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Abstract: The human voltage gated potassium channel Kv1.5 that conducts the IKur current is a
key determinant of the atrial action potential. Its mutations have been linked to hereditary forms
of atrial fibrillation (AF), and the channel is an attractive target for the management of AF. The
development of IKur blockers to treat AF resulted in small molecule Kv1.5 inhibitors. The selectivity
of the blocker for the target channel plays an important role in the potential therapeutic application
of the drug candidate: the higher the selectivity, the lower the risk of side effects. In this respect,
small molecule inhibitors of Kv1.5 are compromised due to their limited selectivity. A wide range of
peptide toxins from venomous animals are targeting ion channels, including mammalian channels.
These peptides usually have a much larger interacting surface with the ion channel compared to
small molecule inhibitors and thus, generally confer higher selectivity to the peptide blockers. We
found two peptides in the literature, which inhibited IKur: Ts6 and Osu1. Their affinity and selectivity
for Kv1.5 can be improved by rational drug design in which their amino acid sequences could be
modified in a targeted way guided by in silico docking experiments.

Keywords: Kv1.5; IKur; peptide inhibitor; atrial fibrillation

1. Introduction

Ion channels are transmembrane proteins, which form a pore in the cell membrane
for ions to pass through. Several classifications of ion channels are known, for example,
based on selectivity, gating or amino acid sequence. The gating mechanism can be of
many types, such as voltage, stretch, ligand or temperature. Voltage-gated ion channels
(VGICs) form one of the largest groups. These ion channels are involved in a great variety
of cellular functions, such as generation of action potentials (AP) in excitable cells or
activation in numerous non-excitable cell types, such as lymphocytes and tumor cells.
VGICs typically consist of four subunits (potassium channels) or four domains (calcium
and sodium channels), each of which is made up of six transmembrane helices (S1–S6). The
first four helices together (S1–S4) are called the voltage-sensing domain (VSD), while the
rest (S5–S6) build up the pore (Figure 1). The voltage sensing response mostly comes from
the movement of S4, which has net positive electric charge, originating from positively
charged amino acids: arginines and lysines. In response to a membrane potential change,
these proteins open their ion-selective pore through which ions move passively across
the membrane, driven by the electro-chemical potential difference [1–4]. The discovery
of voltage-sensing phosphatase (VSP) and the voltage-activated proton channel (Hv1)
revealed that the VSD can exist independently from the ion-conducting pore [5–7].
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expressed in almost all cell types, including muscle cells, neurons and immune cells, play-
ing active roles in a variety of cellular functions. Kv channels provide the outward cation 
currents required to terminate the AP in excitable cells and allow the membrane potential 
to return to a negative resting potential following an AP. Several Kv channels contribute 
to shaping of the AP in the heart. The currents produced by these channels in cardiomyo-
cytes include: the “transient outward” potassium current (Ito1); the delayed rectifier potas-
sium channel currents, which are named based on the speed at which they activate: slowly 
activating (IKs), rapidly activating (IKr) and ultra-rapidly activating (IKur) [9]. IKur is gener-
ated by the potassium current through the Kv1.5 channel. IKur is present in human atrial 
myocytes but not in the human ventricle [10]. Many studies have concluded that inhibi-
tion of IKur could prolong the AP duration (APD) of atrial fibrillation patients [11,12], and 
by this, it can terminate the fibrillation, indicating that Kv1.5 is a potential target for atrial 
fibrillation therapy [13–17]. 

2. Diseases Related to Kv1.5 
The most well-known channelopathy associated with the Kv1.5 channel is atrial fi-

brillation (AF). Today, a plethora of mutations have already been identified as causes of 
AF. Among them there are loss of function (LOF) mutations (E375X, Y155C, D469E and 
P488S), which make the atrial action potential (AP) prolonged, and gain of function (GOF) 
mutations (E48G, A305T and D332H), which shorten the AP. In the former case, the pro-
longation of the AP and the effective refractory period (ERP) increases the probability of 
early afterdepolarizations (EADs). However, during GOF mutations, the shortening of the 
ERP will increase the excitability of the atrial tissue as a potential mechanism behind AF 
[18,19]. 

Besides atrial fibrillation, mutations of the Kv1.5 channel gene can result in various 
diseases. Remillard and colleagues identified 17 single-nucleotide polymorphisms of the 
Kv1.5 gene in pulmonary arterial hypertension (PAH) patients [20], which may contribute 
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Among VGICs, the voltage-gated potassium channels (Kv) form a large family with
some 40 members [8]. They are highly selective for potassium ions over other cations and
expressed in almost all cell types, including muscle cells, neurons and immune cells, playing
active roles in a variety of cellular functions. Kv channels provide the outward cation
currents required to terminate the AP in excitable cells and allow the membrane potential
to return to a negative resting potential following an AP. Several Kv channels contribute to
shaping of the AP in the heart. The currents produced by these channels in cardiomyocytes
include: the “transient outward” potassium current (Ito1); the delayed rectifier potassium
channel currents, which are named based on the speed at which they activate: slowly
activating (IKs), rapidly activating (IKr) and ultra-rapidly activating (IKur) [9]. IKur is
generated by the potassium current through the Kv1.5 channel. IKur is present in human
atrial myocytes but not in the human ventricle [10]. Many studies have concluded that
inhibition of IKur could prolong the AP duration (APD) of atrial fibrillation patients [11,12],
and by this, it can terminate the fibrillation, indicating that Kv1.5 is a potential target for
atrial fibrillation therapy [13–17].

2. Diseases Related to Kv1.5

The most well-known channelopathy associated with the Kv1.5 channel is atrial
fibrillation (AF). Today, a plethora of mutations have already been identified as causes
of AF. Among them there are loss of function (LOF) mutations (E375X, Y155C, D469E
and P488S), which make the atrial action potential (AP) prolonged, and gain of function
(GOF) mutations (E48G, A305T and D332H), which shorten the AP. In the former case, the
prolongation of the AP and the effective refractory period (ERP) increases the probability
of early afterdepolarizations (EADs). However, during GOF mutations, the shortening
of the ERP will increase the excitability of the atrial tissue as a potential mechanism
behind AF [18,19].

