sparse and heterogeneous activation (Bower et al., 2012). Besides
this surprising heterogeneity, a general lack of hypersynchrony
suggests that specific interactions among subsets of neurons
initiate seizures (Truccolo et al., 2014; Lambrecq et al., 2017). On
the other hand, seizure termination is characterized by a relatively
homogeneous suppression of firing (Truccolo et al., 2014).

SEIZURE ACTIVITY AND COUPLED
OSCILLATIONS

A recent study showed that in the intact isolated mouse
hippocampus, a paroxysmal activity can spread through the
hippocampus following seizure onset, both from a focal
stimulation locus or if low magnesium was applied locally
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to either longitudinal ends of the preparation (Derchansky
et al., 2006). Bursts of activity within a seizure can become
bidirectional, with frequency specific propagation patterns. In the
low magnesium model, independent bidirectional activity was
observed on both sides when the isolated intact hippocampus
was severed along the septotemporal axis. These activities are
in agreement with the function of coupled neuronal network
oscillatory systems. Local coherence and ictal activity transfer
was assessed in the recordings from intra-hippocampal depth
electrodes implanted in epileptic patients being evaluated for
possible resective surgery (Duckrow and Spencer, 1992). It
was found that although ictal neural rhythmicity involves a
temporal interaction between brain regions, the maintenance of
this interaction is not essential for persistent seizure activity.
These findings are in line with the idea of seizures being the
manifestation of a multistate network of oscillatory systems
showing various degrees of coupling and uncoupling.

”Coupled Oscillators” Model of
Hyperexcitable Neuroglial Networks
Epilepsy is a dynamic disorder showing characteristics of neural
networks with the incidence of at least two states, known as
interictal and ictal activities (Lopes da Silva et al., 2003). The brain
can be considered as a system of coupled oscillatory (multistate)
units, and epilepsy a pathological expression of this system.
The advantage of using a coupled oscillator approximation to
model epilepsy is its ability to effectively model intermittent
phenomena in epileptic brain networks (Zalay and Bardakjian,
2009). An attractor state is a transiently self-sustaining state
(Meindertsma and Steenbeek, 2012). Unlike the multistate
bistable attractor technique, intermittence corresponds to ictal
events integral in the interictal attractor (or state) and doesn’t
require system noise for state transition (in these models, the
critical mechanism for transitions to and from epileptic seizures
is the existence of multiple attractors). A model that exploits this
approach has been used to analyze different pathways leading to
hyperexcitability and recommended a critical role for astrocytes
and microglia in generating spontaneous epileptiform discharges
(SEDs) (Farah et al., 2019). This model was built on the concept
of coupled Cognitive Rhythm Generators (CRGs). The CRG
is a mesoscopic mathematical modeling frame, used to model
different physiological phenomena, such as directional selectivity,
phase preference and phase precession (Zalay and Bardakjian,
2009). In addition, a network of four coupled CRGs has been
used to model hippocampal neurons and generate SEDs (Zalay
et al., 2010). This oscillator approximation might be a clock
with a universal rhythm or a labile clock, where the oscillator is
only active when the input is higher than a set threshold. The
model included 16 CRGs organized into four subgroups with
excitatory pyramidal cells, inhibitory interneurons, microglia and
astrocytes. Pyramidal cell CRGs exhibited constant rhythmicity
with intrinsic frequencies in the theta range (McNaughton
et al., 1983), similar to results obtained from experimental
recordings (Bezaire et al., 2016). Bursting activity of interneurons
was characterized by labile clock behavior in the ripple HFO
frequency range (80–250 Hz) (Sik et al., 1995), as is seen in

experimental seizure-like events (Zalay et al., 2010). Microglial
CRGs were modeled as a clock ring device with slow oscillations
(0.2–0.5 Hz) (Wake et al., 2009). Lastly, the activity of astrocytes
was characterized by labile clock behavior spanning the 1–4 Hz
frequency range (Amzica and Steriade, 2000).

