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a  b  s  t  r  a  c  t

The  capability  to predict  corneal  permeability  based  on  physicochemical  parameters  has  always  been
a desirable  objective  of ophthalmic  drug  development.  However,  previous  work  has  been  limited  to
cases  where  either  the  diversity  of  compounds  used  was  lacking  or the  performance  of  the models
was  poor.  Our study  provides  extensive  quantitative  structure-property  relationship  (QSPR)  models  for
corneal  permeability  predictions.  The  models  involved  in  vitro  corneal  permeability  measurements  of  189
diverse  compounds.  Preliminary  analysis  of  data  showed  that  there  is no  significant  correlation  between
corneal-PAMPA  (Parallel  Artificial  Membrane  Permeability  Assay)  permeability  values  and  other  pharma-
cokinetically  relevant  in  silico  drug  transport  parameters  like  Caco-2,  jejunal  permeability  and  blood-brain
partition  coefficient  (logBB).  Two  different  QSPR  models  were  developed:  one for  corneal  permeability
and  one  for  corneal  membrane  retention,  based  on experimental  corneal-PAMPA  permeability  data.  Par-
tial  least  squares  regression  was  applied  for producing  the  models,  which  contained  classical  molecular
QSPR
Quantitative structure-property
relationships
Lipophilicity
Polar surface area

descriptors  and  ECFP  fingerprints  in  combination.  A complex  validation  protocol  (including  internal  and
external  validation)  was  carried  out to provide  robust  and  appropriate  predictions  for  the  permeability
and  membrane  retention  values.  Both  models  had  an  overall  fit  of R2 >  0.90,  including  R2-values  not  lower
than  0.85  for  validation  runs,  and  provide  quick  and  accurate  predictions  of  corneal  permeability  values
for a diverse  set of  compounds.
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1. Introduction

The eye is a challenging target of therapy. Because of its compli-
cated anatomic structure and small absorptive surface, it is difficult
to achieve therapeutic drug levels in the interior of the eye by
topical dosage forms (eye drops, ointments, in-situ gel-forming
systems, etc.). More invasive ones such as intraocular injections
or implants can be very useful for maintaining high drug levels in
both the anterior and posterior segment [1–3]. Topical adminis-
tration is the most common way of anterior segment treatment
as it is non-invasive, easy and very comfortable. However, it has
many drawbacks including low bioavailability despite the fact that
the active pharmaceutical ingredient (API) is usually applied in
high doses [4]. Blinking, tear formation and nasolacrimal drainage
cause a huge drop in drug level as the solutions are washed away
within the first 15–30 seconds from the eye surface [5,6]. Typi-
cally no more than 5% bioavailability can be reached in the anterior
segment by topical administration due to these defense mecha-
nisms, and membrane penetration issues [4–7]. By using dosage
forms with high viscosity and mucoadhesivity the residence time of
drugs can be increased, however, these ointments and in situ gelling
systems often cause irritation and blurred vision [1,4,5,8]. Higher
drug levels can be reached in the posterior segment of the eye
by systemic administration or intraocular injections and implants
[2,3,5,9]. While the first may  result in systemic side effects due to
high dosage the latter does not require frequent use, although, it
may  cause endophthalmitis, lens damage or retinal detachment
[4,10,11]. Despite low patient compliance, the intraocular injec-
tions (usually targeting the vitreous) are still the most commonly
used posterior segment therapies since there are no other efficient
delivery routes for reaching high drug levels in the posterior with
minimal systemic side effects [9].

The possible routes of absorption are the corneal and non-
corneal pathways in terms of topical administration [5,6,10]. In
the case of non-corneal routes the drug penetrates through the
conjunctiva and/or sclera which is not very effective due to the
presence of local capillary beds that continuously remove the drug,
transferring it into the systemic circulation. On the other hand,
the corneal route represents the main absorption path for most
ophthalmic therapeutics (small, lipophilic compounds) and for this
reason, it is the most studied area both in terms of drug discovery
and drug formula development [4,5]. The cornea is a clear and avas-
cular tissue consisting of 5 layers: corneal epithelium, Bowman’s
layer, stroma, Descemet’s membrane and endothelium. Although
the relative thicknesses of corneal epithelium, stroma and endothe-
lium are about 0.1:1:0.01, the thinnest corneal epithelium is the
main barrier of drug absorption into the eye [7,10].

