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ABSTRACT

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RSCB PDB) provides a
wide range of digital data regarding biology and biomedicine. This huge internet resource involves a
wide range of important biological data, obtained from experiments around the globe by different
scientists. The Worldwide Protein Data Bank (wwPDB) represents a brilliant collection of 3D structure
data associated with important and vital biomolecules including nucleic acids (RNAs and DNAs) and
proteins. Moreover, this database accumulates knowledge regarding function and evolution of bio-
macromolecules which supports different disciplines such as biotechnology. 3D structure, functional
characteristics and phylogenetic properties of biomacromolecules give a deep understanding of the
biomolecules’ characteristics. An important advantage of the wwPDB database is the data updating
time, which is done every week. This updating process helps users to have the newest data and in-
formation for their projects. The data and information in wwPDB can be a great support to have an
accurate imagination and illustrations of the biomacromolecules in biotechnology. As demonstrated by
the SARS-CoV-2 pandemic, rapidly reliable and accessible biological data for microbiology, immu-
nology, vaccinology, and drug development are critical to address many healthcare-related challenges
that are facing humanity. The aim of this paper is to introduce the readers to wwPDB, and to highlight
the importance of this database in biotechnology, with the expectation that the number of scientists
interested in the utilization of Protein Data Bank’s resources will increase substantially in the coming
years.
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INTRODUCTION

The Protein Data Bank (PDB) is known as an international virtual data core, which serves as
a fundamental information source in association with atomic structures, crystallography and
three-dimensional (3D) structures of biomolecules, including nucleic acids and proteins (e.g.,
enzymes, immunoglycoproteins, adhesins) which are applicable for education and research.
In this regard, biotechnology, biopharmaceutics, bioengineering, biomedicine, biology are
disciplines that are directly dependent on the use of PDB [1–7]. Indeed, the data and in-
formation regarding crystallography and 3D structures of biomolecules released by PDB
enable us to have an effective prognostication about the biochemical, biophysical and
physicochemical properties comprising affinities and bonds of the related macromolecules
and small biomolecules [2, 8–10]. Since 1971, the PDB as the first global open access
recourse, which serves invaluable digital data for free. This international public good, sup-
ports vital data and information to visualize the biological structures and the related bindings
between macro- and small biomolecules. Since 2013, the management of PDB is in accor-
dance with the FAIR (the acronym depicts: Findable, Accessible, Interoperable, Reusable)
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guiding principles for scientific data [2, 11]. Figure 1 shows
the timeline of PDB progression (https://www.rcsb.org/
pages/about-us/history) [2, 12–18].

Interestingly, the open access “treasure” of PDB archives
and represents several thousands of biomolecules to global
users. Atomic and molecular structures of biological mole-
cules together with their complexes (biomolecule-specific
ligand(s)) are archived in PDB. Simultaneously, the PDB
archive gets bigger and bigger every year. Up to now, the
PDB is recognized as a high-managed resource for effective
biodata. The FAIR principles are guaranteed via the appli-
cation of OneDep software system. This software system
controls the input structure data receiving by PDB data
ecosystem for being validated, standard and biocurated. This
process makes the data representing by PDB as findable,
accessible, interoperable and reusable [11, 19–21]. Since the
establishment of wwPDB [21] in 2003 (Fig. 1) up to now,
several biocurators have been recruited by wwPDB centers
in different continents such as Asia, Europe and the
Americas. A collection of basic sciences and skills
comprising enzymology, biophysics, computational chem-
istry, biochemistry, small molecule crystallography, electron
microscopy, macromolecular crystallography and nuclear
magnetic resonance (NMR) spectrometry supports the
structural biology as the front line aim and goal of the PDB
archive [19]. Even during the severe acute respiratory syn-
drome–related coronavirus (SARS-CoV-2) pandemic era,
more than 2000 structures associated with the causative
agent of the coronavirus disease (COVID-19) were released
and have become accessible for global users for free. A brief
collection of PDB deposits is available on SARS-CoV-2
related structures page (https://covid-19.bioreproducibility.
org/) [7]. The structural properties of different organisms

e.g., COVID-19 released by PDB archives give us this op-
portunity to find out the spatial conformation of ligands,
ligand binding sites, protein-protein interactions and amino
acid substitutions regarding different viral proteins. The
related data may also be represented by other centers and
websites rather than PDB (https://www.rcsb.org/news?year
52020&article55e74d55d2d410731e9944f52&feature5true),
including the COVID-19 Data Portal (https://www.
covid19dataportal.org/) and PDBe-KB COVID-19 Data
Portal (https://www.ebi.ac.uk/pdbe/covid-19) among others.