Astrocytes can regulate the excitability of adjacent neuronal
synapses (Perea et al., 2009) and astrocytic dysfunction is related
to several neurological disorders including epilepsy (Seifert et al.,
2010). Earlier modeling studies highlighted the importance
of glial function in K+ homeostasis in hyperexcitability,
suggesting glial function can act as a biomarker for epilepsy
(Grigorovsky and Bardakjian, 2018). The increase in neuron-
astrocyte coupling provoked a higher occurrence of SEDs,
coherent with studies indicating that the release of specific
gliotransmitters by astrocytes can predispose neuronal circuits
to seizures. In contrast, the magnitude of neuron-microglia
coupling was negatively correlated to hyperexcitability, with less
SEDs of shorter duration appearing as the microglia-neuron
coupling increased (Fellin et al., 2004; Carmignoto and Haydon,
2012). These latter modeling approaches are also consistent with
experimental results showing that microglia can preferentially
connect to hyperactive neurons, reduce their EPSC rate and
down-regulating their activity (Li et al., 2012; Ji et al., 2013).
Manipulating certain microglial functions is also related to the
occurrence of seizures (Derecki et al., 2012; Eyo et al., 2014).

MULTISTATE AND BISTABLE NETWORK
MODELS

Seizure Dynamics: Initiation,
Development, and Termination
Epilepsy is a network malfunction described by bistable or
multistable oscillatory states (e.g., interictal and ictal states)
and their dynamic alternations. To investigate whether this
multistate bistable approach can capture seizure dynamics, a
divided system of bistable neural units built on an analytic,
non-linear complex model was used (Izhikevich, 2001; Kalitzin
et al., 2011). Depending on various parameters, this model is
able to represent steady-state dynamics, limit cycle dynamics,
or both. Ad absurdum, the model could be mentioned as a
bistable unit. Based on the primary conditions, the bistable
unit can either be in its steady-state point or a limit cycle
(appearing as the total synchronization or seizure). Linking
several units permits the design of a system consisting of
multiple states (Koppert et al., 2014). Notably, such a system
can engross a diversity of alternative oscillatory excited states,
while state transitions occur solely as a consequence of external
disturbances. A computational model (Bauer et al., 2017) has
indicated that the addition of a global expression to the
dynamics of the multistate system prevents hypersynchronous
activity and discloses multiple phenomena described by the
model. For example, when fitting state duration distributions
to an exponential distribution, the distribution of times spent
in one state will follow a particular case of the gamma
distribution with less than one shape parameter. Thus, external
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stochastic perturbations cause transitions from one state to
another. A distributed model built from complex bistable units
can practically simulate the seizure onset, maintenance and
termination processes (Bauer et al., 2017).

Multistate Models—State Holding Close
to the Transition Point
The bistable model formulates a valid hypothesis to assess the
proximity to ictal transition even at the level of single neurons.
When the system is disturbed, the closer it comes to the region
splitting the normal steady-state from the oscillatory limit cycle
(the model seizure), the longer is the time for responses or
the time needed to return to the baseline state (Petkov et al.,
2018). This result is caused by the fact that the separatrix (i.e.,
the boundary separating two modes of behavior in a differential
equation) is diverse under an unstable asymptotic state acting
as a limit cycle. Thus, the forces necessary to shift the system
out of it are minute in the local network. This feature was used
to develop a biomarker that can be combined with transcranial
electrical stimulation (TES) or transcranial magnetic stimulation
(TMS) for diagnostic and therapeutic prognosis protocols.

PHASE DETECTION, PHASE
PREDICTION AND TIME AND SPACE
TARGETING

Phase Detection and Prediction
Algorithms
The phase of brain oscillations is an essential feature of neural
processing (Thut et al., 2012; Maris et al., 2016). Therefore, it
can act as an index of brain excitability, temporally guiding
the delivery of brain stimulation. Several different algorithms
have been developed to detect and predict the phase of
various EEG oscillations for TES and TMS based closed-loop
stimulation, as follows.

