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Abstract

Fibril formation by mutational variants of human lysozyme is associated with a fatal form of hereditary non-neuropathic
systemic amyloidosis. Defining the mechanistic details of lysozyme aggregation is of crucial importance for understanding
the origin and progression of this disease and related misfolding conditions. In this study, we show that a biotin moiety can
be introduced site-specifically at Lys33 of human lysozyme. We demonstrate, using biophysical techniques, that the
structure and stability of the native-state of the protein are not detectably altered by this modification, and that the ability
to form amyloid fibrils is unchanged. By taking advantage of biotin-avidin interactions, we show that super-resolution
fluorescence microscopy can generate detailed images of the mature fibrils. This methodology can readily enable the
introduction of additional probes into the protein, thereby providing the means through which to understand, in detail, the
nature of the aggregation process of lysozyme and its variants under a variety of conditions.
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Introduction

Since its discovery in the 1920’s, lysozyme has increasingly

emerged as an important system for studying protein structure and

function [1,2]. Members of the family of c-type lysozymes, which

include the human form, are naturally occurring glycosidases

involved in the degradation of bacterial cell walls. The hen protein

was the first enzyme to have its structure defined at atomic

resolution though X-ray crystallography and its study immediately

shed important light on the mechanism of enzymatic catalysis [3–

5]. The human form of lysozyme is a globular protein containing

130 amino acids and its native structure is typical of the c-type

lysozymes [6]. It has four intramolecular disulphide bonds and two

domains; the a-domain (residues 1–38, and 86–130), which

consists of four a-helices (the A, B, C, and D-helix), and the b-

domain (residues 39–85) containing a significant degree of b-sheet

structure [6].

There have been many investigations of the folding mechanism

of human lysozyme (see references within [7]). These studies

became of particular interest following the discovery of two natural

variants of lysozyme, I56T and D67H, which are linked to

systemic amyloidosis. This fatal disorder is associated with the

enhanced propensity of these naturally occurring mutational

variants to self-assemble into amyloid fibrils [8]. This rare

autosomal-dominant disease involves the accumulation of large

amounts of fibrillar deposits in a wide range of tissues including the

liver, spleen and kidneys [8–10], and is a member of a broader

class of amyloid-related disorders, which include Parkinson’s and

Alzheimer’s disease [11,12]. Since the discovery of the I56T and

D67H variants, four other naturally occurring disease-associated

variants (F57I, F57I/T70N, W64R and T70N/W112R) have

been identified, along with an additional variant (T70N) which is

not disease-associated [13–16].

A range of detailed studies has been carried out to investigate

the effects of these mutations on the in vitro folding and misfolding

properties of human lysozyme. Relative to the wild-type (WT)

lysozyme, the amyloidogenic variants, I56T and D67H, are

characterised by a reduction in both the native state stability and

the global co-operativity of the protein structure [9,17–20]. These

attributes result in the variants, but not the WT protein, being able

to populate transient intermediate species under a variety of

conditions, including those which are physiologically relevant, in

which the b-domain and the C-helix are significantly unfolded,

whilst the remaining parts of the protein maintain native-like

structure [9,18,21]. The transient intermediate species can also be

detected in the non-natural variant, I59T, under similar conditions

and interestingly, they can be detected in both the T70N variant

and WT protein under more highly destabilising conditions

[22,23]. The formation of a transient intermediate has been

identified as a crucial step in lysozyme aggregation through studies

which have made use of camelid antibody fragments to inhibit

amyloid fibril formation [18,24]. Fragments of two distinct

camelid antibodies, cAbHuL-6 and cAbHuL-22, have been found

to bind to the native state of WT lysozyme and the disease-
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associated variants with high affinity and to inhibit fibril formation

by suppressing the formation of the transient intermediates

[24,25]. Along with the numerous in vitro studies, recent in vivo

analysis shows that destabilising mutational variants of human

lysozyme trigger the up-regulation of quality control mechanisms

in Pichia pastoris and in Drosophilia melanogaster model systems

[26,27].

Given the wealth of data detailing the general mechanism of

fibril formation by human lysozyme, it is of great interest to

characterise this process at a molecular level, hence gaining

structural details of the species present on this pathway. Recently,

there have been notable advances in analysing and monitoring the

early stages of amyloid formation using techniques such as single-

molecule fluorescence measurements, fluorescence life-time imag-

ing and multiparameter imaging microscopy [28–30]. The

appearance, composition and structure of early oligomeric species

of the fluorophore-labelled SH3 protein, the Ab1–42 peptide and a-

synuclein, have been the subject of detailed investigations

performed in vitro [30–32]. Studies involving a fusion protein of

a-synuclein and yellow fluorescent protein (YFP) have shown that

a-synuclein-YFP maintains the properties of the unmodified

protein to a remarkable degree. Indeed, using this system we

have been able to define successfully key details of the kinetics of

protein aggregation in vivo [31,33].