Moreover, chemical, functional and energetic character-
istics are effective data, which may be gained from PDB to
describe the potential capabilities for each individual mole-
cule. These properties belonging to each structure and or-
ganisms may support us to determine the potential drug
targets for drug design and vaccine preparation [22]. As an
important documentary evidences, 210 new molecular en-
tities (NMEs) were discovered and developed during a period
of 2010–2016 and then were approved by the US Food and
Drug Administration (FDA). The primary 3D structural data
and information belonging to all of these NMEs compart-
ments, were first produced and released via PDB archive. The
representation of the related structures encouraged pharma
companies to finance in drug discovery and development [2,
23]. Due to this fact, the aim of this review article is to show
the vital importance of RCSB PDB as a virtual information
“treasure” for research in biotechnology.

METHODS (LITERATURE SEARCH)

The design of the present manuscript is a narrative review,
with the aim of critically analyzing and contextualizing the

Fig. 1. Timeline of historical evolution of Protein Data Bank (PDB)
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present knowledge and future perspectives on PDB. To
formulate the present manuscript, a literature search was
performed by the authors in the PubMed/MEDLINE,
SCOPUS, EMBASE, and Web of Science databases up to 1st
of September, 2021. No restrictions on article type, language
or year of publication were set. The authors examined the
primary search results and selected papers based on their
suitability to be included in this review paper. After the
selection of appropriate articles, the reference lists of these
papers were also screened for relevant articles. Additionally,
in case of some sub-topics of the review, authors also used
references from their personal collection, totaling in n5 106
references.

PROTEIN DATA BANK (PDB)

The establishment of PDB in 1971 as an effective global
open access resource for biological digital data was initiated
by the introduction of only seven structures of proteins; and
now at the time of writing this article PDB houses >182,600
biological macromolecule structures (https://www.rcsb.org/)
pertaining to DNAs, proteins, RNAs, these biological mol-
ecules complexes with other molecules (e.g., drugs). The
foundation of PDB as a unique feature was happened for the
first time in the world’s science history. Nowadays, PDB is
identified as a remarkable gold standard and a great in-
vestment for archiving digital data regarding 3D structures
of biological molecules. Therefore, PDB currently is known
as an outstanding reference for researchers, trainers and
students in the fields of applied and basic sciences associated
with biology and biomedicine [23, 24].

For ensuring the highly validation and well-expertized
biocurated of archived 3D macromolecular structures in
PDB, the International consortium of wwPDB (RCSB PDB
[25], PDB in Europe (PDBe) [26], PDB Japan (PDBj) [17]
and Biological Magnetic Resonance Data Bank (BMRB) [27,
28]) (Fig. 1) has launched the OneDep software system
which is known as a deposition-biocuration-validation tool
[29]. These evaluations are achieved through professional
expertized processes e.g., 3D cryo-electron microscopy
(3DEM), X-ray crystallography and NMR [29]. Indeed,
OneDep covers the wwPDB consortium through its unified
software tool for deposition, biocuration and validation of
the represented archived data associated with macromolec-
ular structures [28]. To promote the validation and the
quality of archived structures data in the wwPDB archive,
availability of raw experimental data is enforced. OneDep
system controls any ambiguity issues associated with
experimental data and/or atomic models. This process fa-
cilitates the following handling processes for depositors to
check and accomplishing any correction regarding a PDB
deposition. Further doubtful issues will be rechecked by the
manuscript reviewers or via wwPDB biocurators. To reduce
the duration of validation process and to convene the vali-
dation task forces (VTFs) and effective validation metrics,
the wwPDB has recruited a the OneDep software tool

(https://deposit.wwpdb.org) for depositors server (https://
validate.wwpdb.org/) [29] to check the experimental meth-
odology containing electron microscopy [30], electron
crystallography [31], solid-state- and solution NMR [31, 32],
neutron diffraction [33], X-Ray diffraction [34, 35], fiber
diffraction [24].

