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1. Introduction 
 

Temporary inundations of large parts of the flat areas on the Carpathian Basin cause serious financial, 
environmental and social problems. On the contrary to riverine and coastal floods, these floods occur 
when – due to limited runoff, infiltration and evaporation – the superfluous water remains on the surface, 
or at places where groundwater – flowing towards lower areas – appears on the surface by leakage 
through porous soil. In literature, these inundations are often identified as inland excess water (IEW)1, 
surface ponding, areal flood, or surface water flood (Rakonczai et al. 2011, Szatmári & Van Leeuwen 
2013). In Hungary, more than 24% of the arable land is in areas moderately or highly endangered by 
inland excess water. The temporal distribution of IEW in Hungary is erratic and difficult to predict 
(Figure 1.) 

 

 
Figure 1. Maximum (blue bars) and average (red line) area covered by inland excess water in Hungary between 
1935 and 2019. Except for the year 1940-1944, the inundations from before 1950 are estimates (Sources: Pálfai 
2000, Official IEW report on vizugy.hu). 

 
The IEW problem is not new; already in the 19th century, it was mentioned as a natural hazard (Pálfai 
2001). Many engineers and scientists have worked to find solutions to reduce the damage due to the 
extreme amount of water. Before it is possible to take action against the problem, it is necessary to 
understand the phenomenon and identify the factors and processes that cause the formation of inland 
excess water. Also, it is important to determine the location and size of the inundations to be able to take 
operative measures to mitigate and prevent further damage. When it is precisely known where and when 
IEW occurs, it may be possible to forecast the location, size and duration of future floods and to develop 
preventive policies. One of the potential solutions to the inland excess water problem is to store the 
surplus water in reservoirs or natural wetlands for later periods of drought (Kozák 2006). Many climate 
change models predict higher variability of precipitation and that extremely intensive precipitation will 
occur more often in the Carpathian Basin, especially in Spring and early Summer, while drought may 
develop during different periods in the same year (Mezosi et al. 2013). For such complex water 
management, it is important to understand where and why IEW develops.  

 

1
 The floods are called Belvíz in Hungarian, but there is no formally accepted definition (Pálfai 2001) nor 

translation to English for the concept. In literature, both excess water and inland water can be found, but are not 
used here since inland water may cover any type of water that is not sea or ocean, while excess water may also 
describe inundations due to flooding rivers (Van Leeuwen 2012). Standing water or sitting water are terms that 
are usually used for smaller areas, up to about 100 m2 that are temporarily covered by water. In this habilitation 
thesis, inland excess water will be used since it attributes to the surplus nature and the geographical location of the 
floods.   
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Four major approaches to map and monitor IEW can be identified (Van Leeuwen et al. 2017). The oldest 
approach is the visual observation of inland excess water patches. The first in-situ inland excess water 
maps in Hungary date from during the Second World War. Since then, observations have been carried 
out during every rainy period in areas affected by IEW. This approach is labor intensive and can easily 
result in errors due to misinterpretation and differences in observation methodology (Van Leeuwen et 
al. 2013). Aggregating the in-situ maps over time can be useful to create maps showing the vulnerability 
to inland excess water floods at an approximate scale of 1:100 000. Monitoring is not possible using the 
field observations, since normally only the maximum observed inundation during an IEW period is 
drawn on the map. 
Pálfai was one of the first to perform hazard mapping based on factors causing inland excess water 
resulting in the national inland excess water index map (Pálfai 2003). Since then, many national, regional 
and local versions of this approach have been published (e.g. Bozán et al. 2005, Bozán et al. 2009, 
Pásztor et al. 2015, Bozán et al. 2017, Bozán et al. 2018, Nađ et al. 2018). The maps provide information 
on the vulnerability of an area to IEW, but do not give information about actual occurrences, nor about 
the development of the phenomenon. 
Modelling of inland excess water has been proposed using hydrological modelling software as well (Van 
Leeuwen et al. 2016, Kozma 2019). Van Leeuwen et al. 2016 shows that this approach can result in 
detailed models of the inundations, but requires large amounts of accurate input data, which is often 
only available for very small areas.  
The fourth approach to map and monitor IEW is based on remote sensing data and algorithms. Data 
collected from small (drones), medium (aerial photographs) and large (satellite imagery) areas have been 
used to detect inland excess water (Van Leeuwen et al. 2020a). The fields of remote sensing and image 
processing provide a large set of well understood methods that can be applied in a standardized method 
allowing to create uniform IEW maps of large areas with good spatial resolution. Data from different 
passive sensors have been extensively used for this purpose, for example Licskó et al. 1987, Csornai et 
al. 2000, Rakonczai et al. 2001, Mucsi & Henits 2010, Van Leeuwen et al. 2012, Van Leeuwen et al. 
2013, Csendes & Mucsi 2016, Balázs et al. 2018, Szatmári et al. 2020, Van Leeuwen et al. 2020b). The 
disadvantage of passive remote sensing data is its limited usability during bad weather conditions which 
are often present during IEW periods. Therefore, approaches using active satellite data to detect IEW or 
other shallow temporal water bodies have been published as well (Csornai et al. 2000, Baghdadi et al. 
2001, Csekő 2003, Manjusree et al. 2012, Gálya et al. 2016, Liu 2016, Van Leeuwen et al. 2017, Gulácsi 
et al. 2019). In general, radar data has been used for water, and especially flood identification in many 
studies. For example, Bolano et al. (Bolanos et al. 2016) developed a method to detect open water bodies 
using a dual threshold method with high resolution Radarsat 2 data. Also, approaches of combined 
monitoring of surface water with optical and radar data have appeared (Hong et al. 2015, Binh Pham-
Duc et al. 2017). 
With the development of ESA’s Copernicus program, a large fleet of satellites has been launched that 
provide data for a large range of applications. The Sentinel-1 satellites have been among the first 
platforms in the program and provide data using an active remote sensing instrument. The data set is an 
improvement over earlier radar data sets like ERS and Radarsat, because it provides continues, near 
global data with a high temporal interval (Malenovský et al. 2012). The Sentinel-2 satellites in the 
constellation provide medium resolution multispectral data with a high temporal interval as well. The 
combined use of Sentinel-1 and Sentinel-2 data has been studied for different applications, like land use 
/ land cover classification (Clerici et al. 2017, Steinhausen et al. 2018, Tavares et al. 2019) and wetlands 
mapping (Chatziantoniou et al. 2017). Although flood detection based on Sentinel-2 has been studied 
before (Goffi et al. 2020, Slagter et al. 2020), a fully automated approach based on the combination of 
Sentinel-1 and -2 data to determine the extent of non-permanent shallow water bodies has not yet been 
published.  
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This habilitation thesis summarizes my inland excess water related research since my PhD work. It is 
the result of my continuous study to improve IEW mapping using satellite imagery. The thesis presents 
a complex algorithm based on freely available Sentinel-1A and Sentinel-1B radar data, and Sentinel-2A 
and Sentinel-2B multispectral data that can be used to derived accurate weekly inland excess water maps 
at regional or national scale. 