Besides atrial fibrillation, mutations of the Kv1.5 channel gene can result in various
diseases. Remillard and colleagues identified 17 single-nucleotide polymorphisms of the
Kv1.5 gene in pulmonary arterial hypertension (PAH) patients [20], which may contribute
to the downregulation of KCNA5, causing the increase of the vascular tone. Fu and
colleagues [21] found that in intrauterine growth retardation, while Kv1.5 expression was
decreased, the tyrosine-phosphorylation of these channels was significantly increased.
This process led to the proliferation of the pulmonary artery smooth muscle cells, which
eventually resulted in the thickening of the pulmonary arterial wall, i.e., PAH. MacFarlane
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and Sontheimer [22] showed in astrocytes that Kv1.5 is associated with Src family protein
tyrosine kinases, which are responsible for astrocyte proliferation. This connection between
Kv1.5 and astrocyte proliferation stimulated numerous tumor-related studies. Preussat
and colleagues [23] found high Kv1.5 expression in human gliomas, which was the most
prominent in astrocytomas, moderate in oligodendrogliomas and low in glioblastomas.
Bielanska and colleagues pointed out that in stomach, pancreatic and breast cancer, the
high expression of Kv1.5 was due to the presence of infiltrating inflammatory cells [24].
However, in bladder, skin, ovary and lymph node cancers, Kv1.5 was highly expressed in
the tumorigenic cells. According to Vallejo-Gracia and colleagues [25], Kv1.5 expression
shows an inverse correlation with lymphoma aggressiveness; therefore, the level of this
protein can be useful in prognosis, treatment and outcome prediction as well.

3. Atrial Fibrillation and Possible Pharmacological Treatments

AF is characterized by an irregular and often rapid heart rate. In people with AF,
blood flow is significantly slowed in the atria, which may cause blood to pool, greatly
increasing the chances of blood clot formation. When a piece of a clot breaks off, it can
travel to the brain and cause a stroke, which is one of the most serious consequences of
AF. However, blood clots may circulate to other organs as well, blocking blood flow and
causing ischemia. AF is the most common serious abnormal heart rhythm and, as of 2020,
affects more than 33 million people worldwide [26]. As of 2014, it affected about 2 to 3%
of the population of Europe and North America [27]. Due to AF, some patients need to
constantly take blood thinners (platelet aggregation inhibitors and/or anticoagulants) to
prevent blood clots, which can be very costly and can have very serious side effects, such
as bleeding or hemorrhagic stroke.

The possible pharmacological strategies for AF treatment are the following:

- Development and improvement of existing antiarrhythmic agents: Amiodarone
derivates, Multi-channel blockers, etc.

- Atrial selective therapeutic agents (ARDA): IKur blocker; IK,Ach blocker; INa, IKr blockers
- Upstream therapy agents, drugs affecting structural remodeling; inflammation; hy-

pertrophy; oxidative stress; etc.,
- Gap junction modulators: Antiarrhythmic peptides affecting connexins Cx40 and Cx43

The most promising strategy to treat AF that avoids ventricular proarrhythmic side
effects is the development of drugs known as “atrial selective drugs”. This concept would
exploit distinct differences in expression patterns of individual ion channels and their
different contribution to refractoriness between atrial and ventricular myocytes. Such
atrial specific targets would be the following three known atrial specific ionic currents:
(a) the ultra-rapid delayed rectified potassium current (IKur); (b) the acetylcholine-sensitive
inward rectifier potassium current (IK,ACh); (c) the constitutively active IK,ACh currents
(i.e., which are active even in the absence of agonists at muscarinic receptors).

Inhibition of the ion flow through Kv1.5, i.e., blocking IKur, eliminates a component
of the repolarizing current during atrial AP, thus prolonging the duration of the AP [12].
Almost all of the known Kv1.5 blockers are exclusively small molecules [8,28–30]. Phar-
maceutical companies have made great efforts to develop selective IKur blockers as new
pharmacological agents against AF. As a result, many new IKur blockers have been de-
veloped and tested since the beginning of this century: AVE0118, XEN-D101, DPO-1,
vernakalant, etc.

AVE0118 (Figure 2) is a biphenyl derivative developed by Sanofi-Aventis. AVE0118
blocks IKur at micromolar concentrations in both native human atrial cells and Kv1.5
channel systems. In addition to the blocking of IKur, the drug also blocked Ito and IK,ACh
currents at a similar concentration range [31,32].



Pharmaceuticals 2021, 14, 1303 4 of 21

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 4 of 21 
 

 

AVE0118 (Figure 2) is a biphenyl derivative developed by Sanofi-Aventis. AVE0118 
blocks IKur at micromolar concentrations in both native human atrial cells and Kv1.5 chan-
nel systems. In addition to the blocking of IKur, the drug also blocked Ito and IK,ACh currents 
at a similar concentration range [31,32]. 

 
Figure 2. Structure of AVE0118. 

AVE0118 shortened APD and ERP in atrial tissue from patients in sinus rhythm (SR), 
whereas APD/ERP was only slightly prolonged in tissues from patients in AF [32]. This 
observation is consistent with a previous study with the non-selective IKur blocker 4-ami-
nopyridine [33]. AVE0118 has not been published in clinical trials and it appears that its 
development as a potential antirrhythmic drug is likely to have been halted. However, the 
compound was recently proposed as a new pharmacological tool for the treatment of ob-
structive sleep apnea [34]. 

XEN-D0101 (Figure 3) is an experimental compound developed by a small R&D com-
pany (Xention Ltd., Cambridge, UK). A first clinical trial with XEN-D0103 did not reduce 
the burden of AF in patients with paroxysmal AF [35]. 