Fast Fourier Transform Prediction
The crucial feature of this algorithm is to use the frequency
domain of the EEG signal for forwarding prediction (Mansouri
et al., 2017). One specific implementation uses Laplacian
montage with a central electrode of interest and eight
surrounding electrodes as the brain signal for the region of
interest (Shirinpour et al., 2020). The signal’s phase in the
dominant frequency is estimated from the angular factor of the
complex Fast Fourier Transform (FFT) signal. A sine wave of
the dominant oscillation with a given frequency and phase is
calculated in the earlier steps and used for forwarding prediction.

Auto Regressive Prediction
In this approach, the signal is predicted in the time domain
(Chen et al., 2013; Zrenner et al., 2018) in the following steps.
First, the Laplacian of the electrodes corresponding to the region
of interest is calculated. Next, the signal is zero-phase band-
pass filtered in the frequency band of interest using an finite
impulse response (FIR) filter [the FIR filter is a non-recursive

filter in that the output from the filter is calculated by using the
current and previous inputs (Mokhatab and Poe, 2012)] and the
edges of the signal are curtailed to remove edge artifacts due to
filtering. The residual signal is used to calculate the coefficients for
the autoregressive model [i.e., the Yule-Walker method (Walker,
1931; Yule, 2012)]. The signal is heuristically forward predicted
depending upon the parameters of the Auto Regressive (AR)
coefficients. The instantaneous phase of the predicted signal is
calculated using the Hilbert transformation.

Educated Temporal Prediction
This method integrates a short training step for the algorithm
before the real-time application aiming to learn the individual
statistical characteristics of the oscillation of interest. It uses
a robust and straightforward method to extract inter-peak
intervals and their central moment (Shirinpour et al., 2020).
Presuming that brain oscillations are quasi-stable over the
brief measurement epochs; one can determine the characteristic
interval period between subsequent signal peaks (relating to 360◦
in signal phase). To predict the time-point at which the next
target phase, i.e., the peak, will arise, one can add the average
measured period between signal peaks to the time of the last peak
recorded in order to predict the next peak.

Time-and Space-Targeting
Pathological oscillations can be modulated using open- or closed-
loop approaches depending on how the stimulation is performed
in the temporal domain. Analyzing various parameters of the
outputs of the neuronal networks can be utilized to optimize the
effect of stimulation. The feedback input allows the modulation
to be time-targeted using on-demand stimulation (Berényi et al.,
2012; Takeuchi and Berényi, 2020).

Closed-Loop Interventions
Closed-loop techniques for oscillotherapeutics are brain
stimulation protocols based on intrinsic biosignal feedback
[e.g., EEG, electrocardiogram (ECG), LFP]. The feedback input
enables on-demand targeted intervention in the temporal
domain preventing over-stimulation and undesired out-of-phase
interferences. Closed-loop intervention can lower the side
effects of relatively intensive stimulation; in contrast, chronic
stimulation using a non-responsive, open-loop method can
become involuntarily excessive. Indeed, inadequate stimulation
can develop adverse effects by disturbing physiological activity
in the brain. Remarkably, patients advised to turn on deep
brain stimulation (DBS) in an on-demand manner for essential
tremor show improved long term effects compared to open-loop
continuous stimulation (Kronenbuerger et al., 2006).

The closed-loop method can be implemented in various ways
according to the characteristics and impact of the intrinsic
biosignal (Figure 1). The first possible configuration is “closed-
loop responsive” stimulation, whereby predefined stimulus pulses
are delivered only when stimulation is required (on-demand).
In this setup, biosignals are continuously monitored for the
automated launch of a preset stimulation pattern. The second
closed-loop configuration for brain stimulation is the “closed-
loop adaptive” stimulation, where various parameters of the input
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biosignal gate output variables for stimulation. For example, the
power of beta oscillations recorded in the subthalamic nucleus
(STN) specifies the intensity of DBS in the STN for Parkinson’s
disease patients (Bouthour et al., 2019). The third, most advanced
implementation of closed-loop stimulation is “phase-targeting”
stimulation. Conceptually, phase-targeting electrical stimulation
is highly effective in suppressing pathological oscillations. In
the restoration of reduced physiological oscillations, counter-
phase stimulation suppresses pathological oscillations and in-
phase stimulation recovers decreased physiological oscillations
(Figure 1). Practically, appropriately timed phase-targeting
stimulus delivery has been demonstrated to be essential for the
closed-loop intervention by suppressing ongoing pathological
oscillations in epilepsy that effectively shortens the duration of
absence seizures in rats (Berényi et al., 2012), and can remain
effective for months when used in a closed-loop manner (Kozák
and Berényi, 2017). We also showed that accurate stimulus
timing controlled by internal seizure dynamics is critical for
the termination of epileptic seizures when applying closed-loop
stimulation to the medial septum (Takeuchi et al., 2021).

