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ABSTRACT: Soft materials such as gels or biological tissues can develop via self-
assembly under chemo-mechanical forces. Here, we report the instantaneous
formation of soft tubular structures with a two-level hierarchy by injecting a
mixture of inorganic salt and chitosan (CS) solution from below into a reactor
filled with alkaline solution. Folding and wrinkling instabilities occur on the
originally smooth surface controlled by the salt composition and concentration.
Liesegang-like precipitation patterns develop on the outer surface on a μm length
scale in the presence of calcium chloride, while the precipitate particles are
distributed evenly in the bulk as corroborated by X-ray μ-CT. On the other hand,
barium hydroxide precipitates out only in the thin outer layer of the CS tubule when barium chloride is introduced into the CS
solution. Independent of the concentration of the weakly interacting salt, an electric potential gradient across the CS membrane
develops, which vanishes when the pH difference between the two sides of the membrane diminishes.

■ INTRODUCTION
Structures with multi-level complexity are of utmost
importance because they can be used as actuators,1 motors,2

adhesives,3 and so forth. They can be designed by a bottom-up
approach starting from initial building blocks and creating the
structure on a smaller length scale.4,5 Building an ordered
polysaccharide polymer structure always gains attention as it
enhances the functionality and performance of soft materials.6,7

The natural polysaccharide polymer chitosan (CS) is a
potential candidate because of its biomedical applications8,9

and intrinsic properties such as biocompatibility,10 biodegrad-
ability,11 and bioactivity.12 The sol−gel transition leads to a
multilayered CS polymer using special molds,13 stopping the
gelation process14,15 or starting from appropriate salt
compound.16

Monitoring the material ion composition, properties, and
interaction strength helps in designing complex patterns of soft
structures, which are utilized in a wide range of applications
including stretchable electronics,17 biotemplating,18 biominer-
alization,19 bioactuation,20 3-D printing,21 and so forth. In the
last few years, CS interaction with metal ions has earned
significant attention22 in waste water cleaning. It has been
successfully applied to yield promising organized formations
and structural modifications, where the strong affinity of CS to
transition metal ions induces the orientation to layered
transition and the weak affinity between alkaline earth metals
and CS leads to composite gel structures.23 Our goal is to
manipulate the patterns evolving at various length scales by
changing the composition of metal salts added to the CS
solution.
In order to acquire surface patterns, many elegant

approaches have been developed mostly focusing on

prefabricated gels. The swelling of hydrogels in solvents24

and in the presence of stimuli, like pH25 or photo-thermal
effects,26−29 induces mechanical compression, resulting in the
emergence of wrinkling instability. When strains develop on a
soft substrate firmly attached to a rigid layer, the existing
wrinkles are transformed into folds,30−34 which can also
delaminate if adhesion between the soft and rigid material is
weak.35,36 These types of patterns are abound in nature with a
wide range of length scales: folds in the brain cortex37 evolve in
μm size, while mm to cm size wrinkles appear on plants and
human skin.38 Surface instabilities are also explored at
geometries varying from planar sheets to cylindrical and
spherical materials.39

Self-organized hollow tubules allow the separation of
chemicals similar to the conduit structures of chemical
gardens.40−45 In the emerging field of chemobrionics,40,46 the
reaction between metal cations and silicate or other alkaline
anions leads to precipitation of tubular membranes that
produce chemical gradients between their two sides as was
reported in iron mineral47 or sulfide-based membranes48 and
silica chemical gardens.49 In deep-sea hydrothermal vents,
black smoker chimney50 and hydrothermal fluidsea water
fuel cells51 generate electric energy. In prebiotic chemistry, the
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compartmentalization of chemical environments paves a
significant contribution toward the origin of life.52−54

In the present work, we focus on multiscale instabilities
arising during the boundary-aided growth of organic−
inorganic tubules, where self-organized CS gel structures
couple with self-assembled inorganic precipitates according to
the distribution of supersaturation, giving rise to a spatial
hierarchy. We not only characterize the evolving structures but
also define the major factors determining them. Finally, the
electrochemical description of the created membrane is
provided for further applications.