Like in the case of other topical dosage forms, the in vivo human
pharmacokinetic characterization of APIs in ophthalmic treatment
is greatly hampered by the difficulty of directly examining topical
drug concentrations. Furthermore, due to technical difficulties no
suitable in vivo animal testing solution is available either [12]. For
preclinical ophthalmic absorption studies ex vivo and in vitro cel-
lular models are available. For ex vivo studies excised rabbit cornea
is used most commonly because of easy access and anatomic sim-
ilarities between rabbit and human eyes [10,13]. However, there
are also some differences between the two species and thus the
penetration is generally much higher and cannot be correlated ade-
quately to humans [10]. In vitro studies apply rabbit or human cell
cultures which are considered as a more ethical alternative. In this
case, mostly corneal epithelial cells are used considering the main
role of corneal epithelium in drug transport, however, it is difficult

to isolate ocular tissues for this purpose and the life span of these
primary cells is very short [13,14]. Although immortalized cell lines
provide an inexhaustible supply of cells they may  exhibit abnormal
gene expression or biological functions especially after several divi-
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ions. Also, penetration across cell cultures is only a crude estimate
t best since a single type of cell cannot represent the complexity
f the corneal barrier as a whole [13].

The capability to predict corneal permeability based on physic-
chemical parameters has always been a desirable objective of
phthalmic drug development. For this purpose, great efforts have
een made to develop predictive models starting with the work of
choenwald and Ward [15]. A summary of the early development
tages can be found in Table 1. These models were based on just

 few physicochemical properties but were typically not generally
pplicable – their diversity and performance were limited to only
ertain groups of molecules.

In the past few decades, quantitative structure-property rela-
ionship (QSPR) techniques have become a well-established

ethod for correlating molecular structure and physicochemical
roperties of chemical compounds with the use of several descrip-
ors and nowadays they are commonly used for the fast prediction
f different ADME (absorption, distribution, metabolism, excre-
ion) related molecular properties [21,22]. There have been a few
ttempts to develop QSPR models also for the prediction of corneal
ermeability. Kidron et al. used partial least squares (PLS) regres-
ion for 69 non-congeneric compounds and concluded that the
otal number of putative hydrogen bonds (HBTOT) and logarithmic
istribution coefficients (logDpH7.4, logDpH8.0) were the most sig-
ificant descriptors for corneal permeability [12]. The significance
f lipophilicity in corneal penetration has been recognized long
go, while for ionizable compounds (most of the ophthalmic drugs)
he distribution coefficient measured at the pH of aqueous humor
nd tear film (pH 7.2–7.6) has been found to be a more proper
escriptor in terms of membrane permeability [5,8]. In the work
f Ghorbanzade et al. the same dataset was analyzed by stepwise
ultivariate linear regression (MLR), and neural networks (NN)

s well [23]. With the multilayer perceptron-NN technique, they
stablished a nonlinear model for corneal permeability with mod-
rate performance. Although Kidron and Ghorbanzade analyzed
ore compounds compared to their predecessors, the data came

rom several sources with different experimental conditions.
In 2018, Ramsay et al. produced a corneal and conjunctival QSPR

odel by PLS and principal component analysis (PCA) based on an
x vivo dataset of 32 small molecules. They found that corneal per-
eability has an inverse relationship with the polar surface area

PSA) and the number of hydrogen bond donors (HBD) [24]. How-
ver, the predictive power of their model was  relatively modest.

Up to the present day, there have been several models developed
or predicting corneal permeability, but there is still no reliable
SPR model based on a large and homogeneous dataset. Of course,

t is not an easy mission since ex vivo experiments have serious con-
traints like the demand for numerous animals, appropriate tissue
iability and high costs. In vitro cell culture models are better in
erms of cost-effectiveness and throughput, however, the use of
ell-based assays is not a robust process.

To solve this problem, we have recently developed a novel
n vitro non-cellular PAMPA-based method for investigating the
orneal permeability of APIs [25]. Corneal-PAMPA is a robust, high-
hroughput assay using easily accessible materials like phosphate
uffered saline (PBS), phosphatidylcholine, dodecane, hexane and
hloroform. For developing the method, ex vivo rabbit corneal per-
eability data were used from heterogeneous data sets in terms

f experimental conditions. Despite the use of heterogeneous data,
he PAMPA model with standardized experimental conditions pro-
ided highly reproducible permeability values that correlated well
ith the ex vivo data (R2 = 0.88). The corneal-PAMPA methodology
an provide many corneal permeability values as a homogeneous
ataset in a short time period and therefore it is a suitable basis for
he development of an in silico model.
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Table  1
Detailed summary of the early models for corneal permeability determination.