 
Figure 3. Structure of XEN-D0101. 

DPO-1 (Diphenylphosphine oxide, Figure 4). DPO-1 blocks IKur rate-dependently at 
nanomolar concentrations in isolated human atrial myocytes. DPO-1 blocks other currents 
(such as Ito) at higher micromolar concentrations. Furthermore, DPO-1 induced prolonga-
tion of APD in AF plateau, elevation and shortening in SR only in human atrial tissue and 
not in the ventricle [36]. 

 
Figure 4. Structure of DPO-1. 

Vernakalant (RSD1235, Cardiome and Astellas, Figure 5) is the molecule in the most 
advanced phase of study. It was approved by the European authorities, but the FDA did 
not allow intravenous conversion of AF. Vernakalant inhibited IKur in a positive frequency-
dependent manner [37,38]. However, in human atrial cardiomyocytes, its effects on Ito1 
are small. In human atrial preparations vernakalant suppresses upstroke velocity, sug-
gesting relevant inhibition of INa [37,38], so it can be considered a multichannel inhibitor 
rather than a selective IKur blocker. Vernakalant has rapid offset kinetics at sodium chan-
nels, so it was not expected to cause proarrhythmia and conduction disturbances at low 
heart rates [39,40]. However, vernakalant slowed conduction velocity at physiological 
heart rate both in the atria and in the ventricles of human hearts, calling into question the 

Figure 2. Structure of AVE0118.

AVE0118 shortened APD and ERP in atrial tissue from patients in sinus rhythm
(SR), whereas APD/ERP was only slightly prolonged in tissues from patients in AF [32].
This observation is consistent with a previous study with the non-selective IKur blocker
4-aminopyridine [33]. AVE0118 has not been published in clinical trials and it appears that
its development as a potential antirrhythmic drug is likely to have been halted. However,
the compound was recently proposed as a new pharmacological tool for the treatment of
obstructive sleep apnea [34].

XEN-D0101 (Figure 3) is an experimental compound developed by a small R&D
company (Xention Ltd., Cambridge, UK). A first clinical trial with XEN-D0103 did not
reduce the burden of AF in patients with paroxysmal AF [35].
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Figure 3. Structure of XEN-D0101.

DPO-1 (Diphenylphosphine oxide, Figure 4). DPO-1 blocks IKur rate-dependently
at nanomolar concentrations in isolated human atrial myocytes. DPO-1 blocks other
currents (such as Ito) at higher micromolar concentrations. Furthermore, DPO-1 induced
prolongation of APD in AF plateau, elevation and shortening in SR only in human atrial
tissue and not in the ventricle [36].
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Vernakalant (RSD1235, Cardiome and Astellas, Figure 5) is the molecule in the most
advanced phase of study. It was approved by the European authorities, but the FDA did
not allow intravenous conversion of AF. Vernakalant inhibited IKur in a positive frequency-
dependent manner [37,38]. However, in human atrial cardiomyocytes, its effects on Ito1 are
small. In human atrial preparations vernakalant suppresses upstroke velocity, suggesting
relevant inhibition of INa [37,38], so it can be considered a multichannel inhibitor rather
than a selective IKur blocker. Vernakalant has rapid offset kinetics at sodium channels,
so it was not expected to cause proarrhythmia and conduction disturbances at low heart
rates [39,40]. However, vernakalant slowed conduction velocity at physiological heart
rate both in the atria and in the ventricles of human hearts, calling into question the atrial
selectivity of the drug effect [41]. Numerous clinical studies have shown the safety and
efficacy of vernakalant in the transformation of AF. The AVRO study (phase III clinical
study) demonstrated that vernakalant has superior efficacy compared with amiodarone in
the acute conversion of recent cardiac arrhythmias AF [42,43]. In another study, vernakalant
was shown to be safe and effective in combination with electrical cardioversion [44] and
was approved for clinical practice in the European Union in 2010 (but not in the US [45]).
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4. Peptide Modulators of the Kv Channels

Animal venoms are a complex cocktail of oligopeptides, free amino acids, nucleotides,
low molecular weight salts, organic compounds, peptides and proteins [46]. These venoms
are employed for prey hunting and protection against predators [47]. In this complex
mixture of bioactive molecules, the lethal toxin often represents only a minor proportion,
along which many other non-lethal components with interesting bioactivities are present,
which can be used for the development of pharmaceutical agents, insecticides and research
tools in the characterization of ion channels [48].

Research on peptide modulators of Kv channels started in the 1980s [30]. To date,
~460 toxins have been reported exclusively for voltage-gated K+ channels (Figure 6), scor-
pion venoms being the major source of these molecules with 203 entries, followed by the
spider venoms with 102 [49–51]. These arachnid venom-derived peptides interact with Kv
channels in two different modes: either as pore blockers or as gating modifiers, with a very
specific interaction with different regions of the ion channels.
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4.1. Pore Blocker Peptides

All known scorpion toxins affecting potassium channels (KTx) physically occlude the
channel pore, which makes them pore blockers [52]. Based on homology, cysteine pairing
pattern and activity, KTxs have been classified into six families: α-KTx, β-KTx, γ-KTx,
κ-KTx, δ-KTx [53] and ε-KTx (Figure 7).