 
2. Study area and data 

 
2.1. Study area 

 
The weekly IEW monitoring algorithm can be applied to any area but here the results for a 5913 km2 
large area in the southeast of the Great Hungary Plain, enclosed by the Tisza, Körös and Maros rivers 
and the Hungarian-Romanian border is shown (Figure 2).  
 

 
Figure 2. Study area of inland excess water mapping and its vulnerability (according Pálfai 2003). 

 
This region has similar characteristics as the study areas that were used in my earlier research (Van 
Leeuwen et al. 2013, Tobak et al. 2014a, Tobak et al. 2014b, Van Leeuwen & Tobak 2014, Van Leeuwen 
et al. 2016, Van Leeuwen et al. 2017, Ladányi et al. 2019, Tobak et al. 2019, Van Leeuwen et al. 2020a). 
The elevation is between 77 and 107 meter (above Baltic mean sea level). The areas that are most 
vulnerable are south of the city of Orosháza, the low-lying plains in the west, the valley of the lower 
Tisza and the areas close to the Körös river. There is a close relation between these areas and the 
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regularly flooded regions prior to the 19th century river regulations (Bozán et al. 2018). Due to the 
geomorphological characteristics of the Maros alluvial fan, also on the higher areas inland excess water 
can develop, which can cause significant damage at the border of the alluvial fan (Rakonczai 2011). The 
development of inland excess water in this area is favored because 84% of the soils are clayey and 50% 
of them have poor water absorption and unfavorable water management characteristics, and their upper, 
middle, and lower layers are easily saturated. Eighty-eight percent of the agricultural land is arable land, 
which is because more than 75% of the soils are fertile chernozem. Five percent of the land cover in the 
study area is urban. 
The development of IEW is closely, but not exclusively, related to the period with high precipitation in 
January - March, therefore the research period is focused on resp. March 2016 and March 2018. In 2016, 
during the period between January and March the precipitation was continuously above the 1971-2000 
long term average for that period, while in February, it was even twice as high as normally. After the 
high precipitation period in the second half of February, between March 14-20, just before and during 
the satellite data acquisition, also quite some rain fell. The temperature of 5-10° C was several degrees 
above the normal temperature in February and March, causing increased evaporation (Van Leeuwen et 
al. 2020a).  
In February 2016, everywhere on the Great Hungarian Plain inland excess water developed. In March, 
IEW in Hungary peaked at a maximum 82 427 ha (Integrált vízháztartási tájékoztató Aprilis 2016). The 
year 2016 can be considered a moderate year in terms of total area in Hungary covered by IEW (Van 
Leeuwen et al. 2020a)  
In February, as well as in March 2018, the precipitation was twice as high as the national long-term 
average between 1971–2000 for those months. In fact, in the south part of the study area, the 
precipitation was already above the seasonal average in January. At the end of February, a cold period 
with precipitation started, which resulted in a considerable layer of snow. The warmer period in the 
middle of March caused the snow to melt and the soil to get saturated by melting water. Also, substantial 
rainfall fell during March, especially on the 18th (Van Leeuwen et al. 2020a). Satellite imagery from 
March 28, 29, 30 and 31 used in the study shows the development of IEW at the end of March. The total 
area covered by IEW in Hungary was with 73 184 ha (Integrált vízháztartási tájékoztató Aprilis 2018) 
slightly less than in 2016. This year should also be considered a moderate IEW year. 