Equation Type of molecules (and numbers) Molecular properties Ref.

parabolic steroids (11) logP [15]
parabolic  N-alkyl-p-aminobenzoate esters (6) logP [16]
parabolic  �-blocking agents (12) logP, logDpH7.65, logMW,  logDI7.65* [17]
parabolic/ sigmoidal �-blocking agents (13) logP [18]
parabolic  �-blockers, steroids, miscellaneous compounds (32) logD, �logP (logP -logP ) [19]
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* Degree of ionization at pH 7.65.

In the present work, the corneal permeability of 189 APIs
selected from a diverse chemical space was determined by the
corneal-PAMPA method [25] experimentally and used to build
a robust QSPR model for predicting corneal permeability, which
could be a useful tool in the development of future ophthalmic
agents.

2. Materials and methods

2.1. Materials

Analytical grade solvents like acetonitrile, chloroform, hex-
ane, dodecane and formic acid were purchased from Merck KGaA
(Darmstadt, Germany). Phosphate buffered saline (PBS) powder, l-
�-phosphatidylcholine (PC) and all investigated compounds (See
Table A1., Appendix A) were purchased from Sigma Aldrich Co. Ltd.
(Budapest, Hungary) except for betaxolol hydrochloride, bevantolol
hydrochloride, bromfenac sodium, bufuralol hydrochloride, 11-
deoxycorticosterone, ethoxzolamide, flurbiprofen, nepafenac and
penbutolol, which were purchased from Toronto Research Chemi-
cals Inc. (North York, Toronto, Canada). Distilled water was purified
by the Millipore Milli-Q® 140 Gradient Water Purification System.

2.2. In vitro permeability studies

The corneal-PAMPA measurements were based on our previ-
ous report [25]. Briefly all compounds were dissolved in PBS buffer
(pH 7.4) to make solutions with 100 �M nominal concentration.
Due to the negative effect of using DMSO as a cosolvent on the
goodness of prediction in the corneal-PAMPA assay system (accord-
ing to our previous report [25]), no DMSO was used for this study
either. 300 �L of the initial PBS solutions were placed into a 96-
well polypropylene plate (A) (Agilent, Waldbronn, Germany). For
the corneal-PAMPA membrane, 16 mg  PC was dissolved in a sol-
vent mixture of chloroform, hexane and dodecane 5:70:25 % (v/v)
in a total volume of 600 �L. Each well of the acceptor plate (B)
(Multiscreen Acceptor Plate, MSSACCEPTOR; Millipore) contained
300 �L PBS and each well of the donor plate (MultiscreenTM-IP,
MAIPN4510, pore size 0.45 �m;  Millipore) (C) was coated with 5 �L
of the lipid solution. After evaporation of hexane and chloroform,
the donor plate was inserted into the acceptor plate, and each well
of the donor plate was filled with 150 �L PBS solutions of com-
pounds from plate A. After that, the donor plate was  covered with a
sheet of wet tissue paper and plate lid to prevent evaporation of the
solvent during the 4 h incubation (35 ◦C, Heidolph Titramax 1000).
In each assay, two reference compounds were measured: buspirone
and hydrocortisone with high and low corneal permeability values,

respectively.

For HPLC analysis at least 120 �L aliquots were taken out of
every well of plates B and C and transferred to 96-well polypropy-
lene plates and sealed. The initial plate A was analyzed as well.

o
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octanol alkane

 (30) quantum chemical descriptors (3) [20]

he effective permeability and membrane retention of drugs were
alculated using the following equations [26]:

e = −2.303
A × (t − �ss)

×
(

1
1 + rv

)
× lg

[
− rv +

(
1 + rv

1 − MR

)
× cD(t)
cD(0)

]
(1)

here Pe is the effective permeability (cm/s), A is the filter area
0.3 cm2), t is the incubation time of PAMPA assay (14400 s), �ss is
he time to reach steady-state (s), rv is the volume ratio of aqueous
ompartments (VD/VA), VD and VA are the volumes in the donor
0.15 cm3) and acceptor phase (0.3 cm3), cD(t) is the concentration
f the compound after incubation on plate C (mol/cm3), cD(0) is the
oncentration of the compound on plate A (mol/cm3) and MR  is the
embrane retention factor, defined as:

R = 1 − cD (t)
cD (0)

− VAcA (t)
VDcD (t)

(2)

here cA(t) is the concentration of the compound after incubation
n plate B (mol/cm3). In tables and figures we usually use this term
s 100*MR (%).