The α-KTx family is the largest family, with 174 members grouped in 31 subfamilies,
followed by the β-KTx family with 35 members grouped in 3 subfamilies and the γ-KTx
family with 30 members grouped in 5 subfamilies [51,54–56]. All these three families share
a common structural motif comprising one or two α-helices connected to a triple-stranded
antiparallel β-sheet stabilized by three or four disulfide bonds (CSα/β) [55]. The majority
of the members of the α-KTx family have been isolated from the venoms of scorpions
of the Buthidae family [57]. These peptides range from 23 to 43 residues in size and
recognize Shaker-type Kv channels and Ca2+-activated K+ channels [58]. β-KTx peptides
are longer than the α-KTx, ranging from 45 to 75 residues in size. The difference between
the sizes of these families can be explained by an N-terminus α-helix with cytolytic and/or
antimicrobial activity, followed by the C-terminal region with a CSα/β motif that confers
the K+ channels blocking activity [59]. Peptides of the γ-KTx family were discovered in the
venom of scorpions of the genus Centruroides, Mesobuthus and Buthus [60]. Their length
ranges from 36 to 47 residues, and they are described as mainly targeting K+ channels of
the ERG (ether-á-go-go gene) family [61].
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The κ-KTx family is comprised of 18 members grouped in 5 subfamilies. All these pep-
tides have been isolated from scorpion venoms of the genus Heterometrus and
Opisthacanthus. Peptides of this family consist of 22 to 28 amino acid residues and are
considered weak inhibitors of K+ channels (all of them showing effect in the µM range).
The structure of κ-KTx peptides is characterized by two parallel α-helices linked by two
disulfide bridges (CSα/α) [62].

The δ-KTx family is comprised of 7 members grouped in 3 subfamilies, ranging from
59 to 70 residues, which have been isolated from the venom of scorpions of the genus
Hadrurus, Mesobuthus and Lychas. The members of the δ-KTx family are characterized
by a Kunitz-type fold, which is represented by two antiparallel β-strands and two, or
more often, one helical region [63]. Moreover, δ-KTx members possess a dual activity
inhibiting proteolytic enzymes (e.g., trypsin) in nanomolar concentration and blocking Kv
channels [64].

The ε-KTx family is the smallest one. It is comprised of only two members (29 amino
acid residues length), both of them isolated from the venom of the scorpion Tityus serrulatus.
The structure of these peptides consists of an inhibitor cystine knot type scaffold (ICK).
However, the structure is completely devoid of the classical secondary structure elements
(α-helix and/or β-strand) [65].

In previous works, a seventh family of KTx is mentioned [57,66]. This family, known as
λ-KTx, also presents an ICK scaffold, but unlike the ε-KTx family, the structure is a CSα/β
fold. The best-characterized peptide of this family, the λ-MeuTx-1, showed a blocking
effect in the Shaker K+ channel but not in other Kv channels [67]. However, nowadays, this
peptide has been reclassified into the scorpion calcin-like family, which is why the λ-KTx
family does not appear in the classification of the KTx anymore.

Mechanism of Action of the Pore Blockers

KTxs can interact with Kv channels through different mechanisms. However, three
major mechanisms have been described. The first one is the so-called “functional dyad”
model, which is the most frequently identified and the best characterized. The dyad is
composed of two highly conserved amino acid residues. In the first position, there is a
lysine and in the second position, a neighboring aromatic or aliphatic residue [18]. In this
model, the β-sheet side of the toxin faces the entrance of the channel pore and the lysine
side chain in the selectivity filter (Figure 8). The hydrophobic interaction of the second
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amino acid is involved mostly in the high-affinity binding [58]. The lysine side chain is
attracted to the pore, where a ring of aspartate or glutamate residues surrounds it [68],
while the aromatic or aliphatic residue might interact with a tyrosine or tryptophan residue
of one of the channel α-subunits [69]. The second mechanism is called the “ring of basic
residues”. This mechanism has been demonstrated for the entire α-KTx subfamily 5 and
α-KTx4.2 interacting with the KCa2.x channels. In this model, a cluster of basic residues
(2-4 Arg and Lys) interacts with residues of the channel situated at the turret and the bottom
of the vestibule. However, this cluster is located in the α-helix of the toxin instead of the
β-hairpin [69,70]. The last model involved the interaction of the γ-KTxs with the ERG
channels. The binding occurs in a hydrophobic binding site comprising an amphipathic
α-helix located in the S5-P linker and the P-S6 linker. In this interaction, the toxins bind in
an off-center position in the outer vestibule; however, the lack of the Lys residue found in
the functional dyad lead to a reduction but not a total occlusion of K+ current [71].
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4.2. Gating Modifiers Peptides

In contrast to scorpion venom peptides, spider venom peptides are mostly gating
modifiers. These peptides range from 29 to 35 residues and were isolated mainly from the
venoms of the Theraphosidae family. They are characterized by a promiscuous selectivity
between Ca2+, Na+ and K+ channels. For example, the Hanatoxin (HaTx1) [72] and
HpTx1 [73] (patent) toxins show effect on Ca2+ and K+ channels. On the other hand, the
VsTx1 [74], PaTx1 [75,76], HmTx1 [77,78] and GiTx1 [79] toxins have been reported as Na+

and K+ channel modulators. Furthermore, it has been discovered that in the toxin-channel
interaction, the lipids in the cell membrane are also involved [80,81]. For Kv channels, the
selectivity of these toxins becomes a little tighter since all of these peptides affect mainly
Kv2 and/or Kv4 subfamilies [66]. Although, peptides as the GiTx1 [79] and JZTX-1 [82]
have shown an effect on hERG channels.

Spider gating modifier peptides present an ICK scaffold, where the β-sheet typically
comprises two β strands (a third strand in the N-terminal can be present sometimes)
stabilized by a cysteine knot. This knot comprises a ring formed by two disulfides and
the intervening polypeptide backbone, with a third disulfide bridge going through the
ring to create a pseudo-knot (Figure 9) [83]. The ICK turns these peptides into hyperstable
proteins with tremendous chemical, thermal and biological stability [84].
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Mechanism of Action of the Gating Modifiers

