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Abstract
Physicochemical properties are fundamental to predict the pharmacokinetic and pharmacodynamic behavior of drug can-
didates. Easily calculated descriptors such as molecular weight and logP have been found to correlate with the success rate 
of clinical trials. These properties have been previously shown to highlight a sweet-spot in the chemical space associated 
with favorable pharmacokinetics, which is superior against other regions during hit identification and optimization. In this 
study, we applied self-organizing maps (SOMs) trained on sixteen calculated properties of a subset of known drugs for the 
analysis of commercially available compound databases, as well as public biological and chemical databases frequently used 
for drug discovery. Interestingly, several regions of the property space have been identified that are highly overrepresented 
by commercially available chemical libraries, while we found almost completely unoccupied regions of the maps (commer-
cially neglected chemical space resembling the properties of known drugs). Moreover, these underrepresented portions of 
the chemical space are compatible with most rigorous property filters applied by the pharma industry in medicinal chemistry 
optimization programs. Our results suggest that SOMs may be directly utilized in the strategy of library design for drug 
discovery to sample previously unexplored parts of the chemical space to aim at yet-undruggable targets.
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Introduction

The selection of molecules based on calculated properties 
(a.k.a. virtual screening) is a fundamental approach which is 
widely applied at various stages of drug discovery to reduce 
its costs and time consumption. Such methods run calcula-
tions/simulations on a digital representation of a molecule 
vs. running real experiments on the physical sample. A large 
number of molecular representations/descriptors have been 
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reported that capture some key features of the molecules that 
may be relevant at different stages of the drug discovery pro-
cess [1–9] These descriptors widely vary in their accuracy 
(correlation with experimental results), and their prediction 
method in terms of cost and time demands.

Most drug targets have some unique characteristics that 
can be used to define the structural/property space of com-
pounds with selective inhibitory/agonist effects. On the other 
hands, orally administered drugs typically share some com-
mon properties that correlate with a desirable ADMET pro-
file. Physicochemical properties are of outstanding impor-
tance as they have been shown to highly correlate with the 
pharmacokinetic (PK) profile of drug and drug-like com-
pounds. In their landmark paper, Lipinski et al. [1] showed 
that a few simple rules based on physicochemical properties 
(rule-of-five, Ro5) can effectively select compounds for drug 
availability, especially in terms of PK; thus, the concept of 
druglikeness has been born. Since most of these properties 
can be calculated very cost- and time-efficiently, they can 
be easily integrated into any drug discovery workflow aim-
ing for an orally available drug. Since the publication of 
Ro5 many similar rules and algorithm has been developed 
to further improve such property-based filters focusing on 
different approaches (e.g., fragments) [10], stages of devel-
opment (e.g., lead-likeness) [11, 12] and the physiological 
compartment of the target (e.g., MPO for CNS drug develop-
ment) [13]. While the effect of individual physicochemical 
properties and their linear combinations on the PK profile 
of molecules have been extensively studied, there has been 
less published analysis on more complex property profiles. 
For example, Ro5, Ro3 [10] and Pfizer’s CNS MPO [14], 
three widely used parameters derived from physicochemi-
cal properties assume that the desirability of the individual 
properties does not depend on each other. In other words, the 
desirable and undesirable property ranges are defined indi-
vidually, and thus, they are independent. As a consequence, 
two unfavorable properties can never have a favorable con-
tribution to the Ro5, Ro3 or MPO combined parameters. As 
an example, if compound “A” has unfavorable lipophilicity 
(logP > 5) and compound “B” has an unfavorable number of 
H-bond acceptors (HBA > 10), compound C with logP > 5 
and HBA > 10 will be—by definition—unfavorable. How-
ever, there might be certain property combinations that do 
not pass Ro5 but are still favored and thus they are worth to 
explore. In fact, there is a significant number of approved, 
orally administered drugs which are beyond Ro5. Moreover, 
there are several explanations for physicochemical properties 
that allow these drugs to compensate for their unfavorable 
properties including the formation of intramolecular hydro-
gen bonding and macrocyclization [15], 16. Consequently, 
for the analysis of drugs in property space, it is more ade-
quate to apply approaches and methods that can effectively 
capture unusual, but favorable property combinations too 

[17]. This could potentially lead to the discovery of novel 
ligands against difficult targets currently considered as 
undruggable [18–20].

Some methods that are capable of identifying complex 
property profiles include self-organizing maps (SOM) 
[21–23], principal component analysis (PCA) [24], genera-
tive topographical mapping (GTM) [25] stochastic neighbor 
embedding (SNE) [26], etc.