THE ONEDEP SOFTWARE TOOL

The main goal of an open access digital data resource or-
ganization like wwPDB is to distribute high-quality data and
information with no limitations to its global users. To pro-
vide this condition, the PDB archive is supported by strong
system to enhance the quality of disseminated data. Today,
the PDB archive as a progressive digital data resource en-
compasses numerous structures which are provided through
3DEM, crystallography and NMR spectroscopy [28]. These
progressions are resulting from the successful efforts by the
structural biology community. Simultaneously, the PDB
archive is responsible for the validity of the released data.
Due to this responsibility, since January 2014 the wwPDB
employed the OneDep software system to support the
atomic 3D structures obtained via crystallography (X-ray).
Two years later in January 2016, the OneDep system was
recruited for those structures obtained by 3DEM, crystal-
lography (X-ray) and NMR [28]. Interestingly, the advanced
OneDep software controls the repositories which are con-
tained of a huge number of experimental data pertaining to
crystallography (X-ray), 3DEM and NMR. These profes-
sional interoperations ensure the uniqueness of deposited
data to assign PDB code. Subsequently, the deposited data
get BMRB and Electron Microscopy Data Bank (EMDB)
codes. In parallel with this, the employment of advanced
OneDep system guarantees the uniformity, quality and ac-
curacy of represented data and information through the
wwPDB system [28].

The OneDep software tool is capable to support the most
experimental approaches and tools as a single technique or
combined ones. Moreover, the OneDep system recognizes
and obstructs the defective deposited data; includes the new
accepted data for different structures; controls the related
data automatically in the process of deposition; checks the
pre-validation reports before data deposition, supports the
release of the molecular structures under deposition-bio-
curation-validation responsibilities in PDB archive and
provides a quality service for global depositors in different
geographical situation [15, 28, 29]. By conclusion of data
deposition through the wwPDB OneDep validation pipeline,
a pre-validation report is represented to depositor. The
depositor reviews the deposited data to accept or reject pre-
validation report. If accepted, the uploaded data undergo for
biocuration. The biocurator analyses the accuracy of the
obtained data. Accepted data by biocurators enters to the
final step as the official validated data. The final validation
report will be released by the wwPDB centers [29]. The
official validation report issued by wwPDB involves entire
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quality score for a PDB submission and certain issues. The
wwPDB validation reports are accessible through the https://
www.wwpdb.org/validation/validation-reports link [15, 28,
29]. The validation report issued by wwPDB is consisted of
overall quality at a glance, entry composition, residue-
property plot, data and refinement statistics, model quality,
fit of model and data [15, 21, 29, 36].

The wwPDB data centers are able to serve their users
around the world. The PDBe/UK (www.pdbe.org) supports
Europe and Africa, the PDBj/Japan (www.pdbj.org) serves
the Middle East and Asia and the RCSB PDB/US (www.rcsb.
org) covers the Oceania and Americas [14, 17, 28, 37]. Due
to this knowledge, each partner of PDB consortium e.g.,
PDBe is involved in processes data deposition. In addition,
PDBe as a partner participates in archiving and releasing the
related data pertaining to molecular structures. In parallel
with these activities, the PDBe recruits advanced software
tools and systems to serve their users by quality data avail-
ability, analyses and visualization. These facilities help the
global users from drug discovery researchers to protein en-
gineering scientists to find their target structure(s) much
easier and have a fruitful interpretation from the target
macromolecular structure(s). All in all, the partners of PDB
consortium try to keep data resources in accordance with
FAIR guiding principles [11, 15, 37].

PROTEIN DATA BANK IN EUROPE (PDBE): AN
EFFECTIVE PARTNER OF WWPDB

As a partner of PDB consortium, PDBe collaborates with
different resources of bioinformatics to enrich its data cen-
ter. PDBe represents a collection of bioinformatic data
through the project of Structure Integration with Function,
Taxonomy and Sequence (SIFTS, http://pdbe.org/sifts/) [38].
The SIFTS project provides huge amounts of data pertaining
to protein sequences and structures and annotations. This
project bridges the core resources of PDBe and the Universal
Protein Resource (UniProt) Knowledgebase (UniProtKB,
http://uniprot.org) at the European Bioinformatics Institute
(EMBL-EBI; http://www.ebi.ac.uk) [38, 39]. A portion of
annotation resources which cover the SIFTS project data are
consisted of CATH (https://www.cathdb.info) [40], Ensembl
(www.ensembl.org) [41], Gene3D (http://gene3d.biochem.
ucl.ac.uk/Gene3D/) [40, 42], Gene Ontology Annotation
(GO/GOA) (http://www.ebi.ac.uk/GOA) [43], HomoloGene
(https://www.ncbi.nlm.nih.gov/homologene) [44], Inte-
grated relational Enzyme database (IntEnz) (http://www.ebi.
ac.uk/intenz) [45], Integrative classification of Protein se-
quences (InterPro) (https://www.ebi.ac.uk/interpro/) [46],
Protein families database (Pfam) (http://pfam.xfam.org/)
[47], NCBI Taxonomy (https://www.ncbi.nlm.nih.gov/
taxonomy/) [48], PubMed (http://www.ncbi.nlm.nih.gov/
pubmed) [49] and Structural Classification of Proteins
(SCOP) (http://scop.mrc-lmb.cam.ac.uk) [50].