Spider gating modifier peptides bind to a region of the channel that changes con-
formation during gating and influences the gating mechanism by altering the relative
stability of closed, open or inactivated states [85]. Most of the peptides possess a cluster of
solvent-exposed hydrophobic residues (hydrophobic patch) surrounded by highly polar
residues (charge belt), enhancing the affinity for the Kv channels by allowing the toxins
to partition into the membrane [86]. These peptides interact with the Kv channel in the
VSD region, specifically with the paddle motif, a mobile helix-turn-helix motif composed
of the C-terminal portion of S3, and the S4 helix (Figure 8). The specific interactions have
been revealed for several toxins. For example, in the binding between the HaTx1 and
the Kv2.1 channel, the interaction with the F274 and E277 in the C-terminal portion of S3
plays a crucial role [87]. These molecular determinants are shared for the JZTX-XI toxin
and the Kv2.1 channel interaction [88] and possibly for the interaction between the JZTX
toxins and the hERG channels since the binding sites in the paddle motif of Kv2.1 (I273,
F274 and E277) are conserved in the paddle motif of the hERG channel (I512, F513 and
E518) [82]. On the other hand, despite HpTx2 binding to the same paddle motif in the
Kv4 channel, HpTx2 binding does not require a charged amino acid for the interaction
since hydrophobic residues (L275 and V276) are the most important for the binding [89].
Moreover, in experiments using chimera constructs in which the linker region S3-S4 of the
Kv2.1 channel (TLTx1-insensitive) was replaced by the corresponding Kv4.2 domain, it
was observed that the Kv2.1 channel became sensitive to TLTx1 [90]. These data suggest
that even if toxins share the same binding site (paddle motif), the molecular determinants
for the interaction can change between different families of Kv channels.

5. Osu1 and Ts6: The Known Peptide Modulators of the Kv1.5

To the best of our knowledge, only two peptides are known in the literature that have
modulated the Kv1.5 ion current: Osu1 [91] and Ts6 [92,93]. Osu1 is a peptide isolated from
the venom of a tarantula, called Oculicosa supermirabilis. It is a 64 amino acid peptide with a
mass of 7478 Da, and its spatial structure is formed by four disulfide bridges (Figure 10) [91].
Electrophysiological recordings showed that the total venom of Oculicosa supermirabilis,
as well as the native and recombinant Osu1, slowed the activation kinetics of the Kv1.5
current at ~µM peptide concentration. The slowing of the activation kinetics of the current
was consistent with a ~40 mV shift in the conductance vs. membrane potential (G-V)
relationship of the Osu1 bound channels, as compared to the toxin-free clontrol. In other
words, the membrane potential at which 50% of the Kv1.5 channels are open (V1/2) is
about 40 mV more positive when Osu1 is present. This rightward shift in the G-V indicates
that Osu1 is most likely not bound to the pore of Kv1.5 but rather to the VSD, hindering
its movement at depolarization; thus, Kv1.5 opens only at more positive voltages. As a
result, in a certain membrane potential range, especially at mild depolarizations close to the
activation threshold of the channel, the binding of Osu1 to the voltage sensor appears as an
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inhibitory effect. Based on this, it is possible to reduce the IKur current through Kv1.5 using
Osu1 and thereby influence the shape and duration of the AP in the atrium of the heart.
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Ts6 (α-KTx 12.1), previously known as butantoxin, also known as TsTX-IV, is the
other known Kv1.5 modulating peptide. This peptide was isolated from the venom of the
scorpion Tityus serrulatus. It consists of 40 amino acids with a molecular mass of 4506 Da and
with 8 cysteine residues (Figure 11) [92–94]. Ts6 is primarily known as a peptide that inhibits
Kv1.2 and Kv1.3 ion channels at nM concentrations (the IC50 values were 6.19 ± 0.35 nM
for Kv1.2 and 0.55 ± 0.20 nM for Kv1.3) [92], but in the selectivity experiments, Ts6 also
inhibited the current flowing through Kv1.5 at µM concentrations. Besides its effects on
ion channels, Ts6 has also shown a pro-inflammatory effect by increasing the levels of
cytokines, such as interleukin-6 (IL-6), both in in vivo and in vitro models [94,95]. IL-6
increase can cause cardiac or systemic inflammation, which in turn can rapidly lead to
atrial electrical remodeling [96]. Thus, any other potential Kv1.5 blocking peptides should
be tested for such adverse effects. After this report on the blocking effect of Ts6, no more
results have been published in the literature that further investigated the inhibition of
Kv1.5 by Ts6 or that any attempt had been made to utilize this knowledge in any way, such
as in the treatment of atrial fibrillation.
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6. Selectivity of Kv1.5 Inhibitors

Selectivity plays an important role in the potential therapeutic application of an ion
channel blocker since the higher the selectivity, the lower the risk of side effects. As
mentioned earlier, several small molecules targeting the Kv1.5 channel have been tested
as candidates for the treatment of AF. In all of them, affinity and selectivity vary over a
broad spectrum. AVE0118 exhibits an IC50 of 6.9 µM for the Kv1.5. However, in the same
concentration range (10 µM), AVE0118 is able to block Ito and IK,ACh [32]. The same is true
for vernakalant, which is a multichannel blocker in the µM range [38]. XEN-D0103 inhibits
Kv1.5 with an IC50 of 25 nM and shows more than 500-fold selectivity over hERG, Kv4.3,
Nav1.5, Cav1.2 and Kir2.1 [97]. Similarly, DPO-1 shows a Kd value of 30 nM and blocks
other channels only in the µM range [36].