■ EXPERIMENTAL SECTION
Analytical grade reagents, medium molecular weight CS (Sigma-
Aldrich 448877), CH3COOH (VWR, 99−100%), NaCl (Molar),
KCl, CuCl2·2H2O (Reanal), CaCl2·2H2O, BaCl2·2H2O (VWR), and
NaOH (Sigma-Aldrich, pellets) were used in the experiments.
Solutions of CS 0.75 w/v % in 0.2 M CH3COOH and different
concentrations of metal salts were prepared with doubly deionized
water.
CS or CS−salt solution was injected from below into the pool of

NaOH solution (c = 0.75 M) using a twelve-roller peristaltic pump
(Ismatec Reglo) through a Tygon tube (i.d. = 1.42 mm) with an inlet
needle pinhole (i.d. = 0.6 mm) as shown in Figure 1. All experiments

were performed at room temperature 23 ± 2 °C using a plexiglass
cuvette with dimensions 1 cm × 2 cm × 10 cm (alkali and alkaline
earth salts) or 1.5 × 2 × 3 cm3 (copper chloride). Images of the
organized structures were recorded with a two-second temporal
resolution using a Unibrain fire-i 630c camera with Vivitar extension
tubes controlled by a computer.
For potential difference measurements, platinum wires having a

diameter of 0.5 mm were polished with sandpaper no. 3000 before
each experiment and covered with parafilm such that only their 6 mm
long tip was exposed. By maintaining a 8 mm distance between them,
the wires were inserted up to 1.8 cm (see Figure 1) into the
electrolytes. The time-dependent electric potential inside the tube
with respect to the outer electrolyte was recorded in a 5 s interval
using a Thermo Orion 420 pH/mV meter connected to a computer.
For X-ray μCT measurements, Ca2+−, Ba2+−, and Cu2+−CS gel

samples were carefully transferred from the alkaline solution into the
empty sampling tube after 30 min. Then, the sampling tube was filled
with deionized water. 3D characterization of each sample was
obtained using X-ray μCT (Bruker SKYSCAN 2211 nanotomog-
raphy, 55 kV accelerating voltage, 500 μA emission current). A total
of 1390 images were extracted for 180° rotation with 0.15° rotation
step and 10 μm pixel resolution using a 3 MP cooled Flat Panel
camera (52 ms exposition time). The projection images were
reconstructed using NRecon (SKYSCAN Bruker) software, and the

volume-rendered 3D CT images were visualized using CTVox
(SKYSCAN Bruker) software. Raman spectroscopic measurements
were carried out with a Raman microscope (Senterra Bruker, 50x
magnification, λexc = 785 nm, P = 10 mW).

To determine the gel thickness, a green laser beam (Roithner
Lasertechnik, λ = 532 nm, P = 100 mW) passing through a lens
(TechSpec) was projected vertically making a 90° angle with the
camera.

■ RESULTS AND DISCUSSION
Macroscale Patterns. When acidic polycation CS sol is

injected into the alkaline solution, chemo-mechanical forces
drive the boundary-assisted tubules, as discussed in our
previous work for various types of CS gels.55,56 to various
types of CS gels. The tube grows upward steadily on the glass
wall, and compressive stress along the axial and circumferential
direction produces the surface pattern: wrinkles deform far
from the tube tip, while fold appears close to that.
Patterns on the soft surface are monitored for a fixed alkaline

concentration and injection rate when the ionic environment
of the injecting CS sol is varied. An injection rate of Q = 1.01
mL min−1 was selected as a reference case because for the
given alkaline concentration, coexisting modes of folds and
wrinkles evolve on the pure CS tube,56 as shown in Figure 2a.