All of these methods have been already applied in some 
context to chemical space navigation/chemography; how-
ever, the majority of these studies have been focusing on 
structural patterns and motifs.

Since physicochemical properties are fundamental in pre-
dicting pharmacological properties and are widely used for 
classification and filtering datasets, our aim was to carry 
out a comprehensive analysis and examine the purchasable 
compound libraries in the physicochemical space and check 
if there are significant underrepresented/overrepresented 
regions. As a common and easily interpretable dimension 
reduction algorithm, we have chosen to use self-organizing 
maps. SOMs are classified as machine learning algorithms. 
They were introduced by Kohonen et al. [21] and since then 
they have been applied for chemical space navigation, dis-
crimination of libraries for various targets based on a variety 
of structural elements or properties [27–34] It is a widely 
known method that is easily interpretable and visualizable. 
To the best of our knowledge, however, SOMs have not been 
applied for the analysis and comparison of various supplier 
catalogs and thereby for the exploration and exploitation of 
currently unpopulated parts of the purchasable and drug-
like chemical space using physicochemical properties as 
descriptors. The approach of SOM is completely transparent 
compared to deep neural networks in the sense that no hid-
den layers or various weighting methods are applied. Con-
sequently, they can be easily applied for data representation 
and visualization. Initially, random property values for all 
analyzed properties are assigned to each point (neuron) of 
the 2-dimensional map. In each iteration, one element of 
the training dataset is paired to the neuron with the lowest 
Euclidian distance from the current element, and the paired 
neuron and its neighborhood are adjusted to become more 
similar to that element (learning). The pairing and learn-
ing steps are executed multiple times for the training set, 
while both the learning rate (modifying coefficient) and the 
learning distance (size of the neighborhood) are gradually 
decreased. In the resulting map, the elements of the training 
set are homogeneously distributed. Any new datasets to be 
analyzed can be placed onto the map, where each element 
of the dataset will be assigned to the most similar point of 
the map (i.e., the point with the lowest Euclidian distance 
from the element). Some of the key advantages of SOMs 
include that they can be applied to a large number of vari-
ables, and they represent the physicochemical property space 
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as a continuous, easily interpretable and intuitive map with-
out any data loss. These characteristics made it the method 
of choice for our purposes compared to PCA, GTM or SNE. 
Nevertheless, some more complex models and algorithms 
may also be suitable for our goals, but they would come at 
a cost of losing some level of interpretability and transpar-
ency—in comparison to self-organizing maps.

In SOM, the neurons of the maps represent complex prop-
erty profiles unlike the simple linear combinations such as 
Ro5, and thus, they should be able to identify unusual but 
druglike physicochemical property concurrences that might 
enable the targeting of yet-undruggable sites. For example, 
there are a lot of allosteric sites on macromolecules that are 
yet unexplored, and it has been shown that such sites accom-
modate molecules with different pharmacokinetic profiles 
compared to those binding to orthosteric sites. In particular, 
allosteric ligands represent one of the most promising strat-
egies to target kinases and GPCRs selectively [35]36. The 
shortages of chemical space characterization by MPO, Ro5 
and similar approaches are reflected by several known drugs 
with unusual and complex property profiles filtered out by 
such filters [37]1516.

Numerous articles have been published in the last decades 
that aimed to develop a method that is capable to navigate in 
chemical space and identify unpopulated parts. The major-
ity of these studies applied novel or enhanced algorithms 
and presented a few representative examples of such under-
represented or very unique chemical space areas. [38–40] 
For example, Zabolotna et al. concluded that a few struc-
tural elements are common in the overpopulated parts (e.g., 
amides and sulfonamides) but found no difference between 
tangible and in-stock libraries [41]. The studies used dif-
ferent databases (ChEMBL, PubChem [42]) and compared 
different even more libraries (ChEMBL, PubChem, GDB 
[43], etc.); thus, they are difficult to compare. Nevertheless, 
their findings suggest that the analyzed databases represent a 
significant heterogeneity that could be potentially exploited 
in ligand design.

In this study, we analyzed two main types of compound 
sources in physicochemical property space: (i) compounds 
with reported bioactivity data primarily generated during 
drug discovery and (ii) commercially available compounds 
primarily designed for drug discovery. In particular, we 
chose sixteen physicochemical properties widely applied 
for library filtering by the pharmaceutical industry. SOMs 
were developed to homogeneously represent approved drugs 
in this property space. The analysis of the distributions led 
to the identification of underrepresented regions that resem-
ble the property profile of approved drugs that were rigor-
ously filtered by and thus compatible with Ro5 and further 
medicinal chemistry filters. Our findings reveal that a sig-
nificant portion of the chemical space that is compatible 
with all rigorous property filters is still underrepresented by 

commercially available libraries. The developed SOMs can 
be directly utilized in the chemical library design for drug 
discovery, and thus, they provide a useful tool for research 
groups as well as chemical suppliers to exploit unidentified 
but potentially drug-like chemical spaces.