.3. HPLC analysis

Quantitative chromatographic analyses were carried out using
n Agilent 1260 liquid chromatography system (Agilent Technolo-
ies, Palo Alto, CA, USA) on a Kinetex® 2.6 �m C18 100 Å LC column
30 × 3 mm)  with a mobile phase flow rate of 1.1 mL/  min. Mobile
hase A and B consisted of 0.1 % (v/v) formic acid in water, and ace-
onitrile/water (95/5) with 0.1 % (v/v) formic acid, respectively. A
.91 min  long linear gradient program was used: in the first 0.3 min
% B, between 0.3 and 1.8 min  0–100 % B, then 100 % B was kept
or 0.6 min  and finally, at 2.41 the 100 % B was  dropped to 0%.
his was  followed by an equilibration period of 1.5 min  prior to
he next injection. The injection volume was 6 �L. Chromatograms
ere recorded by a diode array detector in the wavelength range

f 200–500 nm,  and integration was carried out at the �max of each
ompound. Data acquisition and analysis were carried out with
hemStation B.04.03.

.4. Dataset generation

The applied dataset contained the experimental corneal-PAMPA
ermeability and the membrane retention values of 189 APIs based
n the previously mentioned experimental model [15]. The dom-

nant protonation state at pH 7.4 was assigned to each compound
ith the ChemAxon Calculator (cxcalc) [27] and Schrödinger (Lig-

rep) [28,29]. Consequently, the appropriate 3D structures were
sed for the molecular descriptor generation.

Classical 1, 2 and 3D molecular descriptors and extended con-
ectivity fingerprints (ECFP) were generated for the APIs with the
RAGON 7.0 software [30]. The definition of the applied molecular
escriptors can be found in the work of Todeschini et al. [31]. More-

ver, an additional 80 physicochemical properties were calculated
y the ACD/Percepta software [32]. An inter-correlation limit of
.997 was used for the filtering of the classical descriptors [33]. Con-
tant descriptors were also excluded from the dataset. For the ECFP
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fingerprints, default parameters were applied in DRAGON 7.0, with
a maximum radius of 4 and a fingerprint length of 1024 [34]. The
final number of generated molecular descriptors was 3302, which
were further used for the QSPR model building.

2.5. QSPR modeling

Partial least squares (PLS) regression was applied as a classical
and frequently used regression algorithm for the model building.
In PLS regression, latent variables are calculated, which can be used
for the prediction of the Y dependent variable, in our case the
corneal-PAMPA permeability values and the membrane retention.
As a well-established tool in QSAR/QSPR analysis, there is no need
to explain the PLS algorithm in more detail other than referring to
the tutorial paper of Geladi and Kowalski [35]. The optimal num-
ber of PLS components for the models was selected based on the
global minimum of the root mean squared error of cross-validation
(RMSECV). Outlier selection of the samples has been carried out by
the plot of the first two latent variables (PLS components). The 95
% confidence ellipse was used for the determination of the outliers.
The range of the Y variable (corneal-PAMPA values) was  also mod-
ified to 0−50 × 10−6 cm/s, due to the poor coverage outside of this
range.

In each multivariate calibration with thousands of molecular
descriptors, the use of variable selection techniques [36] is an
essential step for the appropriate model building with good predic-
tion performance. In our case, the variable importance projection
(VIP) and genetic algorithm (GA) methods were combined for this
purpose. First, the number of variables was decreased to the most
important 20 % based on VIP values, then a genetic algorithm was
used on the remaining variables. This form of pre-filtering with VIP
scores was necessary in order to decrease the calculation time for
the more time-demanding GA protocol. The major parameters of
the genetic algorithm were the following: the population size was
64, the percentage of the initial terms was 30, the algorithm was
run for a hundred generations and double cross-over was used.

Model building was carried out in PLS Toolbox [37]. Validation
of the models is indispensable for reliable prediction, therefore our
models were validated in three different ways: cross-validation,
external validation and Y-scrambling [38]. Training and test splits
were carried out by the D-optimal onion design algorithm (DOOD)
implemented in PLS toolbox [39]. The data split ratio was 80 %
Training – 20 % Test set. The training samples were used for 7-
fold cross-validation, which means that 1/7 of the samples were
predicted based on the other 6/7 of the samples, and this process
was repeated while all the partitions have been predicted exactly
once. The folds of samples were selected randomly, thus twenty
iterations were implemented into the protocol. Seven-fold cross-
validation is a well-known option for cross-validation processes.
The optimal number of folds should be between 5 and 10 based on
the work of Hastie et al. [40]. The test splits of the samples were
used for the external validation, where the Y target values of the
molecules were predicted based on the calibration model. Finally,
Y-scrambling (randomly reordered Y vector) can verify that our
models are far better than the use of random numbers. This can
help us to check “chance correlations” and whether the models are
overfitted or not. An additional method, called the permutation test
was also applied to test the significance of the difference between
the actual and the random model. Here the main hypothesis is that
our original model is not significantly different from the randomly
reordered Y vector ones. Wilcoxon, Sign and randomization T-tests
were applied for testing.
Performance parameters such as R2 (calibration), Q2
CV (cross-