The addition of salts with monovalent cations, Na+ and K+,
in different concentrations to the CS solution transforms the
coexisting modes into folds (Figure 2b−d) with periodic
deformations on the tubules with right angles to the direction
of flow. The characteristic dimensions, such as diameter d and

Figure 1. Schematic diagram of the experimental setup. (a) CS or
CS−salt solution (b) peristaltic pump (c) injection inlet, (d)
plexiglass cuvette, (e) multimeter, (f) platinum wires, (g) side view,
and (h) front view of the tube. The definition of tube characteristics
(h, d, and λ) is also shown.

Figure 2. Surface patterning on the (a) CS at t = 54 s and (b−i)
metal−CS tubes with [NaOH] = 0.75 M and Q = 1.01 mL min−1.
The corresponding salt concentrations are (b) [NaCl] = 0.2 M, (c)
0.4 M, (d) [KCl] = 0.4 M, (e) [BaCl2] = 0.05 M, (f) 0.15 M, (g)
[CaCl2] = 0.1 M, (h) 0.2 M, and (i) 0.3 M. The field view of all
images is 2.37 × 1.27 cm2.
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depth h, decrease, whereas the linear growth velocity rl
increases compared to that of pure CS tubes (see Table 1).
This is due to the salting-out effect57 because the screening

of reactive protonated amine groups with Cl− reduces the net
electrostatic repulsion between the polymer chains. The
increase in ionic strength therefore dominates the gel
properties, and the tubules exhibit a slight decrease in the
wavelength of the folding patterns (see Table 1). The increase
in the alkali metal salt concentration, however, decreases the
buoyancy effect, which provides an opposite influence on the
tube growth characteristics governed by the flow. The balance
between these two factors results in only insignificant changes
in the tube diameter, depth, and linear growth rate.
Polycationic CS has weak affinity to not only alkali but also

alkaline earth metal ions;22 therefore, the effect of Ba2+ and
Ca2+ salts in the CS sol is also investigated. At low
concentrations of barium ions, there is no change in the
structure (Figure 2e), while at higher concentrations, a shift to
the folding structure is observed (Figure 2f), similar to the case
of Na+ and K+ contents. The addition of calcium ions
represents a different scenario: wrinkling patterns (Figure
2g,h) with distinct formation of white precipitates are
observed. A further increase in the alkaline earth salt
concentration leads to the appearance of hierarchically
structured patterns as the tubes meander along the wall,
while surface instabilities appear only as secondary formations
as shown for systems with calcium ions in Figure 2i (see Video
S1 for the formation). The lower solubility of alkaline earth
metal hydroxides is the key factor, which differentiates even
Ca2+ and Ba2+. Upon contact, the encounter of OH− produces
Ba(OH)2 and Ca(OH)2 precipitates. The relatively high
solubility product of barium hydroxide (pKsp = 3.658) results
in only a negligible amount of precipitate, while tube contrast
increases significantly for calcium hydroxide (pKsp = 5.19)
where substantial precipitation takes place.
Similar to alkali metal salts, at lower concentrations of

alkaline earth metal salts, the linear velocity rl increases because
the tube diameter d and depth h decrease compared to those of
the pure CS tube dimensions (Table 1) in accordance with the
reduced repulsion between polymer chains due to the greater
ionic strength. This is, on the other hand, accompanied by the
decrease in the density difference between the two electrolytes,
which weakens buoyant forces contributing to the tube
formations and hence thickens the tube (see Table S1 in
Supporting Information for the density differences). These two

effects are again balanced by increasing the salt concentration
with regards to the periodic patterns; hence, the wavelength of
folding and wrinkling does not vary by increasing the alkaline
earth concentrations of Ba2+ and Ca2+. Furthermore,
precipitation takes place with the addition of the alkaline
earth electrolytes, which also results in the increase of d.
Interestingly, independent of the composition, in the time

scale of the experiments, the volume growth ratescalculated
for half cylinders as rV = πdhrl/4of metal−CS and pure CS
tubules are approximately equal to the injection rate Q (Table
1), indicating that there is no significant net liquid transfer
across the organic−inorganic and organic membranes.43