 
2.2. Data 
The inland excess water mapping workflow integrates different remote sensing datasets with auxiliary 
vector and raster data. The satellite images were obtained from the scientific data hub of the Copernicus 
Earth observation program of ESA (ESA Sentinel Scientific Data Hub. 2020). 
 
2.2.1. Sentinel satellite data 
Sentinel-1 satellite constellation offers C-band radar data, day and night, and under all weather 
conditions. At the study area, the two satellites provide images about every third day in 3 descending 
and 2 ascending paths (Figure 3). The applied Interferometric Wide (IW) swath mode covers a 250 km 
width area and has 5 x 20 meter spatial resolution. In total 9, Level 1 Ground Range Detected (GRD) 
products, containing both Vertical – Vertical (VV) and Vertical – Horizontal (VH) polarizations were 
automatically downloaded for the study period in 2016. Twenty-one images were downloaded for the 
study period in 2018 (Table 1). 
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Satellite / Sensor Date Polarization  Spatial resolution / coverage 

Sentinel-1A / 1B 16 March 2016 
20 March 2016 

 
28 March 2018 
29 March 2018 
30 March 2018 
31 March 2018 

 
 

C-band (5,405 GHz) 
VV / VH 

 
5 x 20 m (resampled to 10 x 

10 m) 
250 km width 

Table 1. Sentinel-1 input data. 

 

 
Figure 3. Sentinel-1 data available for Hungary (Van Leeuwen et al. 2017). 

 
Sentinel-2 multispectral satellites provide optical data with a 5-day revisiting period. From the available 
13 spectral bands, covering the spectra from the visible part through near infrared to short-wave infrared, 
only 10 bands with 10 and 20 meter spatial resolution were used in the analysis (Table 2). For the first 
study period in 2016, only the Sentinel-2A satellite was in orbit and just the Level 1C (L1C, Top-of-
Atmosphere) data product was available for download. In 2018, also data from Sentinel-2B, at Level 
2A (L2A, Bottom-of-Atmosphere (BoA) reflectance values) was accessible. In the Sentinel-2 granule 
system, the study area is fully covered by four 100 x 100 km tiles: 34TDT, 34TDS, 34TET, 34TES 
(Figure 2). Altogether, 30 tiles of the optical images from six different dates were processed. 

Satellite / Sensor Date Spectral bands Spatial resolution / coverage 

Sentinel-2A / 2B 16 March 2016 
20 March 2016 

 
28 March 2018 
29 March 2018 
30 March 2018 
31 March 2018 

 
B2: 492.4 / 492.1 nm  
B3: 559.8 / 559.0 nm  
B4: 664.6 / 664.9 nm  
B5: 704.1 / 703.8 nm  
B6: 740.5 / 739.1 nm  

 

 
10 m (B2, B3, B4, B8) 

 
20 m (B5, B6, B7, B8A, B11, 

B12) 
 

Table 2. Sentinel-2 input data. 
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Figure 4. Sentinel-2 data available for Hungary in the 100x100 km granule system (Van Leeuwen et al. 2017). 

 
2.2.2. Validation data 
In the validation process, independent remote sensing data, acquired with satellite and aerial sensors, 
were used (Table 3). In 2016, reference data of IEW patches were generated from a SPOT-7 high-
resolution image. In 2018, an orthophoto was used to create the reference data set. The spatial resolution 
of the orthorectified SPOT-7 image is 1.5 m due to pan sharpening of the original 6 meter multispectral 
bands. The image covers an area of 400 km2 on the NW part of the study area (Figure 5). Aerial 
photographs were taken with a 60 MP RGB camera deployed on a Cessna 172 airplane. The generated 
orthophoto mosaic covers an area of approximately 20 km2 in the NW of the study area.  