In addition to SIFTS, FunPDBe is another project which
supports Protein Data Bank in Europe-Knowledge Base

(PDBe-KB) (https://pdbe-kb.org). In another word, the
PDBe-KB contains all the data belongs to the projects of
SIFTS and FunPDBe. The functional annotations and pre-
dictions associated with molecular structures data in the
PDB archive are merged and compared through PDBe-KB
[51]. Indeed, PDBe-KB supports the enhancement of an-
notations visibility disseminated by data resources and
simultaneously decreases the splitting of annotations [51].
The structural data belonging to PDB are applied via a huge
number of scientific software tools and data resources. In
parallel with this feature, several numbers of these data re-
sources promote the biological context of macromolecular
structures through adding a wide range of effective anno-
tations associated with biophysical and biochemical char-
acteristics relating to data [51]. Due to this knowledge,
biomacromolecular tunnels and pores, molecular pockets
and channels [52], ligand binding sites [53–55], interactions
between biomolecar complexes [56], structural and func-
tional analyses of single nucleotide polymorphisms (SNPs)
in biomolecules [57] and proteins catalytic sites [58, 59].

It is important that, several effective centers for bioin-
formatics e.g., InterPro [46], MobiDB (https://mobidb.org/)
[60], PDBsum [61], PDBj [62], Pfam [47], RSCB PDB [63,
64], Reactome (https://reactome.org) [65], SCOP2 [50, 66]
and UniProt [67] count on SIFTS as an active resource data
to represent fruitful links between PDB consortium and the
other biological bioinformatic digital data for serving their
global users with up-to-date data and information [38]. The
PDBe at the European Molecular Biology Laboratory
(EMBL)-European Bioinformatics Institute (EBI) manages
PDBe-KB; an activity which is covered by ELIXIR
3DBioInfo community [16, 68, 69]. Molecular recognition of
inhibitors, signaling molecules and adaptors and substrates
determine the strength of protein functions. Molecular dy-
namics and the dynamic characteristics of protein molecules
are directly involved in spatial configuration and folding and
unfolding activities of proteins. In this regard, a mass of
software tools and systems has been designed and made [70–
74].

The annotations pertaining to structural and functional
data associated with proteins represent an effective activity
in the field of protein engineering (e.g., antibodies and en-
zymes). Due to this fact, the canonical structures were
identified in spatial configurations of antibodies’ 3D struc-
tures within their hypervariable domains. Indeed, the pivotal
role of biocomputational methods in determination of ca-
nonical structures in 3D structures belonging to immuno-
globulin molecules led to influential progression in
predictive procedures through the bioinformatic and
computational tools and techniques to obtain effective and
accurate structural data in antibodies and other proteins.
The effective and strong employment of bioinformatic and
biocomputational procedures and methodologies in protein
engineering resulted in development and progression in
biotechnology through the establishment of a significant
number of biotechnological companies to represent influent
clinical procedures, tools and methodologies for advanced
research fields [68, 75, 76].
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ELIXIR encompasses a wide range of platforms which is
able to support different digital data centers around Europe.
The PDBe and InterPro – as the core digital resources of
ELIXIR – are linked to other important annotation and
structure prediction resources including CATH-Gene3D
[42], FUGUE [77], GenTHREADER [78], PHYRE [79],
SUPERFAMILY [80] and SWISS-MODEL [81]. Moreover,
since 2018 BRENDA enzyme data base (https://www.
brenda-enzymes.org) is known as the ELIXIR core data
resource (https://elixir-europe.org/platforms/data/core-data-
resources), too [82, 83]. BRENDA as a continuous curated
system releases effective and reliable data, updated catego-
rization of enzymes and simultaneously involves new iden-
tified enzymes. BRENDA shares new and high-quality data
to support the needs of global users in the fields of
biotechnology, systems biology, pharmaceutics, and medi-
cine [82]. The core data resource of BRENDA belongs to
German Network for Bioinformatics Infrastructure (de.NBI
(https://www.denbi.de/)) which is covered by the German
Node of ELIXIR [82, 84].