Focused Transcranial Electrical
Stimulation Technologies
Transcranial electrical stimulation is a non-invasive brain
stimulation protocol: as stimulation electrodes are located outside
the skull, it is a low-risk and reversible adjunctive therapy. The
focality of TES is poorer than DBS because of its transcranial
nature. On the other hand, its diffuse modulation over the
cortex may be considered as an advantage for intervention with
generalized pathological oscillations hijacking wide cortical areas,
as in the case of absence seizures (Berényi et al., 2012; Kozák and
Berényi, 2017).

High-Definition Transcranial Direct Current
Stimulation
Transcranial direct current stimulation (tDCS) is utilized to
induce plastic changes by introducing sub-threshold membrane
potential alterations in neurons of the cerebral cortex. Classical
tDCS applies two large electrodes generating subthreshold
depolarization of cortical neurons under the anodal electrode
and hyperpolarization under the cathodal electrode, respectively.
To increase the focality of tDCS, reducing the size of the large
stimulus electrode placed over the target area, increasing the size
of the return electrode, or changing the location of the return
electrode (for example, over the arms, neck, shoulders, or knees)
can be considered. An electrode configuration with improved
stimulation focality has been developed based on modeling
electrical field strength, termed high-definition tDCS (HD-tDCS)
(Nitsche et al., 2015). Considering that the spacing between the
HD-tDCS electrodes is relatively small, shunting is enhanced
relative to the more conventional electrode configurations.
Hence, current density has to be relatively high to generate
electric fields comparable to those generated by large electrode
pads with larger spacing. Studies have revealed that HD-tDCS
treatment can alleviate epilepsy and pain perception (Castillo-
Saavedra et al., 2016; Meiron et al., 2019).

High-Definition Transcranial Alternating Current
Stimulation
Transcranial alternating current stimulation (tACS) is a
stimulation technique that non-invasively modulates cortical
activity and excitability. tACS is supposed to affect neuronal
membrane potentials by oscillatory electrical stimulation using a
well-defined stimulation frequency (Nitsche et al., 2015). As HD-
tDCS, tACS focality can also be drastically increased by applying
one stimulating electrode on the target area surrounded by
multiple anti-phase returning electrodes (named as HD-tACS).
Numerous cortical regions can be individually stimulated with
well-defined oscillatory stimulus waveforms. This technique has
been used to synchronize and desynchronize the activity of the
human medial frontal cortex and the lateral PFC in the theta
(∼6 Hz) frequency band resulting in the effective modulation of
executive functions (Reinhart, 2017).

Temporal Interference Stimulation
Temporal interference (TI) stimulation is a novel TES method
that promises to empower DBS without affecting superficial,
off-target structures (Grossman et al., 2017). TI stimulation
exploits the temporal interference among two electrical fields
with alternating vectorial directions using similar, but slightly
different frequencies in the kHz frequency band (i.e., 2 and
2.1 kHz). During TI stimulation one delivers the brain multiple
electric fields at frequencies too high to recruit neural firing, but
which differ by a frequency amenable to recruit neural activity.
Effective electrical stimulation of neurons is suggested to occur
across a local area where the interference among the multiple
fields generates an emergent electric field envelope modulated
at the difference frequency (i.e., 0.1 kHz) without excessive side
effects. Spatial targeting of TI is confirmed in computational
models, slice experiments and in anesthetized rodents (Grossman
et al., 2017; Esmaeilpour et al., 2021), spatial resolution depends
on the number and alignment of electrodes over the scalp. The
possible off-target effects of high-frequency electrical fields over
large brain areas could present an issue as strong kHz-frequency
electrical fields can block the spreading of compound action
potentials in peripheral nerves (Kilgore and Bhadra, 2014). The
long-term effects of kHz stimulation of TI are yet unknown. The
temporal resolution of TI simulation is limited, as the generation
of kHz electrical fields in short ramp-up times induces rapid,
spatially unfocused activation of neurons, while slow ramp-up
does not (Grossman et al., 2017). Due to this limitation, precisely
timed closed-loop TI (i.e., phase-targeting stimulation) is not
achievable. Accordingly, TI stimulation appears to be preferable
to applications for inducing plasticity in subcortical brain regions
(Chaieb et al., 2011).