Satellite / Sensor Date Spectral bands Spatial resolution / coverage 

SPOT 7 14 March 2016 Blue: 450 / 520 nm 
Green: 530 / 590 nm  
Red: 625 / 695 nm 

Near Infrared: 760 / 890 nm 

1.5 m 
400 km2 

PhaseOne P65+ 28 March 2018 RGB 10 cm 
20 km2 

Table 3 Validation data sets 
 

 
Figure 5. Validation sites on the study area. 
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2.2.3. Auxiliary data 
The satellite data-based algorithm requires two mask files to identify and evaluate inland excess water 
inundations. The first mask was initially derived from vector maps stored in the hydro-geographic 
database of the General Directorate of Water Management and stores permanent water bodies, like lakes 
and rivers that were used as reference areas to detect water using the three algorithms of the workflow 
to identify pixels with water. Manually update using very high-resolution satellite images stored in 
Google Earth was required to improve the accuracy of the mask. In total, 1400 ha of reference pixels 
was extracted evenly spread over the study area. A second mask was created to limit the area where the 
algorithm can detect IEW. This mask is based on the National High Resolution Layer (nHRL) and the 
hydro-geographic database. It is used to exclude permanent water bodies, built up areas, anthropogenic 
land cover like large roads, railroads and large buildings. In this way, 12% of the study area is excluded 
for evaluation as possible IEW. 

 
3. Methodology 

The aim of the methodology was to create inland excess water maps for very large (regional, national) 
areas. My earlier research showed that data often was missing or that the accuracy of the results was 
very low if the extent of IEW was determined based only on one image (Van Leeuwen et al. 2017). 
Therefore, the algorithm was designed to collect and evaluate all optical and radar images for the area 
within a seven-day period. To create the resulting weekly inland excess water map, a large number of 
images is required, and multiple parallel workflows had to be developed. The final algorithm was based 
on the integration of the results of three workflows (Figure 6).  

 
Figure 6. Inland excess water detection algorithm based on preprocessed Sentinel-1 and Sentinel-2 data (Van 
Leeuwen et al. 2020a). 
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The large number of satellite images and the complexity of the algorithm required full automation of 
the data processing workflows. Originally, separate models in different software packages were used to 
determine the IEW patches, but it turned out that it was impossible to manually execute all the steps 
within a reasonable timeframe (Van Leeuwen et al. 2017), hence a set of interlinked Python scripts was 
developed that combine standard libraries like gdal and numpy with arcpy for GIS operations (Van 
Leeuwen et al. 2020a). Two sets of scripts run with a different interval, automatically started using 
Windows Scheduler. The first set runs daily and is downloading, preprocessing and processing the active 
and passive satellite data in parallel for the Index, ISODATA and radar workflows, when new images 
become available. The second set runs on a weekly basis and integrates the daily results into the weekly 
map. 

 
3.1. Downloading the base satellite data 
 
Sentinel-1 and -2 data can be downloaded free of charge from ESA’s Copernicus Open Access Hub. 
With the help of a python script, the GNU Wget program (www.gnu.org/software/wget) is called to log 
in to the Open Access Hub using user credentials and search for relevant Sentinel images. A list with 
images is returned and processed to extract the image URLs. These URLs are then fed to GNU Wget 
and the files are downloaded sequentially. If, due to overload of the ESA server or other reasons the file 
is not downloaded correctly, the process is restarted automatically after a predefined time interval. The 
script is restarted every day of the week that is processed, because sometimes data only becomes 
available a few days later instead of immediately after acquisition. 

 
3.2. Preprocessing 
 
Sentinel-1 data is preprocessed using the ESA SNAP graph processing tool (gpt) 
(http://step.esa.int/main/toolboxes/snap). An automated workflow was developed using a Python script 
to run a Sentinel-1 preprocessing graph within the ESA SNAP gpt (Figure 7) (Van Leeuwen et al. 2017). 
Each Sentinel-1 image is individually preprocessed to remove border and thermal noise and to optionally 
refresh geometry metadata based on the orbit information. The data is calibrated to sigma0 and filtered 
using a Refined Lee speckle filter to reduce the noise inherent to radar data. In the last step, the images 
are transformed using Rangle Doppler Terrain Correction to 10 x 10 meter images in UTM projection 
that can be combined with the other data sets. After the preprocessing phase, an additional step using a 
separate python script is performed to reduce the effect of the incidence angle on the backscatter values, 
by normalizing every pixel in the preprocessed image using the local incidence angle (Mladenova et al. 
2013). 