validation), R2
P (external validation) and Q2

Fn [41], the root mean
squared error of calibration, cross-validation and external vali-
dation (RMSEC/RMSECV/RMSEP respectively), the mean absolute
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rror (for calibration, cross-validation and external validation) the
oefficient of concordance (CCC, likewise for all calibration and val-
dation steps) [42] etc. were calculated to appropriately determine
he quality of the models.

. Results and discussion

.1. Preliminary analysis of the APIs

In our previous work, we  investigated the relationships between
orneal-PAMPA permeability (logPe) and membrane retention val-
es (MR) in comparison with experimental Caco-2 permeability
ata and calculated physicochemical properties, such as molecular
eight (MW),  topological polar surface area (TPSA) and lipophilic-

ty descriptors (logP, logDpH7.4), in the case of 50 structurally and
hysicochemically diverse compounds [43]. Due  to weak correla-
ions (R2 = 0.018−0.506) we concluded that corneal permeability
annot be predicted based on only these physicochemical descrip-
ors and for this reason, a larger measured permeability dataset
s needed to be able to carry out a QSPR analysis. As part of
ur conclusion, we established that the weak correlation between
orneal-PAMPA permeability and Caco-2 (gastrointestinal) perme-
bility (R2 = 0.125) confirms that our model is independent of the
enerally accepted gastrointestinal permeability model and may
upport its adequacy for cornea-specific in vitro measurements.

In the current work, 189 APIs (from which 50 APIs have already
een measured in the previous work [43]) were selected from a
iverse chemical space and tested in the corneal-PAMPA model to
roduce data set for in silico modeling. (See experimental data in
able A1., Appendix A) Before computational modeling, we  eval-
ated the main characteristics of the compounds based on their
hysicochemical properties like logP, logDpH7.4, MW,  TPSA and
cid-base characteristics (Fig. 1).

We investigated the relationship between corneal-PAMPA per-
eability and the above-mentioned physicochemical parameters

Fig. 2). For linear regression analysis, the GraphPad Prism software
as used [45]. The result proved to be alike as each of these param-

ters showed weak correlation with corneal permeability, only the
ollowing tendencies could be observed: the corneal permeability
ecreased with increasing TPSA while it increased with increasing

ogP and logDpH7.4 values. However, the molecular weight seemed
o have no effect on corneal permeability. The neutral and basic
ompounds exhibited higher permeability values than the acidic
r amphoteric ones, which observation corresponds to the gen-
ral trend for membrane permeability of drugs it as has also been
eported previously [46]. The best squared correlation coefficient
R2 = 0.356) was  observed in the case of logDpH7.4, which is probably
ue to the fact that the measurements were carried out at iso-pH
.4 conditions.

The relationship between membrane retention and these
hysicochemical parameters has also been investigated. In the
ase of TPSA and logP only trends could be observed with low
quared correlation coefficients (R2 = 0.289 and 0.367 respectively).
he MR  values increased with increasing logP and decreased with

ncreasing TPSA, which is in accordance with the fact that the more
ipophilic (and less polar) the API is, the more likely it gets into the

embrane. The analysis resulted in very poor fits with the other
wo parameters. (See Figure B1., Appendix B). The corneal-PAMPA
ermeability values were also compared with other permeability-
elated in silico values like Caco-2 permeability (pH 7.4, at 350 rpm
tirring rate) jejunal permeability [47] and blood-brain partition

oefficient [48] (logBB), which were predicted by the ACD/Percepta
oftware [32] as a gold standard tool in drug discovery (Fig. 3).