To apply these methods to a protein system, it is essential to

introduce a site-specific chemical probe into the protein. In some

instances, fluorophores have been successfully incorporated via the

introduction of single cysteine residues using site-directed muta-

genesis, for example with the SH3 domain or a-synuclein [30,34].

Lysozyme, however, contains eight cysteine residues that are

involved in the formation of four disulphide bonds which help

maintain and stabilise the native structure of the protein [35,36];

the introduction of a chemical probe at a specific cysteine residue

would, therefore, not be straight forward. Other attempts to

modify lysozyme by introducing additional residues at both the C-

terminus and N-terminus of the protein have been found to result

in substantial perturbation to the native state stability of the

protein [37,38]. Recently, however, it has been reported that hen

lysozyme could be labelled via the amine groups of lysine residues

[39–41], however, the effects of the labels on the properties of the

protein were not investigated in detail. Although multiple lysine

residues are often present in proteins, it has been reported that the

accessibility and mobility of individual lysine residues within

proteins, coupled with strategies to control reaction conditions

may result in the labelling of these residues in a selective manner

[42,43].

In this present paper, we describe the labelling of human WT

lysozyme (WTHuL) with an amine reactive reagent, N-(+)-

biotinyl-6-aminocaproic acid N-succinimidyl ester (BioNSE), as a

strategy to incorporate site-specifically chemical reporters into the

protein structure without significantly perturbing its native

properties. Labelling with biotin derivatives has a number of

important advantages; in particular, biotin has a strong specific

affinity to avidin [44]. It can therefore be easily detected via

streptavidin (SA) conjugates which are linked to a variety of

reagents, for example, SA-alkaline phosphatase (AP) for colouri-

metric Western blotting or SA-fluorophores for fluorescence

monitoring techniques [45,46]. Using a number of biophysical

techniques, we confirm in this work that the native structure and

stability of the biotinylated human lysozyme (BioHuL) are

comparable to WTHuL. In addition, we show that BioHuL can

form fibrils in vitro and that we can monitor and visualise clearly,

using super-resolution techniques, the fibrillar aggregates using

streptavidin conjugated fluorophores and reagents.

Materials and Methods

All chemicals were purchased from Sigma-Aldrich (Gillingham,

UK) unless otherwise stated.

Biotin-labelling of lysozyme by N-(+)-biotinyl-6-
aminocaproic acid N-succinimidyl ester (BioNSE)

WT human lysozyme (WTHuL) (7 mM) was dissolved in MES

buffer (100 mM, pH 5) with stirring in a glass vial (5 mL). BioNSE

was freshly dissolved in DMSO (35 mM) immediately before use,

and appropriate aliquots were added to protein solutions to give

1:100 or 1:500 lysozyme-to-BioNSE molar ratios. The samples

were incubated with constant stirring for 20 h at room temper-

ature and dialysed against deionised water (264 h). Mass

spectrometry of the endpoint of the reactions indicated that the

predominant species (,80–90%) was singly-labelled WT lyso-

zyme. Dialysed samples were flash frozen in liquid nitrogen and

lyophilised. The samples were then dissolved in the respective

buffers when required for further analysis.

Purification of biotin-labelled lysozyme
Biotin-labelled lysozyme (BioHuL) samples were dissolved in

Tris buffer (50 mM, pH 8) and purified using a CaptoS ion

exchange column (GE Healthcare, Little Chalfont, UK) on an

AKTA Prime Plus purification system (GE Healthcare). The

protein was eluted using a sodium chloride gradient (0–1 M) and

multiple fractions were collected. The fractions containing protein

were dialysed against deionised water (264 h) and lyophilised. The

protein integrity and purity were confirmed by mass spectrometry

analysis and the final yield of purified protein, as determined by

UV-vis spectroscopy was 5565%. Samples containing the single

biotin-labelled lysozyme were used in further experiments.

Mass spectrometry
Both WTHuL and BioHuL samples were dissolved in deionised

water and de-salted using ZipTips (Millipore, Watford, UK).

Samples were analysed in triplicate on a 4700 Proteomics

Analyzer (Applied Biosystems, Paisley, UK), using matrix-assisted

laser desorption/ionization (MALDI) methodologies.

Circular dichroism (CD) spectroscopy
CD spectroscopy experiments were performed using a Jasco J-

810 spectropolarimeter (JASCO Ltd, Great Dunmow, UK)

equipped with a Peltier temperature controller. WTHuL and

BioHuL samples (20 mM) were dissolved in sodium citrate buffer

(10 mM, pH 5) and analysed using a 0.1 cm or 1 cm path-length

cuvette for far-UV or near-UV spectra, respectively. For

secondary structure analysis, five spectra of each protein sample

and of citrate buffer were recorded between 200 and 250 nm at

20uC (using a scan speed of 50 nm min21 with a 1 nm band width

and a 4 s response time). The spectra of the samples were averaged

and corrected for the background buffer. Thermal denaturation

was monitored at 222 nm or 270 nm as the temperature was

increased monotonically from 5 to 95uC at a rate of 0.5uC min21.