 
Figure 7. ESA SNAP gpt graph to preprocess Sentinel-1 GRD images to sigma0 data. 

 
Depending on when the data was acquired, Sentinel-2 also needs to be processed since older data is only 
available in Level 1C top-of-atmosphere format. Level 1C data must be transformed into Level 2A 
bottom-of-atmosphere data using the Sen2Cor algorithm (https://step.esa.int/main/third-party-plugins-
2/sen2cor). Once the data is in Level 2A format, selected spectral bands (Table 2) are resampled to 10 
meter resolution, cloud masked and mosaiced using a custom python script that calls an ESA SNAP 
graph.  
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3.3. Processing 
3.3.1. Radar based processing 
 
The backscatter values of the preprocessed Sentinel-1 images are converted to decibel (db) units for 
easier handling in the processing workflow. The radar processing workflow is based on the basic 
assumption that the radar response of water is considerably lower than the response of other pixels. The 
challenge is to find the maximum backscatter value of water (Figure 8) (Bolanos et al. 2016, Liang & 
Liu 2020).  

 
Figure 8. Histogram of a preprocessed Sentinel-1 VV band. The red line is showing the possible threshold between 
water and no water. 

 
To determine this value, training data is collected for the VV and VH bands of a Sentinel-1 image. The 
training data consists of the statistics of the mask of known water bodies as described in 2.2.3. For each 
band, the minimum, mean and standard deviation of the water areas are determined. Based on these 
values, the upper and lower thresholds are calculated using an empirically determined method: 

��ℎ��  =  �̅  + � ∗ 
,       (1) 

��ℎ��  =  ���� + (3 ∗ (�̅  − ���� )/5)     (2) 

where 
b is respectively band VV or VH, 
��ℎ��is the upper threshold in db, 
��ℎ��is the lower threshold in db, 
�̅ is the mean of the training samples in db, 
���� is the minimum of the training samples in db, 
k is a user defined constant that can be adapted to specify the sensitivity of the algorithm to water. A 
higher number results in more pixels to be identified as water.  
 
Sometimes, due to speckle or artifacts, pixels with very low backscatter values occur in the images. 
These pixels are excluded as water using the lower threshold. All pixels that are between the upper and 
lower thresholds in both bands are stored as water pixels: 

����� ����� = ��ℎ��  < � <  ��ℎ��     (3) 

 
where x is the value of an individual pixel. 
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If the statistics of the training samples are beyond the normal range for example due to artifacts in the 
image, empirically determined standard values are used for the lower and upper thresholds. These are 
band specific (��ℎ���  =  −40, ��ℎ��� =  −17, ��ℎ��$ =  − 50 and ��ℎ��$ =  − 23) because 
backscatter values for water are normally lower in the VH band. This is necessary to satisfy the 
requirement of full automation of the algorithm. Since each image is processed individually based on 
scene specific reference data, ascending and descending orbits are processed in the same way. It was 
observed that in areas with sandy soils, the backscatter values are lower resulting in overestimation of 
the amount of water pixels (Van Leeuwen et al. 2017). Therefore, an adaptation of the radar processing 
is applied to each sandy pixel in the image and the upper threshold is reduced by 25%. Pixels defined as 
water in both bands are considered water pixels and are stored in the final map. The result of the radar 
workflow is a binary map - clipped to the study area - showing all water in the area, whether it is an 
inland excess water inundation or a permanent water body like a lake or a river.  
 
3.3.2. Optical data based classification 
Open water surfaces are extracted from preprocessed mosaiced Sentinel-2 optical data using 
unsupervised ISODATA clustering. The statistics of the ISODATA output classes are compared with 
the statistics of the water class in the reference mask (see 2.2.3). The ISODATA classes that have the 
smallest spectral angle difference with the reference water are considered water (Kruse et al. 1993). The 
method requires a sufficient number of reference pixels, which is sometimes difficult to acquire due to 
cloud cover in the optical data. Therefore, a checking and verification step is implemented in the 
algorithm. In case of insufficient quantity of reference data, the Sentinel-2 classification is not 
performed. The classified raster is clipped to the study area and reclassified to a binary map, 
differentiating water and non-water pixels. 
 