We have also tested the effect of metal ions chemically
interacting with CS. Our choice, copper ion, forms complexes
with the amino groups; therefore, the strong affinity between
Cu2+ and CS increases the cohesive force of the polymer chains
and yields thicker tubes with short-wavelength buckling
deformations (see Video S2).
The temporal growth of wall thickness w has been

determined for the metal ion-containing tubes with highest
concentrations as summarized in Figure 3.
The profiles of various membranes are similar, except for the

copper(II)−CS gel where the complexation significantly alters
the gel properties. The good overlap for the different scenarios
and within the experimental error identical exponents (see α
values in Table 2) suggests that the dominating driving force is
the diffusion of hydroxide. The lower values of the scaling
constants indicate the slow transportation of OH− ions in the
copper(II)−CS gel.

Microstructure. The microscale patterns of the alkaline
earth−CS gels have been characterized by X-ray micro-CT.
The macropatterns of Ba2+−CS tubules are affected less by the
addition of appropriate salts as illustrated in Figure 4a,b.
Folding patterns and precipitation layers develop on the
surface as precipitation takes place at the highest alkaline
concentration region, that is, at the contact of the two
electrolytes. The presence of the empty region in Figure 4b
confirms that no precipitation takes place inside the tube. For
Ca2+−CS gel, the solid particles seem to be homogeneously
distributed as illustrated in Figure 4c,d but a close inspection
reveals that the aggregation of solid particles forms periodic,
Liesegang-like rings at the boundary (see Figure 4d enlarged
section). The precipitation formation in the inner region is
slower than the gelation process (see Figure S1) because of the
smaller alkaline gradient and lower alkaline concentration

Table 1. Characteristic Properties of the CS and Metal−CS Tubules with [NaOH] = 0.75 M and Q = 1.01 mL min−1a

c (M) d (cm) h (cm) rl (cm s−1) rV (cm3 min−1) λ (cm) shape

CS 0.75 w/v % 0.68 ± 0.01 0.32 ± 0.01 0.099 ± 0.001 1.01 ± 0.02 mixed
Na+ 0.2 0.58 ± 0.01 0.28 ± 0.01 0.127 ± 0.001 0.96 ± 0.02 0.46 ± 0.01 F
Na+ 0.3 0.58 ± 0.01 0.28 ± 0.01 0.126 ± 0.001 0.97 ± 0.02 0.43 ± 0.01 F
Na+ 0.4 0.58 ± 0.01 0.29 ± 0.01 0.127 ± 0.001 1.00 ± 0.02 0.40 ± 0.01 F
K+ 0.2 0.58 ± 0.01 0.27 ± 0.01 0.127 ± 0.001 0.95 ± 0.03 0.45 ± 0.01 F
K+ 0.3 0.59 ± 0.01 0.28 ± 0.01 0.125 ± 0.001 0.98 ± 0.03 0.42 ± 0.01 F
K+ 0.4 0.59 ± 0.01 0.29 ± 0.01 0.124 ± 0.001 0.98 ± 0.02 0.40 ± 0.01 F
Ca2+ 0.1 0.61 ± 0.01 0.30 ± 0.01 0.115 ± 0.001 1.00 ± 0.03 0.21 ± 0.01 W
Ca2+ 0.2 0.70 ± 0.01 0.34 ± 0.01 0.088 ± 0.001 0.99 ± 0.02 0.21 ± 0.01 W
Ca2+ 0.3 0.92 ± 0.01 0.46 ± 0.01 0.050 ± 0.001 1.00 ± 0.01 0.56 ± 0.01 MF
Ba2+ 0.05 0.63 ± 0.01 0.31 ± 0.01 0.109 ± 0.001 1.00 ± 0.02 mixed
Ba2+ 0.1 0.65 ± 0.01 0.33 ± 0.01 0.101 ± 0.001 0.99 ± 0.02 0.47 ± 0.01 F
Ba2+ 0.15 0.74 ± 0.01 0.36 ± 0.01 0.079 ± 0.001 0.98 ± 0.04 0.48 ± 0.01 F

aSymbol “F” represents the folding, “W” indicates the wrinkling instabilities, and “M” indicates meandering.
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resulting in the disruption of concentric bands. The precipitate
is identified by Raman microscopy as a mixture of Ca(OH)2

and calcite; the latter is produced by the reaction with CO2
from the air.
The strong chemical interaction between Cu2+ and CS

results in a highly buckled tube yielding a rigid membrane (see
Figure 4e,f). These patterns resemble the hardening of the
upper crust of a hot lava, where the lava underneath still
flows.59