Elipticity values were normalised to the fraction of unfolded

protein (Fu) using Fu = (h–hN)/(hU – hN), where h is the observed

ellipticity, and hN and hU are the ellipticities of the native and the

unfolded states, respectively. hN and hU were extrapolated from

pre- and post-transition baselines at the relevant temperature.

Experimental data were fitted to a sigmoidal expression [47], using

OriginPro 8.0 (OriginLab Corporation, Northhampton, MA,

USA). Mid-point Tm values are defined as the temperatures

where the Fu is 0.5 in each case.

Structural Analysis of Biotinylated Human Lysozyme
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Nuclear magnetic resonance (NMR) spectroscopy
[15N]-labelled WTHuL was expressed in Pichia pastoris and

purified as previously described [23]. Biotin-labelling of [15N]-

labelled lysozyme was performed as described above for WTHuL.

[15N]-labelled BioHuL or WTHuL (200 mM) was dissolved in

sodium acetate buffer (20 mM, pH 5.0) containing a 90% H2O/

10% 2H2O mixture. The solutions were filtered and sealed in a

Shigemi tube, and data were collected at 37uC using a Bruker

Avance 700 MHz NMR spectrometer equipped with a triple-

resonance cryogenic probe. [15N]-[1H] heteronuclear single

quantum coherence (HSQC) spectra were collected with 1024

and 128 complex points in t1 ([1H]) and t2 ([15N]), with sweep

widths of 9470 and 2107 Hz in the [1H] and [15N] dimensions,

respectively. All NMR spectra were processed with NMRpipe [48]

and Sparky (http://www.cgl.ucsf.edu/home/sparky/).

Proteolysis experiments
Proteolysis experiments involving the BioHuL and WTHuL

samples were performed at the Cambridge Centre for Proteomics

(Department of Biochemistry, University of Cambridge, Cam-

bridge, UK). The samples were run on an SDS-PAGE gel and the

bands were excised from the gel and transferred into 96-well PCR

plates. The bands were cut into 1 mm2 pieces, destained, reduced

with DTT and alkylated by treatment with iodoacetamide. The

samples were subjected to enzymatic digestion with trypsin

overnight at 37uC. After digestion, 10 mL aliquots of supernatant

were put into sample vials and loaded onto an autosampler for

automated LC-MS/MS analysis.

All LC-MS/MS experiments were performed using a nanoAcquity

UPLC (Waters Corp., Milford, MA, USA) UPLC system and an LTQ

Orbitrap Velos hybrid ion trap mass spectrometer (Thermo Scientific,

Waltham, MA, USA). Separation of peptides was performed by

reverse-phase chromatography at a flow rate of 300 nL/min, using a

Waters column (BEH C18, 75 mm i.d. 6100 mm, 1.7 mm particle

size).

The LC eluant was sprayed into the mass spectrometer by

means of a New Objective nanospray source (New Objective, Inc.,

Woburn, MA, USA). All m/z values of eluting ions were measured

in an Orbitrap Velos mass analyser, set at a resolution of 30,000.

Data dependent scans (Top 20) were employed to isolate and

generate fragment ions automatically by collision-induced disso-

ciation in the linear ion trap, resulting in the generation of MS/

MS spectra. Ions with charge states of +2 and above were selected

for fragmentation and the data were processed using Protein

Discoverer (version 1.2., Fisher Scientific UK, Loughborough,

UK). All MS/MS data were submitted to the Mascot search

algorithm (Matrix Science, London, UK) and searched against a

custom human protein database, using a fixed modification of

carbamidomethyl (cysteines) and variable modifications of oxida-

tion (methionines) and biotin (lysines).

Enzyme activity assay
50 mL aliquots of BioHuL or WTHuL (6.8 mM) were dissolved

in potassium phosphate buffer (100 mM, pH 7) and placed in

individual wells of a 96-well flat bottom microplate (Fisher

Scientific UK). Micrococcus lysodeikticus cells (9 mg) were suspended

in 30 mL of the potassium phosphate buffer shortly before the

assay, and 200 mL of the cell suspension was added to each well

[49]. Cell lysis was monitored at an absorbance of 595 nm after

shaking and readings were recorded every minute over a 7 min

interval on a FLUOstar Optima plate reader (BMG LABTECH,

Aylesbury, UK). The results were averaged, plotted as a function

of time, and then fitted linearly to calculate the slopes using

OriginPro 8.0.

Fibril formation of lysozyme samples monitored by light
scattering or thioflavin-T binding

Aggregation studies were performed with BioHuL or WTHuL

(6.8 mM, 3 M urea, 0.1 M sodium citrate buffer, pH 5.0, and

62.5 mM thioflavin-T (Thio-T)) incubated with stirring at 60uC in

a Cary Eclipse spectrofluorimeter (Agilent Ltd., Oxford, UK).