3.3.3. Optical data based index calculation and thresholding  
 
The second workflow to extract water from the preprocessed and mosaiced Sentinel-2 data is based on 
the Modified Normalized Difference Water Index (MNDWI)(Xu 2005; Du et al. 2016). It is calculated 
from the green and Shortwave-Infrared (SWIR) bands, and it is one of the most popular methods to 
extract water pixels from multispectral satellite imagery. The index produces positive values for the 
water and negative values for built-up, soil and vegetation land cover:  

&'()* =  
+,-../ 0 +1234

+,-../ 5 +1234
      (4) 

where 
 67899� and 6:;<= are the BoA reflectance of the green and SWIR bands resampled to a common 10 

meter spatial resolution. 
 
Water bodies are mapped by a slicing algorithm using a suitable threshold value. In general, the MNDWI 
value of a pixel larger than zero is considered as water. In practice, even though atmospherically 
corrected, multispectral images acquired at different regions and different times always have slightly 
different characteristics, thus the threshold can be empirically adjusted for the region and acquisition 
date using a multiplication factor:  

&'()*>?89@?ABC =  &'()*�9D� −  � ∗ &'()*@>C   (5) 

where 
&'()*�9D� is the mean index value of the reference pixels, 
&'()*@>C is the standard deviation of the reference pixels, 
k is a multiplication factor, its default value is 1.  
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If, due to cloud cover the number of pixels with reference data is very low, or the statistics are beyond 
the normal range, a standard value is used for Sentinel-2 MNDWI segmentation threshold. The result of 
the MNDWI index based workflow is a binary map – clipped to the study area - differentiating water 
from non-water pixels. 

 
3.3.4. Integration 
 
The binary maps produced by the three processing workflows cover different spatial areas and are from 
different dates during the week that is being processed. Data from different dates are aggregated into 
one weekly inland excess water map, because data from single date do not provide a reliable result (Van 
Leeuwen et al. 2017). To integrate the data and to determine the reliability of the final weekly inland 
excess water map, all individual partial result maps are extended to the total study area. Pixels where no 
information is available on whether there is water or not are designated -100. Pixels can get the -100 
value, if they are cloud, shadow, outside the original image or for any other reason undetermined. The 
result is a large set of maps with three values: 0 (no water), 1 (water), and -100 (undetermined) covering 
the total study area (Figure 9).  

 
Figure 9. Integration process of the three parallel workflows 

 
In the next step, a map is created storing the amount of times that it was determined if in a pixel there 
was water or no water. In another map, for each pixel, it is determined how many times water was found. 
By dividing the second map by the first map, a frequency map is created specifying the relative number 
of times water was found in a pixel compared to the number of times data was available. If the relative 
frequency of water is above the manually specified threshold (e.g. 0.4 or 40%), the pixel is determined 
to be water. This map is then filtered to delete single water pixels surrounded by no water pixels and to 
fill up individual no water pixels surrounded by water pixels. In this way, more continuous inundations 
are generated. In the final step, all known permanent water bodies are masked out based on the mask 
file (see 2.2.3) and a binary weekly inland excess water raster map is created. The raster map is 
vectorized and the inland excess water coverage in hectare is calculated for different administrative 
units. 
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3.3.5. Validation 
 
Validation data for the 2016 inland excess water period were derived from a pan-sharpened multispectral 
SPOT-7 image. Water surfaces were extracted using automated clustering, combined with manual 
selection of water classes. From the classified raster, gaps and separated water pixels smaller or equal 
to the base resolution of the IEW monitoring workflow (10 x 10 m) were removed using the Sieve 
method. Permanent water bodies, linear infrastructures, built-up areas, and shadows were also removed. 
The 2018 validation was based on a 20 km2 orthophoto mosaic. Inland excess water patches were 
visually identified and manually digitized. The resulting polygons were then rasterized to the resolution 
of the IEW monitoring workflow. The rasterized validation datasets and the weekly inland excess water 
maps were compared using cross-tabulation (Van Leeuwen et al. 2020a). 

 
4. Results and discussion 
 
Weekly inland excess water maps were created for the study area for two inland excess water periods in 
2016 and 2018 (Figure 6). Parameters were fine-tuned to adjust the sensitivity of the algorithm to water 
but to remain within realistic boundaries. Visual inspection of the results, overlaying the IEW maps on 
different color composite of the Sentinel-2 input images shows that the algorithm properly delineates 
IEW inundations. The largest inundations are detected in regions with clayey soils with unfavorable 
water management characteristics and on the former floodplains, clearly showing the fluvial 
geomorphology like (former) oxbows and river meanders. The border of the Maros alluvial fan is clearly 
shown on the 2018 result, in fact even on its higher areas IEW is detected. 

 

 
Figure 6. Detected inland excess water on the total study area (left) and on subareas (middle) in 11th week of 2016 
(top) and in 13th week of 2018 (bottom) and natural color composites of the input optical data (right). 