Results and discussion

There is an ongoing debate on whether Ro5 or similar phys-
icochemical property-based parameters should be applied 
and at which stage of drug discovery. On one hand, such 
filters can be extremely useful to minimize PK and toxicity 
issues during development, and thus, in case, there are a 
sufficient number of hits/leads it is suggested to prioritize 
them by such criteria. On the other hand, since pharmaco-
dynamics (PD) behavior cannot be adequately described by 
just a few simple rules of thumbs, the application of such 
filters inevitably results in false negatives and false positives. 
While the false negatives are typically not considered as a 
major drawback of the application of Ro5, false positives are 
frequently interpreted as lost opportunities by opponents.

In our study, we analyzed the distribution of the following 
four chemical databases in the multidimensional property 
space of sixteen physicochemical properties using SOMs: 
the bioactivity database of ChEMBL [44] (version 23), the 
stock (Supplier #1 stock) and virtual (Supplier #2 virtual) 
databases of one of the largest chemical suppliers and the 
stock database of a chemical marketplace that integrates 
multiple supplier catalogs (Mcule stock [45]). We used the 
DrugBank [46] database of approved drugs as a reference 
to identify under- and overrepresented regions of the chemi-
cal space. First, we filtered all databases by Ro5 (Table S1) 
as well as by a more rigorous property filtering workflow 
(referred as Strict filter (Table S1) below) developed based 
on the instructions of large pharmaceutical companies. The 
primary aim of the Strict filter was to minimize compounds 
with any unsuitable properties or liabilities that can lead to 
issues during optimization.

Although a significant portion of approved drugs (1248 
with min two violations and 2377 with min one violation) 
is filtered out by Ro5 (Table 1), the majority of them are not 
orally administered drugs, and therefore, they are not con-
sidered as false positives. The ratio of filtered compounds is 
even larger in case of the Strict filter (Fig. 1c and d). Appar-
ently, this filter has a lot of false positives (only 9.7% of 
approved drugs survived the filtering). Nevertheless, the aim 
of such a filter is to minimize the vast number of purchasable 
compounds to be acquired by a pharma company to the most 
valuable ones with minimized risk of an undesired ADMET 
profile. Altogether, 90% of approved drugs failed on at least 
one of the Strict filter rules. Interestingly, while the elimi-
nation rate by Strict filter in DrugBank and ChEMBL was 
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relatively high (90% and 86%, respectively), a significantly 
smaller portion of the Supplier #1 stock (66%), Supplier #1 
virtual (66%) and Mcule stock (71%) were discarded sug-
gesting the adaptation of supplier catalogs to the require-
ments of the pharma industry.

In fact, supplier catalogs are frequently filtered against 
criteria such as molar mass, polar surface area (PSA), 
H-bond acceptors (HBA), and H-bond donors (HBD). Con-
sequently, there is a significantly lower elimination rate of 
these filters in the Supplier #1 stock, Supplier #1 virtual and 
Mcule stock libraries. The four property filters that elimi-
nated the largest portion of approved drugs are as follows 
(elimination rates in %): minimum number of aliphatic rings 
(47%), maximum of logP (37%), maximum of PSA (29%) 
and maximum number of chiral centers (26%). Interestingly, 
the aliphatic ring filter showed a significantly larger elimi-
nation rate of approved drugs vs. other libraries suggesting 
that although there is a trend for a higher preference for 
aliphatic vs. aromatic rings by the pharma industry, this is 
not a requirement for drug approval. Nevertheless, planar 
(aromatic, low fsp3) compounds tend to aggregate and to 
be identified as false positives in, e.g., cell-based screening 
assays, and thus, their exclusion is justified by the associated 
higher risk [47]. Similarly, the higher elimination rate of the 
maximum number of chiral centers filter in the approved 
drug library indicates that higher number of chiral centers 
does not imply a higher chance for failure in clinical tri-
als, but the separation of the different stereoisomers makes 
the medicinal chemistry optimization more difficult. The 
strongest three filters of the commercial libraries and their 
elimination rates are as follows: minimum number of ali-
phatic rings (Supplier #1 stock: 39%, Supplier #1 virtual: 
32%, Mcule stock: 39%), maximum of logP (Supplier #1 
stock: 35%, Supplier #1 virtual: 40%, Mcule stock: 44%) 
and the minimum fraction of sp3 carbon atoms (Supplier 
#1 stock: 18%, Supplier #1 virtual: 8%, Mcule stock: 23%). 
The high numbers for the aliphatic ring and fsp3 filters sug-
gest that the industry is still in the process to adapt to the 
recent trend of favoring compounds with more pronounced 
3D characteristics. Nevertheless, the high elimination rate of 
logP is surprising after the decades of the publication of Ro5 
and several other studies [48]49 highlighting the correlation 