The Caco-2 model applies human epithelial colorectal ade-
ocarcinoma cells thus, unlike the PAMPA model, it contains
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Fig. 1. Histograms of physicochemical properties of 189 compounds. Physicoch
log  partition coefficient, calculated log distribution coefficient at pH 7.4, and acid
ACD/Percepta software [32] and the acid-base characteristics were determined with

active transporters. For comparing the corneal-PAMPA and Caco-
2 permeability values, 9 APIs (hydrocortisone, emetine, etoposide,
loperamide, quinine, risperidone, sparfloxacin, trimethoprim, ver-
apamil) were labeled with red stars on Fig. 3, which are potential
substrates of P-gp efflux pump according to the prediction of
ACD/Percepta software [32]. For the proper comparison between
the different assays, compounds that are known to be penetrating
via active transport should be avoided. To clarify the differences
in their penetration behavior, squared correlation coefficients are
represented here, which refer to the datasets without (R2) and with
(R2*) the P-gp substrates aided by active transport. Similarly, to
our former conclusion, only a weak correlation could be deter-
mined between corneal-PAMPA and Caco-2 permeability values.
A weak correlation was found in the case of jejunal permeability
and blood-brain partition coefficient too, which indicates that the
corneal-PAMPA is not a universal permeability model and that the
trans-corneal diffusion process is presumably governed by differ-
ent factors than intestinal or blood-brain-barrier penetration. Thus,
the results of the preliminary analysis clearly verified the need for
a unique QSPR model for corneal-PAMPA predictions.

3.2. Corneal-PAMPA permeability QSPR prediction

In the model-building phase, the original matrix contained 3302
molecular descriptors (including the predicted physicochemical
ones, classical 1, 2 and 3D descriptors and the ECFP fingerprint) as

X variables, and corneal-PAMPA experimental results as the Y vec-
tor. The total number of APIs where corneal-PAMPA experimental
values could be determined was 151. Outlier selection was per-
formed on the dataset: a) first the APIs outside of the well-covered

o
f
i

5

al properties include molecular weight, topological polar surface area, calculated
 characteristics. The TPSA, clogP and clogDpH7.4 values were calculated with the
hemAxon/MarvinSketch software [44].

−50 × 10−6 cm/s range were excluded, b) then the first two PLS
omponents were plotted against each other and 95 % confidence
llipse was  calculated to exclude the outliers based on the molec-
lar descriptors. In the final form, 143 APIs were included in the
ataset.

In the next step, the matrix was split into training and test set,
hich was  obligatory to carry out a proper validation of the model.
ith the DOOD algorithm, 80 % of the compounds were selected

or the training set. Thus, 114 APIs were applied for the calibration
nd cross-validation of the model. Autoscaling (standardization)
as  used as data pretreatment. We  have selected 100 molecular

escriptors with the combination of VIP scoring and genetic algo-
ithm from the original descriptor set. In the 7-fold cross-validation
art, RMSECV values were used for the determination of the num-
er of PLS components. The global minimum of the RMSECV values
as  at five PLS components. Cross-validation was  performed with

 randomized selection in 20 iterations. The final calibration curve
long with the test validation samples based on 5 PLS components
s shown in Fig. 4 ab.

The samples were well-fitted to the calibration curve and the
rrors were homogenous along the range. It is clearly seen in the
erformances as well: the R2 (goodness of fit for the calibration) and
2

CV (goodness of fit for the cross-validation) were 0.953 and 0.866,
espectively. The performance of the test validation was 0.862. The
emaining performance parameters of the model are summarized
n Table 2.
Out of the selected 100 variables, the most important physic-
chemical descriptors (based on their VIP scores) were the
ollowing: absorption rate constant (ka), jejunal permeabil-
ty (clogPe jejunal,pH = 7.4), fraction unbound in the brain (fbu),
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Fig. 2. PAMPA-related corneal permeability as a function of physicochemical properties. Correlation between corneal permeability and molecular weight (a.), topological
polar surface area (b.), calculated log partition coefficient (c.), calculated log distribution coefficient at pH 7.4 (d.) and acid-base characteristics (e.) of the compounds with the
squared  correlation coefficient (R2). TPSA, clogP and clogDpH7.4 values were calculated with the ACD/Percepta software [32] and the acid-base characteristics were determined

termi

t
P
T
p
r
s
o
A

3

by  the ChemAxon/MarvinSketch software [44]. The correlation coefficients were de
%  confidence bands.

clogDpH7.4, plasma protein binding (PPB). All these descriptors had
VIP (variable importance) scores above 1.3. The results correspond
to the kinetic behavior of the permeability parameter as these
descriptors are related to passive transport of drugs. In addition,
the fact that predicted data of neither the gastrointestinal (ka,
clogPe jejunal), nor the blood-brain barrier transport (fbu) in silico
models could describe the corneal-PAMPA permeability process,
suggests the complexity of our model, which is also supported by
our conclusions in the preliminary analysis. Ionization state and
lipophilicity are also well-known determinants of the permeabil-
ity process [46,49,50], which are also present here in the form
of clogDpH7.4. Additionally, linear regression analysis was carried
out in the case of ka, PPB and fbu against logPe and only a weak

correlation was found in each case, which supports our previous
observation that using linear regression of only one parameter at a
time could not result in a good model for prediction (See Figure B2.,
Appendix B and Table A2., Appendix A).