Peptides in general have a much larger interacting surface with ion channels compared
to small molecule inhibitors. Therefore, due to multiple points of contact, peptides poten-
tially exhibit higher affinity and selectivity for channels with a lower chance of inhibition
or modification of other ion channels than known small molecule inhibitors. For example,
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the peptide toxin Vm24 (α-KTx 23.1) shows high affinity (Kd = 2.9 pM) for the Kv1.3
channel and exhibits more than 1500-fold selectivity over other ion channels, including
other Kv channels, KCa channels and Nav1.5 [98]. On the other hand, the small molecule
tetraethylammonium (TEA) blocks numerous types of Kv channels, including members of
the Kv1, Kv2 and Kv3 families, as well as KCa channels with a Kd value between 0.4 mM
and 8 mM [99]. Pap-1 is a small molecule with one of the highest affinities for Kv channels:
it blocks Kv1.3 in nM concentration (EC50 = 2 nM). PAP-1 is 23-fold selective over Kv1.5,
33- to 125-fold selective over other Kv1-family channels and 500- to 7500-fold selective over
other K+, Na+, Ca2+ and Cl− channels [100]. However, this nM affinity is still 1000 times
lower compared to the pM affinity of the peptide Vm24. Another example is the toxin
Gr1b. This peptide inhibits the Nav1.7 channel with a Kd value of 40 nM and exhibits
10- to 30-fold selectivity over other Nav channels [74]. In this case, the small molecule
tetrodotoxin (TTX) shows a slightly higher affinity for Nav channels (Kd value of 4 to
25 nM). However, TTX can block different subtypes of Nav channels with almost the same
Kd, showing a selectivity between 1.5- to 6-fold [101]. GX-674 small molecule inhibits
Nav1.7 at subnanomolar concentration (Kd = 0.1 nM), but it is not selective over Nav1.6
and Nav1.2 [102].

So far, only Osu1 and Ts6 have been reported as Kv1.5 peptide inhibitors. Native
Osu1 (peptide purified directly from venom) showed inhibitory activity at 0.9 µM, while
recombinant Osu1 (expressed in bacteria) showed the same activity at 3 µM [91]. Noth-
ing is yet known about the selectivity of Osu1. Ts6 inhibited Kv1.5 at a concentration of
1 µM. However, Ts6 also inhibited Kv1.2, Kv1.3 and Shaker channels with higher affinity
(in nM) and Kv1.6, Kv7.2, Kv7.4 and hERG with similar affinity as Kv1.5 (in µM) [92].
One of the main reasons for the lack of peptide inhibitors for Kv1.5 is the presence of a
positively charged Arg residue (R487) in the pore region of the channel, a feature miss-
ing in other Kv channels [103,104], which prevents Kv channel pore blocker peptides
from binding to Kv1.5. The mutation of this Arg to Val (R487V) or Tyr (R487Y) made
Kv1.5 sensitive to BgK, a known inhibitor toxin for Kv1 channels from the sea anemone
Bunodosoma granulifera [103,105,106]. Knowing the binding mechanism of other toxins to
Kv channels and the particular properties of the Kv1.5 channel, the selectivity of Ts6 and
Osu1 (and other peptides) and their affinity for Kv1.5 could be improved by rational drug
design in which their amino acid sequences are modified in a targeted way guided by in
silico docking experiments.

7. Improving Selectivity and Affinity of Peptide Toxins

To improve the selectivity and the affinity of peptide toxins, it is necessary to under-
stand well the properties of peptides isolated from animal venoms; however, some barriers
must be overcome. Most of the time, it is difficult to isolate or study a peptide from the
extremely limited amount of venom that can be obtained from the animals. This problem
can be solved by chemical synthesis or recombinant expression of these peptides. After
appropriate standardization of the expression protocols, a sufficient amount of peptide can
be obtained [105–107] to fully characterize the biological activity of the peptides. However,
as mentioned earlier, most toxin peptides are rich in disulfide bonds, resulting in low yields
of the bioactive product with the desired disulfide bridge configuration.

7.1. Achieving the Native Peptide Scaffold

The primary, secondary and tertiary structure of the peptides are crucial to their
specificity and functionality. Generally, methods to elucidate the peptide structure, such
as NMR and X-ray studies, require an amount of toxin that is difficult to obtain from the
natural source. Recombinant expression and chemical synthesis of peptides are excellent
tools to reach the required amounts of the toxin. There are different recombinant expression
systems to produce the target peptide. To date, Escherichia coli (E. coli) represents the most
widely used heterologous expression system in which recombinant peptides are usually
accumulated in the cytoplasm. However, because of the disulfide bonds, they tend to
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be misfolded and aggregate [108]. To solve this problem, some alternatives have been
developed: (1) several E. coli strains have been genetically modified to generate strains
in which the reducing cytoplasmic environment is more favorable for disulfide bond
formation [109,110], (2) use of vectors with a signal sequence to take the protein into the
periplasmic space with a more oxidizing environment and proteins that catalyze and
rearrange the disulfide bonds [111], and (3) co-expression of the peptide along with fusion
proteins or chaperones that enhance proper folding [112]. If the E. coli system does not
work, yeast is the next option. These cells are used to produce recombinant proteins that are
not produced well in E. coli because of folding issues or the need for glycosylation. Yeasts
are easier and cheaper to work with than insect or mammalian cells and are easily adapted
to fermentation processes. The two most commonly used yeast strains are S. cerevisiae and
P. pastoris [107,113]. Although E. coli and yeast are the most commonly used expression
systems for animal toxin production, other systems such as insect cells have also been
reported [114,115].

On the other hand, there is solid-phase peptide synthesis (SPPS), which is an efficient
method for producing peptides and small proteins. Some important advantages are that
this approach allows the incorporation of non-native elements, such as N-substituted
and D-amino acids, and the replacement of the backbone amide bonds. SPPS can also
be used to generate peptides that cannot be produced by expression systems because
they are toxic [116]. A disadvantage of SPPS over recombinant expression of toxins is
that SPPS requires extensive screening of in vitro folding conditions, which can be further
complicated because many toxins have multiple disulfide bonds [117]. However, it is worth
noting that if the native disulfide pattern of the peptide is known, Cys with protecting
groups can be used. These Cys protecting groups can be selectively removed to create a
bond between two specific Cys in the structure, resulting in a peptide with the same Cys
framework as the native peptide [118].