Thio-T fluorescence was measured with an excitation wavelength

of 450 nm (slit width 5 nm) and monitored at an emission

wavelength of 480 nm (slit width 5 nm). Fibrils for further

experiments were prepared under similar conditions but in the

absence of Thio-T; aggregation was monitored by light scattering

at 500 nm with slit widths of 5 nm. All experiments were

performed in triplicate.

Seeded aggregation reactions
BioHuL or WTHuL fibrils were prepared as described above in

the absence of Thio-T. The endpoint fibrils were sonicated using a

Bandelin Sonoplus probe sonicator (Bandelin, Berlin, Germany),

which was set at the minimum power level, pulsing 10% of the

time over a five minute period. Aliquots of the sonicated fibrils

(10% v/v) were added at the beginning of an aggregation time

course reaction (6.8 mM, 3 M urea, 0.1 M sodium citrate buffer,

pH 5.0, and 62.5 mM Thio-T) and the effects were monitored by

changes in Thio-T fluorescence. Seeding experiments were

monitored for WTHuL with the addition of BioHuL fibril seeds

or WT fibril seeds and for BioHuL in the presence of WTHuL

fibril seeds or BioHuL fibril seeds.

Transmission electron microscopy (TEM)
Fibril samples (5 mL) collected at the endpoint of the aggrega-

tion reactions were applied to Formvar-coated nickel grids. The

samples were stained with 2% (w/v) uranyl acetate, and imaged

using a FEI Tecnai G2 transmission electron microscope (Multi-

Imaging Unit in the Department of Physiology, Development and

Neuroscience, University of Cambridge, UK) Images were

analysed using the SIS Megaview II Image Capture system

(Olympus).

Dot blot assays
Samples taken from the endpoint of the aggregation reactions

were centrifuged (16,000 x g, 10 min) and the supernatants

removed. The pellets were washed three times with dH2O

followed by centrifugation. The rinsed fibrils were resuspended

in dH2O, (20 mL) and immobilised onto a nitrocellulose

membrane (Whatman International Ltd., Maidstone, UK). The

membrane was blocked with BSA (1% in phosphate buffered

saline (PBS), 2 h), followed by incubation with streptavidin

conjugated to alkaline phosphatase (AP) (Life Technologies,

Paisley, UK) for 1 h. The membrane was washed three times

with dH2O and developed using a 5-bromo-4-chloro-3-indolyl

phosphate/nitroblue tetrazolium (BCIP/NBT) solution.

Measurement of fibril stabilities
To measure the stability of fibrillar BioHuL and WTHuL,

aliquots of fibrils were diluted into 0.1 M citrate buffer (pH 5.0)

containing increasing concentrations of guanidinium hydrochloride

(GdnHCl). After 48 hrs at 25uC, the samples were centrifuged

(16,0006 g, 15 min) and the concentration of lysozyme in the

supernatant was measured by recording the absorbance at 280 nm.

The depolymerisation curves were obtained by plotting the fraction

of lysozyme released from the fibrils at different concentrations of

GdnHCl. The final concentration of GdnHCl was determined by

refractometry using [GdnHCl] = 57.147(Dn)+38.68(Dn)22

Structural Analysis of Biotinylated Human Lysozyme
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91.60(Dn)3, where Dn is the difference between the refractive indices

of GdnHCl solution and the 0.1 M citrate buffer [50].

dSTORM imaging experiments
Samples of BioHuL fibrils (10 mL) were placed on cover glass

slips (18 mm 618 mm, 17065 mm thickness; Carl Zeiss Ltd.,

Welwyn Garden City, UK) and incubated with streptavidin-Alexa

647 (0.2 mg/mL) (Life Technologies Ltd.) for 1 h, followed by

washing three times with PBS buffer. The switching buffer,

composed of PBS (pH 7.4) containing an oxygen scavenger

(0.5 mg mL21 glucose oxidase, 40 mg mL21 catalase (Roche

Applied Science, Welwyn Garden City, UK), 10% w/v glucose)

and 50 mM b-mercaptoethylamine (MEA), was prepared as

previously described and loaded into a single cavity (15 mm

diameter) glass microscope slide (Fisher Scientific UK) [51]. The

cover glass with the fibrils was gently placed on the glass slide with

the fibrils in contact with the switching buffer; bubbles were

removed and the sample sealed with nitrocellulose solution to

prevent evaporation. Super-resolution images were captured using

a modified Nikon TE200 inverted total internal reflection (TIRF)

microscope (Nikon Ltd. UK, Kingston upon Thames, UK). Fibre

coupled diode lasers operating at 642 nm (150 mW) (Toptica

Photonic AG, Graefelfing, Germany) and 405 nm (120 mW)