Intersectional Short Pulse Stimulation
We have previously developed a novel TES approach
(Intersectional-Short Pulse (ISP) stimulation) which allows
to programmatically steer the effect of TES in the intracranial
space and allows considerably higher electrical currents to
be used, while preserving the high temporal precision of the
stimulation (Vöröslakos et al., 2018). ISP applies a repeated
sequence of brief, amplitude modulated electrical pulses through
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FIGURE 1 | Open-loop and closed-loop interventions in epileptic seizures. Open-loop intervention delivers preset stimulation naive to the ongoing rhythmicity of
brain activity., while closed-loop intervention governs stimulation pattern by the real-time processing of network oscillations. Counter-phase stimulation cancels
intrinsic oscillations by destructive interference. In contrast, in-phase stimulation can enhance or restore decreased oscillations by constructive interference. See
details in the main text. Adapted from Huang et al. (2019) and Takeuchi et al. (2021)

multiple independent electrode pairs. The ISP method exploits
the temporal integration of the subthreshold changes induced by
the multiple consecutive electrical gradients due to the capacitive
properties of the neuronal membranes. Accordingly, due to this
neuronal “blurring” ISP stimulation can transcranially mimic the
neuronal readout that would be caused by a strong (>1 mV/mm),
continuous electrical field in a target brain region to directly
induce or inhibit action potentials without generating excessive
current densities on the scalp (i.e., causing less peripheral
effects). Using ISP, the activity of hippocampal neurons can
be modulated in a hemisphere-specific way (Vöröslakos et al.,
2018). In addition, the 1 Hz ISP stimulation can modulate
the amplitude of alpha-band oscillations in EEG recordings of
healthy volunteers in a hemisphere-and phase-specific manner
(Vöröslakos et al., 2018).

The advantages of ISP compared to other electrical stimulation
techniques are several. It has better spatial steerability and can
be implemented with a phase-targeted closed-loop configuration
with millisecond precision. Currents as much as 16 mA can
be applied (one order of magnitude larger than conventional
TES), but the current density on each electrode stays similar to
those used by traditional TES. Identical effects (i.e., excitation or
inhibition) can be simultaneously achieved on both hemispheres
by appropriate electrode alignment in contrast to conventional
TES, which generates opposing anodal-cathodal effects over the
two hemispheres. The direction of electrical fields along the axo-
dendritic axis of neurons determines whether the electrical fields
activate or inhibit the target neurons (Chan and Nicholson, 1986;
Liu et al., 2018). Furthermore, several distinct stimulus
waveforms can be employed in an interwoven fashion, yet
independently. This stimulation technique is expected to allow
non-invasive on-demand closed-loop control with space-and

time-targeted brain stimulation for the treatment of various
neuropsychiatric disorders.