The availability, 3D visualization and structural analyses
of macromalecules constitute the core of structural biology
and structural bioinformatics. Hence, the recruitment of
MolpViewer as a part of the Molp open-source project
supports the development of a common library and tools for
web-based molecular visualization, graphics and analyses.
This software tool covers services for the structural biology
and structural bioinformatics to feed international PDB
consortium [68, 73, 85].

THE RESEARCH COLLABORATORY FOR
STRUCTURAL BIOINFORMATICS PROTEIN
DATA BANK (RCSB PDB)

The RCSB PDB – as the US Data Center of wwPDB – serves
several thousands of American and Oceanian depositors in
Americas and Oceania continents. The US Data Center of

serves its millions of global users with a huge number of
structural data relating to macromolecules for free, all the
disseminated data via wwPDB and in particular RCSB PDB
are unlimited and free of charge. It is estimated that more
than 660 k of RCSB PDB users are students, researchers and
educators (from different fields involving bioengineering,
biomedicine, biotechnology and fundamental biology) who
utilize PDB101 center service (www.PDB101.RCSB.org).
Since 2019, the portal of RCSB PDB web has been equipped
with modern software tools a systems for an easy search and
availability through a full Boolean operator logic [64].

Because of the importance of 3D biostructure data in
research and investigation, software tools are developed to
manage the related services in the field of bioengineering,
biomedicine, biotechnology and fundamental biology [14,
64]. The facilities including search of protein and nucleic
acid sequences [86, 87], short sequence motifs in protein and
amino acid sequences, protein structure similarities [88],
recognition of amino acids constituting binding or catalytic
sites and ligands [64]. Due to this information, the 3D
biostructure digital data belonging to wwPDB consortium
such as RCSB PDB has had pivotal role associated with drug
designing, drug discovery targes and vaccines against the
COVID-19 pandemic era [2, 23, 89]. At the time of writing
this article, by searching the keywords of “‘COVID-19’ drug
targets” in RCSB PDB search box you may find 178,740 viral
structures (e.g., the SARS-CoV-2 Spike ectodomain, PDB ID
7CN9 [90] (Fig. 2)); SARS-CoV-2 Main Protease, PDB ID
7AQE [91] (Fig. 2); the SARS-CoV-2 spike receptor-binding
domain (RBD), PDB ID 7JVB (Fig. 3) [92]; SARS-CoV-2
3CL protease, PDB ID 7DPP [93] (Fig. 3).

RCSB PDB weekly supports PDB structure data through
integrating more than 40 external digital biodata resources
to refresh and enrich structural views for its global users,
many of them are mentioned in the PDBe section [64, 89].
As the RCSB PDB covers US PDB operations, this center
receives financial supports from some important institutes
including Department of Energy, the National Cancer
Institute, the National Institute of Allergy and Infectious

Fig. 2. SARS-CoV-2 Spike ectodomain, PDB ID 7CN9; SARS-CoV-2 Main Protease, PDB ID 7AQE
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Diseases, the National Institute of General Medical Sciences
and the National Science Foundation. Moreover, the Uni-
versity of California San Fransisco (UCSF), the State Uni-
versity of New Jersey, Rutgers and the San Diego
Supercomputer Center at the University of California San
Diego support the human resources and specialists of RCSB
PDB [89].