(Mitsubishi Electronics Corp., Tokyo, Japan), were used as

excitation and reactivation lasers, respectively. The laser beams

were expanded and focused into the back focal plane of a 100X

oil-immersion objective (Nikon UK Ltd.) BioHuL fibrils were

imaged in TIRF mode for best contrast. A filter set containing a

quad-edge laser flat dichroic beamsplitter (Semrock, Rochester

NY, USA) and two emission filters (Semrock) were applied to

eliminate straight fluorescent and excitation light. Typically,

10,000 image frames with an exposure time of 50 ms and field

of view of 64664 pixels were captured using a low-noise, highly

sensitive electron-multiplying CCD camera (Andor iXon 897,

Belfast, UK). The exposure time was matched with the ON state

time of the fluorescent Alexa Fluor� 647 dye [52]. During data

acquisition the intensity of the excitation laser on the sample was

1.5 kW/cm2 and the reactivation laser was only turned on when

the number of active fluorophores in the field of view dropped,

and no spatial drift of the sample was observed during the

measurements. From the captured and stored image stack, a

reconstructed dSTORM image was generated in each case using

in-house developed software based on Matlab (The MatWork Inc.,

Natick, USA). The software sequentially segments and localises

isolated fluorescent molecules on each image frame and recon-

structs the final super-resolved image. The localisation precision

was determined on the basis of the number of photons captured

per molecule [53].

dSTORM imaging in SH-SY5Y cells
Human neuroblastoma cells (SH-SY5Y) were obtained from the

European Collection of Cell Cultures (Sigma-Aldrich, Dorset, UK)

and grown in 1:1 minimal essential medium (MEM) and nutrient

mixture F-12 Ham (Sigma) with sodium bicarbonate, including

15% heat inactivated foetal bovine serum, 1% MEM non-essential

amino acids, 2 mM N-glutamine, 1% penicillin-streptomycin

(10,000 U ml K1) and 0.1% fungizone (amphotericin B, 250 mg

mL21 K1) (Life Technologies Ltd.).

Cells were harvested using trypsin (0.5 g L21 of trypsin) with

EDTA (0.2 g L21 of EDTA 4Na) in Hanks9 Balanced Salt

Solution (Life Technologies Ltd.), rinsed with growth medium and

divided into 16106 cells in each 1.7 cm2 polystyrene chamber

slide well (Lab-TekTM II, Fisher Scientific UK, Ltd.). Cells were

subsequently transfected using an Amaxa nucleofector (Lonza,

Cologne, Germany) with 35 ng of BioHuL fibrils in nucleofection

buffer (Lonza).

Twenty four hours after electroporation the cells were washed

three times with PBS, fixed for 10 min with formaldehyde (4% in

PBS) before washing the cells three times with PBS. Tween (0.5%

in PBS) was applied to the cells for 10 min for permeabilisation,

followed by washing three times with PBS. After permeabilisation,

the cells were incubated with Streptavidin-Alexa 647 (2 ng mL21,

Life Technologies Ltd.) for 30 min and washed three times with

PBS. Switching buffer, as detailed above for in vitro super-

resolution imaging, was added prior to imaging the cells. The

samples were imaged by differential interference contrast (DIC)

microscopy followed by single-molecule super-resolution imaging

as detailed above.

Results

Site-specific biotin labelling of WT human lysozyme
WT human lysozyme was incubated with different molar ratios

of BioNSE and the reactions were analysed using MALDI mass

spectrometry (Figure 1A). We observed that by incubating WT

lysozyme overnight at room temperature with a 100-fold molar

excess of BioNSE, the predominant resulting species is WT

lysozyme modified with a single biotin moiety (BioHuL),

displaying a peak at 15,03361.5 Da. When the reaction was

performed with a 500-fold excess of BioNSE, a less intense second

peak at 15,37261.5 Da becomes evident, corresponding to the

incorporation of two biotin moieties within WT lysozyme. Using

ion exchange chromatography, the singly-labelled BioHuL pro-

tein, formed following incubation under these conditions, was

purified from both the unmodified protein and the doubly-labelled

lysozyme.

To identify the site of the modification, the singly-labelled

BioHuL sample was subjected to trypsin proteolysis and analysed

by mass spectrometry. The analysis reveals that the singly-labelled

BioHuL displays a substantial change in the tryptic digestion

pattern, and that modification of Lys33 results in the loss of a

trypsin cleavage site. This results in the appearance of a longer

peptide fragment (residues 22–41) in BioHuL than the fragment

observed in WTHuL (residues 22–32) (Figure 1B) [54–56]. Despite

WT human lysozyme having five lysine residues (Lys1, Lys13,

Lys33, Lys69 and Lys97) which, according to the X-ray structure,

all have side-chain amine groups that are highly solvent accessible

and thus, in principle, able to react with an N-hydroxy-

succinimide (NHS) ester group to which a chemical probe is

attached, we have demonstrated that site-specific labelling of just

one of these residues, Lys33, can be achieved. Previous reports of

labelling lysine residues by a variety of techniques in hen lysozyme

reveal that Lys33 again appears to be the most reactive lysine

residue [41,57–59].