 



13 

 

During the moderate IEW period of 2016, the algorithm detected a little over 600 ha of IEW mainly in 
the northwest and east parts of the total study area. More than half of the detected IEW polygons is 
small; not larger than 3 pixels (=< 300 m2). In 2016, 72% of the IEW patches detected by the algorithm 
consist of larger, minimum 1 ha big inundations, the largest patch is even larger than 25 ha. The results 
show that over half of the IEW inundations occur in agricultural areas, to a large extent on arable land, 
which has a substantial effect on the agricultural production. A further one third of the IEW patches is 
located on natural grassland. 
In 2018, five times as much inland excess water was detected (3082 ha) as in 2016 and also the spatial 
distribution of the patches was more spread out than in the earlier research period. In fact, the floods 
have increased everywhere except on the higher regions of the central and south-eastern parts of the 
study area. The complexity of the issue of inland excess water formation and the importance of high-
resolution monitoring was also demonstrated by the fact that in 2016, there were small IEW patches that 
were not inundated in 2018 (e.g. the arable land northwest of Orosháza). 
In 2018, the chance of water detection within the period under investigation was larger than in 2016, 
since the number of available input images in 2018 was twice as high as in 2016, because in 2016 less 
satellites were in orbit than two years later. This issue only occurs in the earlier years of Sentinel 
acquisition when data from Sentinel-1B and Sentinel-2B was not yet available. In both years, the large 
and often deeper inundations that are part of non-permanent wetlands (in the south center and east) were 
detected almost perfectly.  
Figure 7 shows a series of submaps of the detection result of 2018 from the northwest part of the study 
area. At the top, the figure shows that the three detection workflows detect similar patterns of water, but 
that there are some differences. The MNDWI based water map shows the most water, while the 
ISODATA based map is the least sensitive to water in this area.  

 

 
Figure 7. Sub-results of the different workflows (top row), frequency of water detection (bottom left), the 
integrated final inland excess water map (middle below) and the Sentinel-2 natural color composite with clouds 
and cloud shadows of a selected area in 13th week of 2018. 
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The frequency map shows for each pixel the ratio between the number of times water was detected in a 
pixel and the total amount of times the pixel was evaluated in the water detection process. This map can 
be used as a detection confidence map. It can be clearly seen that the deep waterbodies are detected most 
of the time, while more shallow water at the border of the deeper IEW patches is less often detected. 
These areas form the fuzzy boundary between water, saturated soil and dry land. The integration map 
stores only water pixels that are detected more often than the empirically defined relative frequency 
threshold, in other words, the integration map stored the pixels with the highest confidence of IEW.  
 
Often cloud and cloud shadows have a disturbing influence on the IEW detection as can be seen on the 
northern half of the natural color composite. The algorithm takes this into account by masking the clouds 
and shadows in the optical data and ignoring these pixels in the relative frequency calculation. The 
cloud/shadow masking prevents the algorithm to derive IEW from affected pixels in the optical data, 
but since radar images are not influenced by atmospheric disturbance, these areas are evaluated for water 
by the active satellite data based workflow. 
 
The results of the IEW water detection algorithm in 2016 were validated with the SPOT 7 image. The 
quantification of the validation is based on a pixel by pixel comparison between the SPOT image and 
the algorithm result and shows that the overall accuracy is high, but the Cohen’s Kappa is low, due to 
very high omission error (Table 4). This is due to the fact that if one IEW patch is missed in the 
classification, a large number of pixels is misclassified and added to the omission error. Also, the 
classification is unbalanced due to the high amount of “no water”, compared to “water” pixels.  

  Reference        

 
# pixels no water water Total 

  

Producer's 
Acc. 

Omission 
error 

User's 
Acc. 

Commission 
error 

D
et

ec
te

d no 
water 

4454908 7807 4462715 
  

99.92 0.08 99.83 0.17 

water 3494 4513 8007 
  

36.63 63.37 56.36 43.64 

 Total 4458402 12320 4470722 
  

Overall 
Acc. 

99.74 Kappa 0.44 

Table 4. Accuracy assessment on the validation site in 2016 

The IEW inundations delineated for the 2018 period were validated using the high resolution orthophoto. 
From the orthophoto mosaic, 849 inland excess water patches - covering 147.5 ha - were digitized, 
however the algorithm only delineated 52 polygons (8.9 ha). As can be seen in Figure 8, large shallow 
inundations that were identifiable on the aerial photographs can hardly be seen on the Sentinel-2 image 
and were also omitted by the algorithm. Like in 2016, the deep/dark water patches are delineated almost 
perfectly. 
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Figure 8. Results of the cross-validation on a selected area in 2018, with the Sentinel-2 natural color composite 
(used as input for the optical workflow) on the left, the weekly IEW map in the middle and the color aerial 
photograph (used for the validation) on the right. 