c
p
t
1

6

ned using the GraphPad Prism software [45]. The blue dotted lines stand for the 95

Yscrambling was also used for the validation of the model and
o check the possibility of overfitting. The experimental corneal-
AMPA values were randomized in the dataset for this validation.
he prediction performances at 5 PLS components were decreased
roperly to 0.016 and 0.14 for cross-validation and test validation,
espectively. The permutation test (with 50 iterations) has found a
ignificant difference between our final model and the randomized
ne (at � = 0.05 level). For the result of the permutation see Table
3, Appendix A.

.3. Corneal-PAMPA membrane retention QSPR prediction

In the case of membrane retention prediction, the same proto-

ol (with the same parameters) was carried out as in the case of
ermeability prediction. The selected range of membrane reten-
ion was  between 0 and 100 %. After the outlier selection process,
80 APIs out of 189 were included in the dataset. The remaining
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Fig. 3. PAMPA-related corneal permeability as a function of various in silico transport parameters. Correlation between corneal permeability and calculated Caco-2
permeability (pH 7.4, at 350 rpm stirring rate) (a.), calculated jejunal permeability (b.) [47] and calculated blood-brain partition coefficient (c.) [48] of the compounds
with  squared correlation coefficients (R2). In the case of Caco-2 permeability (a.) recalculated squared correlation coefficient (R2*) was also introduced including nine P-gp
substrates. clogPe Caco-2, clogPe jejunal and clogBB values were calculated with the ACD/Percepta software [32]. The correlation coefficients were determined using the GraphPad
Prism  software [45]. The blue dotted lines stand for the 95 % confidence bands.

tted a
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Fig. 4. a b. The PLS calibration curve. a) Predicted corneal-PAMPA values are plo
scale.  Calibration samples are marked with grey circles, while test validation compo

nine compounds were excluded due to their negative membrane
retention values (they were out of the 0–100 % range). In total, 83
molecular descriptors were included in the matrix after the vari-
able selection process (VIP scores and genetic algorithm). Classical
physicochemical, two-dimensional, three-dimensional descriptors
and fingerprint bit positions were included in the selected set of
variables. The same DOOD algorithm was used for the training-test

split. The training set contained 144 compounds (80 %), while the
remaining 36 compounds were used for test validation. Seven-fold
cross-validation was used for the internal validation of the model
with 20 iterations, and eight PLS components were applied based

s
i
h

7

gainst the experimental ones. In Fig. 4b) the model is transformed to logarithmic
 are marked with red diamonds.

n the global minimum of the RMSECV curve. The final calibration
odel with the calibration and test samples together is plotted in

ig. 5. The samples were well-fitted to the calibration curve (even
he test ones) and the errors were homogeneous along the range.
he R2 value of the calibration was 0.97, while the Q2

CV and Q2

rediction were 0.91 and 0.94, respectively. All the performance
arameters are summarized in Table 2.
The most important physicochemical properties amongst the 83
elected descriptors (based on their VIP scores) were the follow-
ng: log aqueous solubility (logS), logP and PPB. These descriptors
ad VIP scores above 1.3. The result confirms the thermodynamic
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Table  2
Summary of the performance parameters for the final QSPR models*.

Model Permeability Membrane retention Permeability (in
log sale)

RMSEC 2.87 4.37 0.04
RMSECV 5.06 8.14 0.08
RMSEP 5.15 7.05 0.11
R2 0.95 0.97 0.95
Q2

CV 0.87 0.91 0.86
R2

P 0.86 0.94 0.85
Q2

F1 0.86 0.96 0.75
Q2

F2 0.86 0.93 0.75
Q2

F3 0.85 0.93 0.79
CCCTrain 0.98 0.99 0.97
CCCCV 0.93 0.95 0.93
CCCExt 0.92 0.97 0.89
MAETrain 2.15 3.28 0.04
MAECV 3.79 4.90 0.06
MAEExt 3.92 5.74 0.08
r2

m 0.80 0.89 0.58
¯r2
m 0.76 0.88 0.65
�r2

m 0.07 0.01 0.13∣∣r2
0 − r

′2
0

∣∣ 0.02 0.00 0.07

k  0.87 0.96 1.09
k’  0.91 0.99 1.01
Y-SCR CV 0.02 0.02 –
Y-SCR P. 0.14 0.04 –
PLS  COMP. 5 8 –

* RMSEC – root mean squared error of calibration, RMSECV – root mean squared
error of cross-validation, RMSEP – root mean squared error of external validation,
R2 - goodness of fit for the calibration, Q2