7.2. Uncovering Amino Acids Involved in Selectivity and Affinity

Once the peptide (recombinant or synthetic) has been produced with structural and
biological properties similar to the native one, selectivity and affinity enhancement can be
performed. The first step would be to know the amino acids involved in the interaction
of the peptide with the channel. Solving the structure of the peptide–channel complex
would reveal the amino acids that bind directly to the channel. Banerjee et al. [68] have
used X-ray crystallography to study the structure of the complex formed by charybdotoxin
(ChTx) (α-KTx 1.1) and a chimeric version of a voltage-gated potassium channel formed by
Kv2.1 and Kv1.2. They confirmed the occlusion of the channel pore by Lys27 and showed
the interactions between the amino acids of the toxin and the amino acids located in the
mouth of the channel pore. Similarl to X-ray crystallography, cryo-electro microscopy was
used to investigate ion channel–peptide toxin complex with Nav1.7 and ProTx2 [119,120].
Although these approaches can provide accurate information, obtaining the crystal could
be difficult. For this reason, basic alanine scanning has become a widely used strategy for
identifying side chains that play a key role in toxin–channel interactions. By mutating each
native amino acid in the primary sequence to alanine one at a time, the importance of each
amino acid in the binding interaction can be revealed [121]. Then, the amino acids directly
involved in the binding interaction can be further optimized to improve the overall potency
and selectivity of the peptides [122]. Double-mutant cycle analysis is another method to
measure the strength of intermolecular pairwise interactions in protein–ligand and protein–
protein complexes [123]. However, these techniques are time-consuming processes that
become less practical with increasing size of the peptides under investigation. Therefore,
computational methods are valuable tools to construct accurate models of toxin–channel
complexes. Docking methods and molecular dynamics simulations can be used to find
valuable hints to identify amino acid residues that need to be mutated to achieve the
desired selectivity and then calculate the free energy perturbation between the native toxin
and its analogs to evaluate the effects on binding of each mutant [124]. In these docking
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approaches, multiple related peptides can be tested in one specific channel to determine
how structure and small changes in amino acid sequence affect the binding interaction.
Docking analysis of charybdotoxin (ChTx) and margatoxin (MgTx) in the native version
and the mutant version of Kv1.3 revealed not only the difference between the interaction
of the two toxins but also how the toxins were reoriented to block the mutant channel,
which helped to explain the results observed in patch-clamp [125]. On the other hand, it
is possible to use docking to analyze the selectivity of one toxin for multiple channels. In
this way, it was explained why the toxin Css20 (α-KTx 2.13) is more selective for channels
Kv1.2 and Kv1.3 than for Kv1.1 and Kv1.4 [126].

With these methodologies, the rational design of more potent and selective peptides
can be done. For example, MeKTx13-3 (α-KTx 3.19) is a toxin with a promiscuous effect on
Kv1.1, Kv1.2, Kv1.3 and Kv1.6 channels, but the mutation or addition of specific residues
improved either selectivity against Kv1.3 [127] or affinity for the Kv1.1 channel [128].
Similarly, the [N17A/F32T]-AnTx (an analog of AnTx, α-KTx 6.12) showed a 16,000-fold
increase in selectivity towards the Kv1.3 channel while maintaining the high affinity of
the native peptide for the channel [129]. Another approach to find amino acids that can
be used as targets for improving selectivity and affinity is to analyze the sequence of
related toxins. For example, the toxin OdK1 (α-KTx 8.5) differs from OSK3 (α-KTx 8.8)
only by two C-terminal residues but shows a pronounced preference for Kv1.2, implying
that these two amino acid residues are involved in the selectivity for the channel [130].
However, it is not only amino acid changes that can affect toxin activity. It has been
shown that amidation in the C-terminus of urotoxin (α-KTx 3.19) increases its potency
towards the Kv1.2 channel [131]. Moreover, several scorpion toxins have been shown to
require C-terminus amidation for full biological activity, without which potency is severely
reduced [132].

The above techniques attempt to improve the affinity and selectivity of peptides by
specific changes in the amino acid sequence. However, peptides with blocking activity
resulting from random recombination of related protein regions have also been reported.
This recombination creates libraries of more than 1,000,000 different peptides that are tested
by phage display to select chimeras that show interaction with the desired channels [133].
Similarly, fragment-based drug discovery is an excellent technique for discovering drugs.
This approach first identifies starting points as small molecules. Then, these fragments are
expanded or linked together to generate drugs. Although fragments bind to proteins with
relatively low affinity, they form high quality binding interactions with the protein as they
overcome a significant entropy barrier to bind [134,135].

In addition, there are other methods and techniques for increasing the affinity and
selectivity of a peptide. For example: acidic-residue-function-guided drug design; chem-
ical modification; residue truncation; binding interface modulation; reducing conforma-
tional flexibility; scaffold-/target-biased strategies; Artificial Intelligence-guided drug
design [136–138].The overall methodological background and information on the interac-
tion between toxins and Kv channels allows us to work with toxins, such as Osu1 and Ts6,
generating and testing analogs until the toxin with the best affinity and selectivity is found,
or to find analogs of other toxins related to Osu1 or Ts6 that may have similar activity on
the Kv1.5 channel.

8. Testing Kv1.5 Modulation in AF Models

Different AF models exist to investigate the characteristics and parameters of AF
and to test potential drug candidates. One of these is the various cell lines that have
been created specifically for this purpose. An atrial muscle cell-derived cell line (iAM,
immortalized atrial myocyte) has been developed from rat cells [139]. In their work, the
authors performed RT-qPCR analysis of iAMs in different stages of differentiation and
showed a rapid increase in mRNA levels of cardiac transcription factors, ion channels, Ca2+-
handling proteins and sarcomeric proteins. iAMs acquired properties of atrial rather than
ventricular myocytes, and a monolayer cell culture created from the iAM was developed as
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an in vitro model of AF. In this model, a spiral wave can be generated that returns to and
maintains itself as re-entrant circuit, using optical voltage mapping and high-frequency
(10–50 Hz) electrical point stimulation. The resulting re-entrant circuits could be terminated
by prolonging the APD of the iAMs using a known K+ channel inhibitor, tertiapin (a peptide
isolated from honeybee venom, Kir3.x-specific inhibitor). Based on these results, this AF
model system seems to be suitable to test other K+ channel inhibitors and modulators.