The Matter of Stimulus Intensity/Effect
Size to Reach Reliable Control on
Oscillatory Network Patterns
TES applied at ± 1 mA peak intensity induces < 0.5 V/m
electric fields in the human brain (Opitz et al., 2016; Huang
et al., 2017; Chhatbar et al., 2018). This is enough to induce
0.1–0.2 mV alterations in the membrane potential of neurons
within the stimulated area. As these alterations are markedly
lower than the ∼20 mV depolarization necessary to push a
neuron from its resting potential to spike threshold in vitro,
TES is unable to obtain prompt, highly reproducible changes in
spiking activity. In contrast, the mild electrical fields generated
may be more efficient when applied to distract or reinforce
ongoing rhythms rather than introducing novel activity patterns.
Targeting the stimulation to the optimal phase of endogenous
rhythms in a closed-loop implementation may be the most
effective solution (Berényi et al., 2012). However, responsive
implementations require in depth characterization of the altered
network with simultaneous monitoring and adjustment of the
relevant rhythms (Krook-Magnuson et al., 2015). This might
be achieved by using mild electric fields, but other applications
may require higher field intensities for improved efficacy. For
example, immediate control of spiking activity (e.g., to terminate
a seizure) might require field strengths larger than 5 V/m
(Kozák and Berényi, 2017).

Taking into account the intrinsic circuit structures of a given
brain area is an essential factor for the effective control of
oscillatory networks as stimulation of structural hubs effectively
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modulates the ongoing oscillatory activity with high spatial
propagation. The applied stimulation frequency needs to match
the frequency range of activity of various elements of the
targeted neuronal circuit. Supposing the targeted brain region
has divergent projections to multiple brain regions, oscillatory
activity applied to the target region can extend to various
destination brain regions. TES of the prefrontal cortex (PFC) for
the treatment of depression readily utilizes this concept because
the PFC has widespread synaptic connections to limbic areas
(Loo et al., 2012; Ferenczi et al., 2016). The interference of a
“congestion” relay station in the brain effectively intervenes in
disseminating massive oscillatory activity like epileptic seizures
(Takeuchi et al., 2021). In this respect, the entorhinal cortex
and the subiculum are chokepoint-like structures broadcasting
the activity from the hippocampus to the neocortex. Stimulation
on these structures can effectively suppress the secondary
generalization of seizures originating in the hippocampus (Lu
et al., 2016; Wang et al., 2017). On the other hand, the STN and
the thalamus are chokepoints in post-stroke epilepsy and absence
epilepsy (Paz and Huguenard, 2015).

FUTURE DIRECTIONS

Seizure Detection and Prediction
The real-time prediction of seizures is more challenging than
detecting seizures because of atypical feature changes and smaller
signal-to-noise ratios. However, the prediction would be more
beneficial than detection as it enables prevention.

Attempts to develop reliable seizure prediction algorithms
have an extensive history, dating back to the 1970s (Viglione
and Walsh, 1975) with minimal data sets looking only
at pre-seizure (preictal) events minutes to seconds before
seizures. Massively evolving over the past 50 years, current
methods use mathematical tools to analyze continuous days of
multiscale EEG recordings (Lehnertz and Litt, 2005). One of
the most salient features of seizures is their unpredictability.
From a more comprehensive view, seizure prediction research
has also transformed how we understand epilepsy and the
basic mechanisms underlying seizure generation. Seizures were
formerly considered isolated and abrupt events, but we now
consider them processes that develop over space and time in
epileptic networks (Burns et al., 2014). Therefore, what started
as predicting seizures for clinical applications has evolved into a
field committed to understanding seizure generation.

Seizure Prediction Algorithms
Seizure prediction algorithms typically follow the same
route/logic: biosignals are recorded and pre-processed,
prediction features and/or pre-ictal biomarkers are then
extracted. The decision system processes the temporal stream
of feature prediction values and detects changes that indicate
an upcoming seizure. To reach a decision, thresholds can be
set for various features, or machine learning classifiers can
be used to make decisions based on multiple features. The
decision system then involves the advisory system, which warns
the patient if a seizure is likely to occur soon. Constantly
acquired biosignals, most frequently EEG or intracranial EEG,