Electrochemical Characteristics of the Membrane.
Sol−gel transition triggers the boundary-aided CS tube
formation that separates the acidic and basic electrolytes, and
hence, a potential difference develops on the two sides of the
membrane. We have placed two platinum wires in the solution
such that in the proton-rich acidic medium, the Pt wire works
as the cathode, while in the alkaline solution, it works as an
anode. The drastic concentration gradient generates a potential
difference of 484 ± 6 mV across the membrane, which changes
with time due to the buildup of the membrane and the
decreasing concentration gradient (Figure 5a). Following an

initial slow decay, during which the wires are in the
electrolytes, the electric potential exhibits two consecutive
sharp steps before reaching the final ≈−12 mV in the time
scale of the experiment.
For more insights, we performed an experiment with

increased inner electrolyte volume, where a cuboid reactor is
filled with an equal amount of acidic CS and basic NaOH
solutions in different compartments, separated initially by a
polyvinyl sheet (for experimental setup, see Figure S2). As we
remove the sheet, CS gel forms immediately at the interface of
the electrolytes. Besides the time-dependent potential gradient
across the gel, the temporal changes in the pH of the
electrolytes are measured separately. The potential difference
evolves in three steps as a function of time as shown in Figure
5b, similar to the in situ tube formation but on a longer time
scale because of the greater size. In region I, both wires are in
the electrolytes. Region II begins when the sol−gel transition

Figure 3. (a) Temporal evolution of CS and metal−CS membrane
thickness at [NaOH] = 0.75 M, Q = 1.01 mL min−1; (b)
corresponding logarithmic representation with the fitted lines.

Table 2. Temporal Scaling Exponents (α) and
Proportionality Constants (k) for CS and Metal−CS
Membranes at [NaOH] = 0.75 M and Q = 1.01 mL min−1

name [c] (M) Α 105k (cm1/α/s)

CS 0.75% w/v 0.56 ± 0.03 10.4 ± 1.8
Na+ 0.4 0.57 ± 0.02 11.2 ± 1.0
K+ 0.4 0.56 ± 0.01 11.1 ± 1.3
Ca2+ 0.3 0.58 ± 0.03 10.9 ± 0.9
Ba2+ 0.15 0.58 ± 0.02 14.7 ± 1.7
Cu2+ 0.06 0.41 ± 0.03 3.9 ± 0.5

Figure 4. X-ray μCT measurements of the patterns with [NaOH] =
0.75 M, Q = 1.01 mL min−1 (a,b) [Ba2+] 0.15 M (c,d) [Ca2+] 0.3 M,
and (e,f) [Cu2+] 0.06 M. The samples were removed from the cuvette
30 min after the 2 min-long injection was stopped and were used for
immediate measurements.

Figure 5. Electrochemical potential of (a) CS tubules and (b) CS
membranes in a cuboid reactor. The inset figure displays the
corresponding pH change in the CS compartment. The time when
gelation reaches the appropriate electrode wire is marked by a red
dashed line. The blue line indicates the time when the Pt wire is
completely covered with gel.
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zone reaches the cathode wire. During the entire second
region, some portion of the electrode is in contact with both
the solution and the hydrogel. In region III, the electrode is
completely covered with the hydrogel but the concentration
gradient of the hydroxide ions exists. The pH of the CS
solution increases with time due to the diffusion of hydroxide
ions from the basic compartment (see inset of Figure 5b). The
pH of the NaOH solution (pHNaOH) does not vary with time,
and it is ≈13 even after 15 h. In the CS solution, the pHCS =
3.75 ± 0.01 initially, which rises slowly corresponding to the
first region of the potential. The contact of the gel with the pH
electrode is marked by a red dashed line in Figure 5b, where
pHCS = 5.22 ± 0.12 and the corresponding potential difference
is 456 ± 8 mV. The further steep pH rise indicates the gelation
and causes a drastic fall in electric potential. After 15 h, pHCS =
12.86 ± 0.03 is reached, which is approximately the same as
the pH of the alkaline solution with 6 ± 3 mV potential
difference.
Using the Nernst equation, the potential difference can be