The RCSB PDB as a super-professional data center
controls, supports and coordinates the updating process
archival data in PDBe and PDBj as the wwPDB international
consortium in Europe and Asia, respectively [89]. The RCSB
PDB is continuously in progression; the growth of macro-
molecular structures, small molecule ligands, integral
membrane protein structures serves users to apply for
biotechnology and the related sciences [89]. Since 2014, the
National Institutes of Health (NIH) has started the project of
Illuminating the Druggable Genome (IDG); the aim of this
project is to detect unknown proteins and to enhance our
knowledge regarding those proteins that interact with small
molecules. The Target Central Resource Database (TCRD)
(http://juniper.health.unm.edu/tcrd/) and Pharos (https://
pharos.nih.gov/) are resulted from the IDG project. Both
of TCRD and Pharaos as the IDG resources cover the related
facilities to have better understanding of undiscovered re-
gions pertaining to human genome [94]. The National In-
stitutes of Health (NIH) Common Fund Data Resources are
Pharos [95], Genotype-Tissue Expression (GTEx (https://
gtexportal.org)) [96] and the International Mouse Pheno-
typing Consortium (IMPC (https://www.mousephenotype.
org) [97]. The characterized chemical compounds supports
a portion of PDB data resource and now are accessible
through the wwPDB chemical component dictionary
(wwPDB CCD) [98]. Moreover, the DrugBank database
(https://www.drugbank.ca) [99], which collaborates with
RCSB PDB, disseminates the molecular data and informa-
tion associated with antibiotics and drugs, drug metabolism,
drug pharmacokinetics, drug pharmacodynamics and the
mechanism of their activities and the related target mole-
cules. These facilities served by DrugBank provide the

researchers to design a wide range of drugs and predict drug
metabolites in silico [99, 100].

PROTEIN DATA BANK JAPAN (PDBJ)

The PDBj is the Japanese member of the wwPDB interna-
tional consortium contributes to biological structures of
macromolecules acceptance and annotation together with its
other partners such as BMRB, RCSB PDB and PDBe [17,
62]. The PDBj covers the processing and annotation of those
depositions received from the Middle East and Asia. All of
the partners involving in wwPDB international consortium
like PDBj release their updated digital structural data at
midnight of Wednesday, every week. The PDBj represents
updated databases and remarkable service tools for different
research fields of bioinformatics and structural biology [17,
62]. The specific recruited tools in PDBj services consist of
PDB mine 2 (which supports the users to search 3D struc-
tures with different resolutions and residues and clarifies the
PDB metadata) [62], Molmil (a web-based molecular
reviewer and graphics program (http://gjbekker.github.io/
molmil/)) [62, 101], ProMode-Elastic a normal mode anal-
ysis-based database of PDB which is achieved via the pro-
gram of Elastic-network-model based normal mode analysis
(PDBETA) and computes the structures of proteins, DNAs,
RNAs and ligands (https://pdbj.org/promode-elastic) [62,
102–104], electrostatic surface of functional-site (eF-site)
with virtual reality (VR) technology (a database provides the
electrostatic surfaces in association protein functional site
(http://www.pdbj.org/eF-site/) [62, 105] and Omakage
search (a web-based service to find out the global shape
similarities in association with 3DEM or atomic model of
biological macromolecules and the related assemblies in
EMDB and PDB (https://pdbj.org/omokage) and Gaussian
mixture model fitting (Gmfit) program [62, 106].

CONCLUSIONS

Even since the advent of molecular biology technologies and
crystallography, it has been widely recognized that knowl-
edge pertaining to the structures of biologically-relevant
macromolecules hold valuable and critical information for
chemistry, biology and various branches of medicine.
However, since the beginning of the 21st century, the interest
in atomic structures, three-dimensional (3D) structures of
biomolecules and various molecular interaction studies have
received substantial interest, both from researchers in basic
science, from pharmaceutical and/or biotechnology com-
panies, and people involved in clinical medicine. Although
substantial information in this field is scattered in the
literature (both in freely-available and subscription-only
sources), there are few relevant, comprehensive and freely
available global sources in this field. The Worldwide Protein
Data Bank (wwPDB) – and its affiliates – is one of these
sources, providing reliable, curated and easily accessible data
and tools to visualize biological structures and the

Fig. 3. SARS-CoV-2 spike receptor-binding domain (RBD), PDB
ID 7JVB; SARS-CoV-2 3CL protease, PDB ID 7DPP
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interaction between biomolecules on the micro- and
macromolecular scale, which may be relevant to all users of
the biomedical sciences. The present paper aimed to surmise
the main aspects, branches and advantages of using the
wwPDB during research and the development for novel
pharmaceutical and biotechnological products. As demon-
strated by the SARS-CoV-2 pandemic, rapidly reliable and
accessible biological data for microbiology, immunology,
vaccinology, and drug development are critical to address
many healthcare-related challenges that are facing human-
ity. As a consequence, the importance of databases such as
wwPDB has been further validated in recent times, with the
expectation that the number of scientists interested in the
utilization of Protein Data Bank’s resources will increase
substantially in the coming years.
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