CV - goodness of fit for the cross-validation,
R2

P - goodness of fit for the external validation, QF1
2 – F1 type goodness of fit for the

external validation, QF2
2 – F2 type goodness of fit for the external validation, QF3

2 –
F3  type goodness of fit for the external validation, CCC (Train/CV/Ext) – coefficient
of concordance for the training/CV/external test set, MAE  (Train/CV/Ext) – mean
absolute error for the training/CV/external test set, r2

m and � r2
m – based on the

work of Roy et al. [52],
∣∣r2

0 − r
′2
0

∣∣ is the absolute difference of the r2
0 values without

intercept in the case of observed vs. predicted and predicted vs. observed values,
k  and k’ - the slope of the regression lines (with or without passing through the
origin), Y-SCR CV - goodness of fit for the cross validation using Y scrambling,Y-SCR
P-goodness of fit for the test prediction using Y-scrambling, PLS COMP. – number of
PLS  components in the model.

Fig. 5. Prediction of the membrane retention. Predicted values are plotted against
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the experimental membrane retention values. The test samples are marked with
red  diamonds and the calibration ones are marked with grey circles. The calibration
curve is marked with the red line.

behavior of the MR  parameter for the tested compounds in that it
relates to their distribution between the donor, acceptor and lipid

membrane. The primary relevance of the logP and logS parame-
ters suggests the dominance of the neutral form of the compounds,
which also supports the specificity of the in silico description, as
the proton dissociation of drug molecules in the membrane is typi-

D
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ally depressed. The fact that logP is more favorable than logDpH7.4
s a descriptor for membrane retention confirms the results of
ur preliminary analysis (See Figure B1., Appendix B). The weighted
ppearance of PPB can be explained by the lipophilicity-dependent
ature of the free form of the drug, which is consistent with the
eneral kinetic description of drug transport. Additionally, linear
egression analysis was  carried out in the case of logS and PPB
gainst MR  and only weak correlations were found with the squared
orrelation coefficients of 0.232 and 0.189 respectively which also
erifies the need for more complex models than the linear regres-
ion of one physicochemical parameter at a time (See Figure B3.,
ppendix B and Table A2., Appendix A).

Y-scrambling was also used to check the possibility of over-
tting. The model performances strongly decreased with the use
f randomized Y values. The Q2

CV was  0.02, while the Q2 for test
rediction was  0.04. The permutation test (with 50 iterations) has

ound a significant difference between our final model and the ran-
omized one (at � = 0.05 level), verifying our model.

The detailed summary of the performance parameters of the
nal models (permeability and membrane retention) is shown in
able 2. All parameters are good and fulfill the suggested conditions
or the acceptance of the model: R2 > 0.7, QFn

2 > 0.6, CCC > 0.85,
2
m > 0.5, � r2

m < 0.2 [42,51], and
∣∣r2

0 − r
′2
0

∣∣ < 0.2. Based on the
erformances of the models, we  are recommending the use of per-
eability values in linear scale for further calculations.

. Conclusion

Two quantitative structure-property relationship models were
eveloped for the investigation of corneal permeability and mem-
rane retention. The QSPR models were based on experimentally
etermined corneal-PAMPA values. Partial least squares regression
as applied for the process. The final models contained classi-

al molecular descriptors and ECFP fingerprints in combination.
he models included 143 and 180 APIs for Pe and MR  prediction,
espectively. A complex validation protocol (including internal and
xternal phases) was  carried out to provide robust and appro-
riate predictions for the permeability and membrane retention
alues. The goodness of the models (R2) were above 0.90 in both
ases and they were not lower than 0.85 for validation either.
he permutation tests showed that our models are not overfit-
ed and they are clearly applicable to provide good predictions for
he corneal permeability of the APIs. This is, to our knowledge, the
rst such in silico model reported so far. The results also showed

hat there was no significant correlation between the experimental
orneal-PAMPA values and the existing classical in silico phar-
acokinetically relevant drug transport models, such as Caco-2

ermeability, jejunal permeability and the blood-brain partition
oefficient (logBB). Thus, our models can be good candidates to pro-
ide the corneal permeability and corneal membrane retention of
ompounds in a very short time with appropriate precision.
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