are analyzed with advanced time series analysis methods to
identify predictive features. A pre-ictal biomarker is a predictive
feature derived from physiological signals (for example the
EEG) that becomes apparent during a defined period before a
seizure but not at other times. Such a feature might or might
not be visually evident, reflects underlying signals’ alterations
and predicts seizures within an explicit range of values. Features
are commonly used instead of the raw signals because they
simplify the essential changes of the signals. A pre-ictal feature
can be considered clinically beneficial as a warning system if
it can be detected early enough and can minimize the time
under false warning. Features evaluated for their predictive
value, particularly those of EEG signals, range from simple
to complex and rely on univariate, bivariate or multivariate
linear, or non-linear analysis. The effectiveness of individual
features for seizure prediction can be evaluated individually,
but combinations of features are often delivered as inputs to
machine learning algorithms, acting as pattern recognition
systems. These algorithms allow the estimation of the seizure
prediction properties of features in combination (Freestone et al.,
2015; Brinkmann et al., 2016; Gadhoumi et al., 2016). In turn,
these temporal features are utilized in decision algorithms to
trigger the delivery of pharmacological or non-pharmacological
control of seizures in a closed-loop system. Algorithms need
additional development based on neurophysiology, multimodal
imaging, seizure mechanisms, control theory and computational
modeling (Kuhlmann et al., 2015). Numerous guidelines and
approaches are used to develop seizure prediction algorithms
(Mormann et al., 2007). These methods require receiver
operating characteristic (ROC) curves that measure the true
positive rate against the false-positive rate during pre-ictal
or inter-ictal periods. Overall algorithm performance can be
quantified and ranked by the area under the curve (AUC) for
true positive vs. false-positive rates.

Biomarkers of epilepsy incorporate interictal epileptiform
discharges and bursts, interictal spikes and high-frequency
oscillations, which are nowadays used in diagnosis, surgical
planning and treatment bearing obvious clinical significance
(Matsumoto and Marsan, 1964; Schulze-Bonhage, 2016). The
hope for seizure prediction was high in the early twenty
first century following the development of a plethora of
seizure prediction algorithms. Still, the result of stringent
testing on the reliability of seizure prediction indicates no
evidence of above-chance prediction (Mormann et al., 2007).
No predictive feature or pre-ictal characteristic that is generic
among people with epilepsy and that can predict the precise
time of an individual’s subsequent seizure has been yet
identified (Kuhlmann et al., 2010, 2018; Gadhoumi et al., 2015;
Karoly et al., 2017; Kiral-Kornek et al., 2018; Truong et al.,
2018). Thus, it is important to decide whether promising
seizure predictors forecast seizures rather than detect random
fluctuations in EEG signals unrelated to seizures. This principle
challenge in seizure prediction requires a standardized stringent
mathematical calculation of predictive performance (Mormann
et al., 2007) because seizure events are sparse and interictal
periods generally long. A first step for such analysis is to
compare the performance of a prediction algorithm with that
of a random predictor (Schelter et al., 2006; Snyder et al.,

Frontiers in Neural Circuits | www.frontiersin.org 8 December 2021 | Volume 15 | Article 784085

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-15-784085 December 8, 2021 Time: 9:36 # 9

Földi et al. Closed-Loop Electrotherapies in Brain Disorders

2008) that generates predictions at random times at the same
rate as that of the algorithm. Where appropriate, a random
predictor can be adapted to account for a subject’s diurnal
variability in seizure distribution or features (Karoly et al.,
2017). More evolved methods utilize Monte Carlo simulations
to generate predictor substitutes, such as randomizing seizure
times to generate false seizure times (Andrzejak et al.,
2003, 2009; Kreuz et al., 2004). The performance of the
prediction algorithm is then mathematically compared with
the efficacy of these predictor substitutes. Comparing the
performance of a prediction algorithm with a random predictor
is algorithmically the most effective form of mathematical
calculation. Substitute-based methods have higher temporal
complexity but improve confidence in concluding whether
an algorithm performs better than chance and can report
the non-random occurrence of seizures. The importance of
rigorous mathematical testing of seizure prediction algorithms
is crucial for understanding the significance of the results of
seizure prediction.