Effect of biotinylation on protein structure and native-
state stability

Although it is possible to label WT human lysozyme site-

specifically, there are no data available as to whether this

modification affects the structural properties of the protein. We

therefore used a number of biophysical techniques to compare the

BioHuL protein, generated as described above, with that of the

unlabelled WTHuL protein. Far-UV CD spectroscopy, which

monitors the secondary structure change within the protein, shows

that the secondary structure content of BioHuL is closely similar to

that of the WTHuL (Figure 1C). Near-UV CD, which reports on

tertiary structural changes within the protein, reveals that BioHuL

and WTHuL have essentially identical thermal stability with Tm

Structural Analysis of Biotinylated Human Lysozyme
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values of 76.060.5uC and 75.960.5uC, respectively (Figure 1D).

Tm values of BioHuL and WTHuL obtained by far-UV CD also

show comparable thermal stability data (data not shown). Given

that BioHuL is structurally similar to WTHuL, we compared the

enzyme activity of the two proteins by measuring their ability to

lyse Micrococcus lysodeikitcus cells [49]. The BioHuL protein retains

about 60% enzymatic activity as compared to WTHuL.

In order to understand the effects of the biotin-labelling on the

protein at the level of individual residues, we compared the
15N-1H heteronuclear single quantum coherence (15N-1H HSQC)

NMR spectra of BioHuL and WTHuL (Figure 2). In general, the

parameters defining the backbone amide resonances of BioHuL

are closely similar to those of WTHuL (Figure 2A). The chemical

shifts (Dd values) in particular, were compared closely (Figure 2B),

and are shown mapped onto the structure of human lysozyme

(Figure 2C). This comparison shows that the residues most affected

by the modification are Trp34 (W34) and Glu35 (E35); the latter

residue acts as an essential catalytic acid/base in lysozyme enzyme

activity [5]. A combination of steric hindrance due to the biotin

moiety preventing substrate binding, along with the perturbation

to Glu35 due to the modification at residue 33, may provide some

explanation for the slight decrease in overall enzymatic activity of

BioHuL as compared to WTHuL. Although some minor

perturbations were observed in residues that are spatially close

to Lys33 (K33) (Figure 2C), the majority of Dd values remained

below 0.05 ppm indicating that there are no detectable perturba-

tions of the signals of residues adjacent to other lysine residues.

The chemical shift data therefore further supports the conclusion

that the site of modification is indeed Lys33.

Biotinylated lysozyme forms fibrils similar to WT
lysozyme

Our analysis has revealed that BioHuL possesses similar native-

state properties to that of WTHuL. We next investigated the

misfolding and formation of fibrillar species by BioHuL. Amyloid

fibrils have been shown to be formed in vitro from WT lysozyme

under a number of different solution conditions that involve

destabilisation of the native-state, notably by the use of elevated

temperatures at low pH or in the presence of chemical denaturants

[24,60–62]. Here, we incubated both BioHuL and WTHuL

proteins at 60uC in 0.1 M citrate buffer (pH 5.0) in the presence of

3 M urea and monitored, in each case, enhancement of thioflavin-

T (Thio-T) fluorescence to follow the formation of ordered

amyloid aggregates. Both proteins were observed to form fibrils

after a lag phase of approximately 4 hours and displayed typical

sigmoidal curves (Figure 3A). The endpoint samples were analysed

Figure 1. Effects of biotinylation on lysozyme. (A) MALDI mass spectrometry of lysozyme incubated in the absence (upper) and the presence
(lower) of 100-fold molar concentration of BioNSE. (B) Primary sequence of human lysozyme showing the sites where trypsin digestion has occurred
in BioHuL (open grey arrows) and WTHuL (filled black arrows). (C) Secondary structure of BioHuL (dashed grey line) and WTHuL (solid black line) by
far-UV CD. (D) Thermal denaturation curves of BioHuL (open grey circles) and WTHuL (filled black squares) monitored by near-UV CD. Mid-point Tm

values are defined as the temperatures at which 50% of the population of protein molecules is unfolded.
doi:10.1371/journal.pone.0050192.g001
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by transmission electron microscopy (TEM), and the resulting

images confirmed that the size and morphology of the fibrils

formed by BioHuL are effectively identical to those formed by

WTHuL. In addition, these fibrils clearly resemble those formed in

previous studies where WTHuL fibrils were generated at pH of 7.5

(60uC) [62]; in each case, the fibrils appear bundled and

intertwined together with lengths around 1-2 mm and about

100 nm in thickness (Figure 3B).