approximated as ΔE = ECS − ENaOH = 2.3RT/F(pHNaOH −
pHCS) because the pH gradient is the dominating factor with
Pt wires immersed in aqueous solutions of nonelectroactive
electrolytes in the presence of dissolved oxygen. The pH-
driven potential difference is calculated to be ΔE = 451 mV in
excellent agreement with the experimentally measured 450
mV.
The diffusion potential developed due to the presence of the

ionic species can be calculated by solving the following
dimensionless general balance equations60

τ
δ δ ψ

∂
∂

= ∇ + ∇ ∇ +
c

c z c f c c( ) ( , ..., )i
i i i i i i n

2
1 (1)

∑ δ δ ψ= [ ∇ + ∇ ∇ ]
=

z c z c0 ( ) ( )
i

n

i i i i i i
1

2 2

(2)

where ci represents the concentration of the ith species with
charge zi and relative diffusion coefficient δi = Di/D, τ = t/ts is
defined with ts = 1 s, f i(c1, ..., cn) represents the chemical
source/sink term related to the protonation/deprotonation
reactions, and ψ = ϕF/(RT) is the electric potential (see
Supporting Information for details). The maximum potential
difference ϕ is calculated to be 39 mV, which drops
exponentially as a function of time (see Figure S3). Our
analysis supports that ΔE largely depends upon the pH
gradients and the final potential difference reached on the time
scale matching that of the experiment is 0.2 mV. The time
evolution of the electric potential and pH, however, differs
because of the inevitable convection arising in the measure-
ments. The electrochemical potential across the metal ion−CS
membranes follows a similar profile to the CS membrane. For
monovalent ions and the weakly interacting divalent ions, the
potential difference is 420−450 mV for all the concentrations.
The stronger interaction due to the complexation between
copper ions and CS results in a 400 mV drop in the cell
potential, and a longer potential evolution is obtained at
greater concentration. Consequently, the temporal span of
potential differences is shorter for thinner tubes and longer for
the thicker tubes.

■ CONCLUSIONS
We have shown surface patterns on tubular CS hydrogels,
where coexisting modes transform into regular folds or

wrinkles when metal salts were added into the CS solution.
The increase in the monovalent ion concentration decreases
the periodicity of folds, while no variation is observed in the
characteristic properties. In contrast, the diameter and the
depth of the tube increase for the alkaline earth metal
chlorides. Wrinkles form at lower and intermediate calcium
chloride concentrations, while at high concentrations,
Liesegang-like concentric precipitation rings also appear on a
smaller length scale. These variations are the results of the
increase in ionic strength that changes the gel properties by
decreasing the repulsion between the polymer chains. Copper
ions have strong affinity to CS because of the strong amino
complexation, which induces asymmetric wrinkle patterns as
lava surfaces deform. Far-from-equilibrium organized tubules
manifest the spontaneous separation of distinct electrolytes
with electrochemical potential and pH gradients. The temporal
evolution of the cell potential on the two sides of the
membrane is affected by the in situ thickening of the wall,
accompanied by the movement of the hydroxide ions. The
present work provides a controlled framework of the metal
ion−CS hierarchical self-assembly, which can be useful for
bioinspired material applications of energy generation as thin
films for fuel cells or lithium ion batteries.61
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De Wit, A.; Giannerini, S.; Horváth, D.; Rodrigues, A.; Russell, M. J.;
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