However, before testing a drug candidate molecule in this AF model, it is useful to
test it on individual cells of cell lines focusing on the action potential parameters, such as
AP duration (APD90), AP amplitude, the maximum speed of depolarization (Vmax) and
plateau potential at the point corresponding to 50% duration of APD90 (plateau50). If these
listed parameters are not affected by the molecule to be tested, it is not expected to affect
the AF model either. The most important parameter is APD90: if prolonged, there is a good
chance that fibrillation will stop in the AF model. The same group is currently working on
creating a human version of the iAM cell line (hiAM) [140].

A similar cell line AF model was developed by Peter H. Backx’s group. They used
human embryonic stem cells (hESCs) to generate atrial-like cardiomyocytes (CMs) and
to create an AF model for pharmacological testing. Using optical mapping techniques,
atrial-like confluent CM cells showed uniform AP propagation and rapid re-entrant rotor
patterns. They tested anti-arrhythmic drugs (flecainide, dofetilide in µM concentration)
on single cells and cell sheets. Flecainide profoundly slowed upstroke velocity without
affecting AP duration, while dofetilide prolonged APs and reduced cycle lengths of rotors
in cell sheets [141].

LOF mutations in the PITX2 (specifically expressed in the left human atrium) tran-
scription factor gene have been shown to cause familial AF. Boris Greber’s group generated
a PITX2-deficient cell line to model AF and unravel PITX2-regulated downstream genes
for drug target discovery. Their F1 cells were capable of spontaneously differentiating
into cardiomyocytes; moreover, all cell lines could selectively be differentiated in a cardiac
subtype-specific manner, i.e., form atrial or ventricular cardiomyocytes.

On the other hand, the anatomical and physiological similarities between humans
and animals, particularly mammals, allow researchers to study a variety of mechanisms
and novel therapies in animal models [142]. Despite AF being quite common in humans,
spontaneously occurring AF has only been reported in relatively few animal species, such
as cats, dogs, pigs, goats, sheep, cattle, horses, camelids and monkeys. In horses and
cattle, the prevalence of spontaneous AF is the highest (about 2.5%), whereas in the other
animals spontaneous AF cases rarely occur as an isolated problem without other cardiac
diseases [143]. For this reason, AF has to be induced in the animal model through rate-
related electrical remodeling or with atrial-structural remodeling [144] using models such
as rapid atrial tachypacing, heart failure-associated AF and vagal tone-induced AF [143]. In
the following section, we will focus on experiments in which the effects of drugs targeting
IKur have been studied in animal models. However, we refer readers to two reviews by
Shuttler et al. (2020) [145] and Saljic et al. (2021) [143], where they discussed extensively
the animals models for AF studies.

Efforts by pharmaceutical companies to find new selective IKur blockers as novel
pharmacological agents against AF have generated new data on the effects of these com-
pounds in animal models. Some of these drugs are AVE0118, XEND101, DPO-1 and
vernakalant [146], mentioned above. AVE0118 was tested in dogs and goats, showing fully
restored atrial contraction without proarrhythmic effects on the ventricle [147,148]. More-
over, AVE0118 in combination with dofetilide or ibutilide showed effective cardioversion
in persistent AF [149]. AVE1231 showed similar results in pigs and goats, prolonging atrial
refractoriness with no effects on ECG intervals and ventricular repolarization [150]. In
another study in dogs, XEN-D0101 and XEN-D0103 selectively blocked IKur current and
prolonged the atria effective refractory period and decreased the duration of AF [151,152].
The same results were observed when the compound DPO-1 was tested in dogs [153].
Vernakalant (RSD1235) has been approved in European countries for acute cardioversion
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of AF with recent onset. It has been tested in several animal models, including goats [154],
pigs [155] and dogs [156]. However, nowadays, it is considered as a multichannel blocker
rather than an IKur specific blocker [143].

Although none of the above cases involved experiments with peptides, it is clear that
the use of cell lines and animal models for AF is a potential method for testing peptide
inhibitors to discover and develop new drugs for the treatment and prevention of AF.

9. Concluding Remarks

The technology to make peptides more selective for a given ion channel is known,
along with the computer modelling to aid design, and there are excellent tools to test the
efficacy of the peptides. The selectivity of ion channel inhibitors is extremely important for
future therapeutic application in order to reduce the unwanted side effects—the higher the
selectivity, the lower the risk of side effects. In the literature, there are only two peptides,
Osu1 and Ts6, which can bind to the Kv1.5 channel. They are the candidates to elucidate
the mechanisms of interaction between peptides and the Kv1.5 channel. Improving their
selectivity for IKur can serve as an option for the treatment of atrial fibrillation.
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Abbreviations

AP action potentials
APD AP duration
ARDA Atrial selective therapeutic agents
ChTx Charybdotoxin
CMs cardiomyocytes
EADs probability of early afterdepolarizations
ERG ether-á-go-go gene
ERP effective refractory period
GOF gain of function
hiAM human immortalized atrial myocyte
iAM immortalized atrial myocyte
IK,ACh acetylcholine-sensitive inward rectifier potassium current
IKr rapidly activating
IKs slowly activating
IKur ultra-rapidly activating
IL Interleukin
Ito1 the “transient outward” potassium current
Kv voltage-gated potassium channels
KTx potassium channel toxins
LOF loss of function
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MgTx Margatoxin
PAH pulmonary arterial hypertension
ProTx2 Protoxin II
SPPS solid-phase peptide synthesis
SR sinus rhythm
TTX tetrodotoxin
VGICs Voltage-gated ion channels
Vmax maximum speed of depolarization
VSD voltage-sensing domain
VSP voltage-sensing phosphatase
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