of high lipophilicity with promiscuity (unspecific binding) 
and toxicity issues. It has to be mentioned that the absolute 
value of the elimination rate of max. logP was the highest 
in ChEMBL (59%) compared to the other libraries (Sup-
plier #1 stock (35%), Supplier #1 virtual (40%), Mcule stock 
(44%) and DrugBank (37%)) (Fig. 1c). A similar trend was 
observed for the logP filter in case of Ro5 (Fig. 1a). This 
suggests that approved drugs indeed have a sweet-spot for 
logP, while ChEMBL database contains a higher number of 
“tool” compounds with a less favorable PK profile but still 
sufficient for target validation.

It is important to mention that the commercially available 
compounds have not been exclusively designed for drug dis-
covery and thus can serve multiple purposes. Nevertheless, 
drug discovery represents currently the largest market for 
chemical libraries, and thus, it is the main driving force of 
the chemical library provider industry. Another important 
factor that may have affected our results and analysis is that 
there is no standard calculation of certain properties that 
may partially explain, e.g., the large number of compounds 
discarded due to high logP.

After the analysis of the property filters, our primary goal 
was to investigate whether the chemical space compatible 
with the Strict filter (i.e., interest of the pharma industry) 
still contains significant unexploited regions. If it does, such 
regions are of high potential as they represent compounds 
with a minimal chance for undesired pharmacokinetics, and 
thus, they should be pursued with higher priority over-fil-
tered out ones. If it does not, the results suggest that strict 
property filters may need to be softened in order to improve 
the sampling of unexplored portions of the property space. It 
is important to mention that the chemical space filtered out 
by Strict filter should still contain numerous potential drug 
candidates; however, they have a higher risk of failure in 
medicinal chemistry optimization. Consequently, the inten-
tion of our analysis was not to cover the complete chemical 
space of drugs, but to focus on a subset with the lowest risk, 
i.e., to minimize false positives.

We trained a self-organizing map (SOM) using the prop-
erties of approved drugs filtered by Strict filter. This resulted 
in a map where the drugs were homogeneously distributed, 
and their calculated physicochemical properties formed 

Table 1   Size of the unfiltered and filtered databases by Ro5, Strict property filter, substructural SMARTS and Lilly filters and their combination

DrugBank ChEMBL Mcule stock Supplier #1 stock Supplier #1 virtual

Original size 8646 1,727,112 9,169,172 3,397,680 336,985,480
Ro5 filtered size (0 or 1 violation) (% of original) 7398 (86%) 1,459,467 (85%) 8,885,121 (97%) 3,385,630 (100%) 336,858,162 (100%)
Strict property filtered size (% of original) 836 (9.7%) 242,764 (14%) 2,669,910 (29%) 1,160,797 (34%) 115,096,630 (34%)
Substructure filtered size (% of original) 4583 (53%) 875,029 (51%) 6,755,581 (74%) 2,640,763 (78%) 287,563,008 (85%)
Strict property + Substructure filtered size (% of 

original)
617 (7.1%) 153,389 (8.9%) 2,332,297 (25%) 1,007,186 (30%) 103,135,958 (31%)
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cliffs and valleys (see the distribution of each property in 
Figure S1. in Supporting Information).