PRECISE LOCALIZATION AND
TARGETING OF A SEIZURE FOCUS IN
THE BRAIN

Increasing the number of pairs of stimulating electrodes is
essential for improving the spatial resolution of ISP stimulation
(this is also the case for TI stimulation). A dedicated EEG cap
with multiple recording and stimulating electrodes is needed for
transcranial closed-loop intervention with ISP stimulation. Sub-
scalp or intracranial implantation of the stimulus electrodes will
boost the efficiency and focality at the expense of a more invasive
intervention. The placement of stimulating electrodes must be
adapted for each patient’s requirements, especially in the case of
focal seizures. The target brain region should be determined by
a combination of high-density EEG, functional tomography and
long-term video monitoring of seizures. Structural brain imaging
[i.e., magnetic resonance imaging (MRI)] is also required for
planning the ISP stimulation targets. A recent study described
a multi-electrode model for electrical stimulation (Huang et al.,
2019). Mathematical investigations (solving linear programming
problems) showed a patient-specific MRI-based model to
determine the electrode positions and current intensities that
optimize the induced electric fields in either intensity or focality
at the target location. In addition, the achievable focality is limited
by the safety constraint on maximum currents (Dmochowski
et al., 2011). Although electrical artifacts of ISP stimulation are
smaller than those of conventional TES, feedforward removal
of gross artifacts from applied currents is required (Vöröslakos
et al., 2018; Kohli and Casson, 2019). Optimizing stimulation
parameters (duration, intensity, etc.) is crucial for optimal
performance. Empirical optimization presently used by clinicians
is a labor and time-consuming process. Machine learning
algorithms could be utilized instead for optimizing closed-loop
ISP stimulation (timing and parameters) for the control of
epileptic seizures.

CLOSED-LOOP IMPLEMENTATIONS

The first studies using early seizure-detection algorithms in
combination with responsive brain stimulation have yielded
positive results (Kossoff et al., 2004; Fountas et al., 2005; Osorio
et al., 2005). For any responsive brain-stimulation configuration,
a key issue is the placement of both afferent and efferent
electrodes, that is, electrodes for detecting a pre-seizure state and
stimulation electrodes, respectively. The location and number
of electrodes used may be essential for the early detection
of an impending seizure followed by locally applied, spatially
constrained stimulation, in a way that the patient does not
wittingly perceive the intervention.

The ultimate aim in designing a reliable seizure-prediction
algorithm can be seen in a device capable of warning of an
impending seizure and preventing it from happening. An ideal
intervention system would control the development of an episode
before the onset of the clinical symptoms. Its tolerance toward
false alarms leading to unnecessary interventions would depend
on the magnitude of side effects. The principal feasibility of
different seizure-intervention strategies such as local application
of short-acting drugs (Stein et al., 2000), electrical stimulation
techniques (Berényi et al., 2012), local cooling (Hill et al., 2000),
or biofeedback operant conditioning (Sterman, 2000) has been
described in the literature. Presently, much research is directed
toward designing a closed-loop intervention system using deep
brain or transcranial stimulation (Morrell, 2006; Kozák and
Berényi, 2017; Takeuchi et al., 2021). Such an EEG-based closed-
loop stimulation system could be based either on prediction
algorithms or algorithms for early seizure detection. Nowadays,
prediction algorithms are limited in performance to verify
clinical trials with closed-loop stimulation using the techniques
described above. For early seizure-detection algorithms, the
challenge is whether an intervention after the onset of an
electrographic seizure can prevent its full clinical manifestation
or whether the brain has already passed the “point of no return.”
Detection algorithms should be optimized to be implemented
into a micro processing unit. Extensive parallelization will be
necessary to enable real-time computation in a small device
with a limited clock rate without substantial delays. Phase-
locked stimulation is essential for efficient intervention with
pathological oscillations. New algorithms for instantaneous
phase calculation will be valuable if implemented in the
closed-loop system for efficient intervention in pathological
oscillations (Mansouri et al., 2017). Even if appropriate offline
modeling methods are time demanding, the online detection
of specific oscillatory patterns based on the constituted model
can be achievable as it does not demand calculations as
intense as the modeling process itself. A reduction in the
dimensionality and complexity of the model may be required for
online intervention.
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