 
The calculated accuracy and error values for the water class are shown in Table 5. They prove that the 
applied method indicates the occurrences of inundations to the user properly in almost every case (user 
accuracy is over 90%) however, the ratio of false negative cases is very high (omission error is over 
90%).  

  Reference        

 
# pixels 

no 
water 

water Total 
  

Producer's 
Acc. 

Omission 
error 

User's 
Acc. 

Commission 
error 

D
et

ec
te

d 

no 
water 

185712 13919 199631 
  

99.97 0.03 93.03 6.97 

water 59 830 889 
  

5.63 94.37 93.36 6.64 

Total 185771 14749 200520 
  

Overall 
Acc. 

93.03 Kappa 0.10 

Table 5. Accuracy assessment on the validation site in 2018 

 
The difference between IEW identified by the algorithm and the reference data sets can also be caused 
by the difference in acquisition dates. The algorithm is developed to create weekly IEW maps, because 
earlier research showed that combining multiple daily results gives more accurate IEW maps (Van 
Leeuwen et al. 2017). The reference SPOT satellite data and aerial photographs are from a single 
moment in time, and because IEW is a fast-changing phenomenon, differences in acquisition date of 
several days can lead to changes in the IEW patches. This is particularly characteristic for the boundaries 
of the patches where the water infiltrated or evaporated in case of reduced IEW, or when the size of a 
patch increased due to extra water. This makes the validation of the weekly maps with single date 
reference data more difficult. 
 
To better understand the difference between the IEW patches detected by the algorithm and the polygons 
delineated on the SPOT satellite image and aerial photographs, the number of inundations and their area 
were compared. It turns out that most of the reference polygons (over 70%) is in the smallest size range, 
however their cumulative area is not larger than 10% of the total inundation. Because of the difference 
between the image resolutions, the algorithm is not able to detect these small patches. In the larger size 
ranges, the statistics of the reference and the detected IEW patches are more similar. 
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The underestimation of the amount IEW patches/pixels by the algorithm can be reduced by changing 
the parameters for the threshold of the water detection by the radar data, the amount of ISODATA 
classes that show water and the threshold of the MNDWI slicing. Also, the threshold for the relative 
frequency required to assign a pixel as water can be set in the algorithm. It was decided to keep the 
parameters such that realist values remained for the thresholds and ISODATA water classes, and 
therefore excepting the underestimation. Extreme fine-tuning of the parameters may be possible for 
small areas but is not feasible since the algorithm is designed to work for large areas. Also, the algorithm 
is fully automated and runs without any user intervention. Fine-tuning of the parameters per area and 
time would prevent automation. 

 
5. Conclusions 

This habilitation thesis is the result of the accumulated work of my research performed on continuous 
monitoring of inland excess water since my PhD work in 2012. In this habilitation, I have presented an 
algorithm that can detect inland excess water on very large areas based on a combination of active and 
passive satellite imagery. The base data is freely available and can be downloaded with a high temporal 
resolution. The workflow is fully automated, so no human intervention is needed to generate the weekly 
IEW maps. Two IEW periods and an area sensitive to the phenomenon were selected to demonstrate 
and validate the methodology, but the algorithm can be applied to any area affected by this type of 
inundations. Using quantitative validation, I have shown that the weekly IEW detection algorithm based 
on medium optical and radar satellite data is capable of detecting the inundations, but compared to the 
validation data generated using high-resolution satellite data or aerial photographs, it underestimates the 
amount of IEW in the study area. This is primarily because the algorithm is not able to fully detect the 
smaller patches. Furthermore, intermediate IEW classes like soil saturated with water and IEW patches 
covered with vegetation are often not detected.  

The extreme weather patterns that are expected in the Carpathian Basin in the near future due to climate 
change will increase the chance that IEW will develop more often and that its extent will be larger. 
Therefore, it is important to develop robust algorithms to map and monitor the phenomenon. The 
presented algorithm supports efficient water management activities to mitigate the negative effects of 
IEW and to increase the sustainable use of the surplus water in periods of deficit.  
Currently, two versions of the presented algorithm are implemented in an operative environment. An 
earlier, simplified version has been implemented in the Földmegfigyelési Információs Rendszer (FIR) 
environment that runs at Lechner center. The second version is implemented at the Drought and Excess 
Water Research and Monitoring Centre at the Department of Physical Geography and Geoinformatics 
of the University of Szeged, where it produces weekly IEW maps on a regular basis (https://aszaly.geo.u-
szeged.hu/wateratrisk/map/?locale=hu).  
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