Although the endpoint fibrils appear very similar in the TEM

images, we also investigated whether the fibrillar seeds formed

from BioHuL and WTHuL could cross-seed the aggregation

reactions of WTHuL and BioHuL respectively. Indeed, the

addition of 10% (v/v) preformed fibril seeds is highly efficient at

promoting aggregation in the cross-seeding reactions which

suggests that the fibrils formed in both instances have similar

morphologies (Figure 3D). In order to assess the conformational

Figure 2. Mapping the location of modification by NMR spectroscopy. (A) Overlaid HSQC NMR spectra at 700 MHz of BioHuL (red) and
WTHuL (blue); the spectra were collected at pH 5.0 and 37uC (B) Chemical shift changes defined as [0.04(d15NWT2d15NBiotin)2+(d1HWT2d1HBiotin)2]1/2 in
BioHuL with respect to WTHuL [68]. (C) Structural identification of the BioHuL protein colour-coded by Dd value of each residue observed in (B) with
the modified Lys33 labelled in red. Dark blue represents the lowest Dd value, whilst red represents the highest. Residues whose chemical shifts are
most perturbed by the modification are identified. The black line in the centre of the two images represents the axis of rotation by 180u.
doi:10.1371/journal.pone.0050192.g002
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stability of the BioHuL and WTHuL fibrils, we measured the

resistance of the fibrils to depolymerisation by incubating fibril

aliquots in solutions containing guanidinium hydrochloride

(GdnHCl) and measuring the concentration of soluble monomer

released into the supernatant. The plots of the fraction of soluble

protein present at increasing GdnHCl concentrations are shown in

Figure 3E. Both the BioHuL and WTHuL fibrils have similar

midpoints of depolymerisation, 5.560.5 M and 5.260.3 M

respectively, therefore demonstrating similar conformational

stability.

We next set out to determine if the biotin moiety remains

solvent accessible in the BioHuL fibrils formed in 3 M urea at

pH 5.0, by using a dot blot assay; by taking advantage of the very

high affinity of biotin for the protein, streptavidin [44], we used

streptavidin conjugates to probe for the presence of biotin in the

BioHuL fibrils. In this assay, the fibrils were washed and

immobilised onto nitrocellulose and the membrane was then

probed with a streptavidin-alkaline phosphatase conjugate; alka-

line phosphatase activity was then measured, resulting in a

colourimetric reaction. To ensure that the centrifugation and

washing of the fibrils did not alter the morphology, the structures

of the samples were confirmed by TEM imaging and no changes

were observed. Both the monomer and fibrils of BioHuL give a

positive signal for the presence of biotin (Figure 3C), showing that

the biotin-moiety is solvent exposed in the fibrils and therefore

can, in principle, act as a useful tag for characterising the species

formed during aggregation.

Finally, we labelled the BioHuL fibril samples with streptavidin-

Alexa647 and imaged them directly using direct stochastic optical

reconstruction microscopy (dSTORM); this super-resolution im-

aging technique can provide information on spatial scales as low as

20 nm, much smaller than the wavelength of the probing light

Figure 3. Fibril formation of BioHuL. (A) In situ Thio-T binding fluorescence kinetics of BioHuL (grey) and WTHuL (black) incubated in the
presence of 3 M urea in 0.1 M citrate buffer (pH 5.0) with constant stirring at 60uC. (B) TEM images of the endpoint samples of the aggregation
reactions performed in the absence Thio-T. Images on the left and right show the fibrils formed by WTHuL and BioHuL, respectively; the scale bars
represent 500 nm. (C) Dot blot assay of fibrils formed by WTHuL (upper row) and BioHuL (bottom row). Samples include the monomeric protein, the
supernatant solutions after washing the fibril pellets (1st, 2nd, and 3rd) and the final washed fibrils. The appearance of colour indicates a positive
interaction between biotin and streptavidin-AP. (D) In situ Thio-T binding fluorescence kinetics of WTHuL in the absence (solid line) and presence of
10% BioHuL fibril seeds (dashed line) incubated under similar conditions as (A). (Inset) TEM images of the WTHuL fibrils formed in the presence of
BioHuL fibril seeds; the scale bar represents 500 nm. (E) Conformational stability of BioHuL (grey open circles) and WTHuL (black squares) fibrils. The
stability of the fibrils was measured by depolymerisation experiments performed using GdnHCl at pH 5.0. Continuous lines represent the best fits to
sigmoidal functions.
doi:10.1371/journal.pone.0050192.g003
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[52]. In a related study we have shown that dSTORM can be used

to identify structural differences between aggregated states of

fluorescently-labelled Ab1–42 peptide formed both in vitro and in

cells [63]. The dSTORM analysis of the BioHuL aggregates

clearly reveals fluorescent fibrils with greatly improved resolution

compared to that achievable with conventional fluorescence

techniques (Figure 4). Figure 4D shows a fibril bundle with a

diameter of 133620 nm, which is comparable to the diameter

observed in the TEM images of similar bundles (approximately

100–200 nm) (Figure 3B).

dSTORM not only offers high resolution structures of single

fluorophore labelled samples, but it offers the compelling

advantage of using multiple fluorophores which allows the imaging

of various proteins simultaneously and selectively [64]. Another

great advantage provided by dSTORM is that it is possible to

apply this technique in situ thereby allowing direct imaging of

species within the cellular environment. To demonstrate this

capacity, we introduced BioHuL fibrils, prepared by the in vitro

methods, into SH-SY5Y mammalian cells using an electroporation

technique previously reported [33]. After washing the cells and

permeabilising them with 0.5% v/v Triton-X 100, the streptavi-

din-Alexa647 conjugate was added. Differential interference

contrast (DIC) microscopy imaging confirms that the BioHuL

fibrils are present inside the SH-SY5Y cells (Figure 4F, left panel)

and a traditional fluorescence image is shown (Figure 4F, middle

panel) along with a subsequent dSTORM image of the BioHuL

fibrils inside the SH-SY5Y cells (Figure 4F, right panel). As

amyloidogenic lysozyme fibrils are found in patients as extracel-

lular deposits [8], it is interesting that the fibrils introduced to the

intracellular environment appear somewhat the same in structure

to those observed in the in vitro images in Figure 4A–C. Although

much further work is needed to understand the significant of these

preliminary data, the results demonstrate that super-resolution

imaging of biotin-labelled lysozyme has real potential for

characterising the process of fibril formation, and therefore for

investigating the effect of potential modulators of fibril formation

both in vitro and in a cellular environment.

Discussion

In this study, we have successfully introduced a site-specific

biotin label into WT human lysozyme and have shown that this

modification has no significant effects on native-state structure and

stability or on the process of in vitro fibril formation by the

biotinylated lysozyme. It has been demonstrated in previous

studies that the regions of human lysozyme containing the b-

Figure 4. dSTORM images of BioHuL fibrils. (A)–(C) Super-resolution dSTORM images of different BioHuL fibrils (formed in vitro). (D) An overlay
of a straight BioHuL fibril with its fluorescence sum image. (E) The cross-sections of the individual fluorescence sum and the super-resolved dSTORM
image of the BioHuL fibril displayed in panel (D). The full-width half-maximum (FWHM) of the fluorescence intensity distribution of the unresolved
sum image depicts a fibril diameter of 783 nm whereas the super-resolved image depicts a fibril diameter of 133620 nm; the latter showing 6 times
better resolution. (F) (left panel) DIC image of BioHuL present within SH-SY5Y mammalian cells after probing with streptavidin-Alexa647. (middle
panel) Fluorescence sum image of a region within the SH-SY5Y cells (right panels) Super-resolution dSTORM images of BioHuL fibrils in the same
region of the SH-SY5Y mammalian cells as the fluorescence sum image. All scale bars all represent 1 mm.
doi:10.1371/journal.pone.0050192.g004
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domain and the C-helix in the native state are unfolded in the

transiently partially unfolded intermediate which is crucial for

fibril formation [24,65]. The location of Lys33 is within the B-

helix, on a solvent exposed face of the a-domain in the native state

of human lysozyme, and this region is not directly involved in the

formation of the transient intermediate; therefore, it is consistent

that modification to this residue does not result in significant

changes to the process of in vitro fibril formation. The position of

the biotin modification has the great advantage that we are able to

probe the BioHuL fibrils formed at pH 5.0 via a streptavidin-AP

conjugate; our results show that the biotin moiety resides on an

exposed surface, and thus in an accessible region of the fibrils. We

exploit this property to obtain fluorescence microscopy images of

the mature fibrils, both in solution and following introduction into

SH-SY5Y mammalian cells, at very high resolution using the

dSTORM super-resolution imaging technique.

The availability of the biotin moiety located on Lys33 for

detection with streptavidin conjugates provides strong evidence

that the size of the fibrillar core of these fibrils more closely

resembles that of WTHuL fibrils formed at pH 7.5, 60uC than to

those formed at pH 1.5, 45uC [60,62]. For the latter, on the basis

of limited proteolysis experiments, the fibrillar core has been

suggested to consist of residues 32–108 [60] and FTIR analysis

confirms that 75% of the sequence exists as b-sheet structure. In

contrast, fibrils formed at the higher pH were found to have a

different morphology, and although the core region has not been

defined in detail by limited proteolysis experiments, it has been

found to consist of a distinctly smaller b-core region, with 45% of

the sequence in b-sheet structure [62]. The location of a chemical

probe at Lys33 should be very useful for monitoring conforma-

tional changes throughout the process of fibril formation at

physiologically relevant pH values. In addition, ready availability

of a variety of succinimide ester-conjugated probes will enable us

to use the site-specific modification technique described in this

study to introduce a wide range of chemical species into human

lysozyme, opening up the prospects for a wide range of studies

involving, for example, spin-labelling NMR and single-molecule

fluorescence experiments [32,52,66,67]. These studies should

allow us to gain insight into the molecular details of species

present along the fibril forming pathway of human lysozyme, and

hence, to describe in molecular detail, the mechanism of this

extremely important disease-associated process.
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