Ten libraries were chosen for this analysis: six supplier’s 
stock catalogs and one supplier’s virtual catalog, the data-
base of Mcule (chemical marketplace) and ChEMBL (bioac-
tivity database). Each library was filtered by Strict filter, and 
the remaining compounds were placed onto the SOM trained 
by the approved drugs set prefiltered by Strict filter. In case 
of the ideal sampling of the property space, we expect a 
homogenous distribution of the molecules. The distributions, 
however, were found to be surprisingly heterogeneous: The 
majority of the maps were largely underrepresented (white) 
and some largely overrepresented regions (black, dark green) 
could be identified (Fig. 2). These results suggest that there 
are many, druglike property profiles that are currently under-
represented in the purchasable chemical space. These yet-
unexplored regions might contain ligands for those targets 
that require novel and uncommon approaches to target. Such 
regions of the chemical space comply with all the strictest 
pharma industry criteria and therefore represent an oppor-
tunity for drug discovery. The individual distributions of 
supplier catalogs showed heterogeneity to a different extent. 
We introduced map heterogeneity score to characterize and 
quantify the heterogeneity of the individual databases and 
their regions calculated as the number of largely overrepre-
sented (average number of molecules per grid point *5) and 
largely underrepresented (average number of molecules per 
grid point / 5) regions (grid points) divided by the number 
of all grid points (Table 2).

The most homogenous distribution (representing the 
most heterogenous library) was observed for ChEMBL, a 
collection of compounds described in scientific publications 
generated by a large number of independent research groups 
worldwide. This was also reflected in the lowest map het-
erogeneity score. In case of ChEMBL, only 66 grid points 
were overrepresented containing only 15% of the molecules 
of the whole database. Furthermore, we identified only 766 
grid points (containing 28% of the molecules) as underrepre-
sented. ChEMBL was followed by the commercial chemical 
marketplace database (Mcule stock) in line with expecta-
tions that the combination of supplier catalogs yields a more 
diverse representation of the chemical space compared to 
single supplier catalogs (Fig. 3). The number of drug mol-
ecules residing in these regions represent 23% (195) of all 
drugs used to build the corresponding SOM.

The least diverse libraries were identified among the sup-
pliers’ individual catalogs, which may be reasoned by the 
fact that suppliers typically synthesize several analogs for 
the same scaffold for individual projects; thus, such com-
pounds may be less diverse compared to, e.g., ChEMBL. 
Furthermore, suppliers are working under time pressure and 
thus fewer step, robust reactions, cost-effective synthesis and 
availability of stock building blocks are critical for them to 

fulfill orders on time. On the other hands, these factors may 
have a negative impact on the in-house chemical diversity 
[50]. Interestingly, the analyzed virtual catalog of Supplier 
#1 showed less diversity and a more heterogeneous distri-
bution over the map with highly overrepresented regions 
compared to the stock catalog of Supplier #1. This may 
be reasoned by the fact that while such enumerated virtual 
libraries can result in magnitudes higher number of poten-
tially synthesizable molecules, they are based on a limited 
set of building blocks and reaction rules. Thus, their diver-
sity is limited at least when compared to the same supplier’s 
stock catalog. Nevertheless, the analyzed virtual library of 
Supplier #1 was still more diverse than the majority of the 
other supplier’s analyzed stock libraries. Interestingly, we 
could not find a correlation between diversity and the size 
of the chemical libraries (Table 2).

These results suggest that the combination of a chemical 
marketplace and the concept of virtual libraries (i.e., a com-
bination of diverse stock building blocks and robust chemi-
cal reactions) could yield a very large and diverse database 
and thus better coverage of the druglike chemical space.

Since the results indicated large unexplored property 
regions, we wanted to confirm whether they represent real 
opportunities and they do not correspond to non-druglike 
property profiles from another perspective. For example, the 
presence of liable substructures can increase the chances of 
false positives and/or toxicity and such residues may not be 
identified by Strict filter. In fact, in a typical workflow of 
library design, physicochemical property filters are applied 
in combination with SMARTS-based substructural filters. 
We therefore postfiltered the approved drug set already pro-
cessed by Strict filter against a set of unwanted substructures 
described in the literature (referred as SMARTS and Lilly 
filters) [51–53] The distribution of the underrepresented 
regions was compared in the presence and absence of such 
postfiltering of the unwanted substructures on the ChEMBL 
dataset. (Fig. 4).

In fact, a positive correlation could be identified between 
the overrepresented regions and the regions enriched by 
unwanted substructures suggesting that the underrepresented 
regions are not enriched in compounds containing residues 
of increased risk. We have compared the total number of 
molecules and the number of those that contained unwanted 
substructures. We have found that their ratio was higher than 
the expected value of the given grid points in 332 (covering 
2586 molecules) underrepresented and 26 overrepresented 
(covering 16,153 molecules) points. The ratio of under/over-
represented grid points was 11.6:1 that elevated slightly to 
12.8:1—not a significant difference but substructural filters 
must be applied with additional care. Another analysis was 
also carried out to further confirm the druglikeness of the 
identified underrepresented regions of property space. As 
described above, ChEMBL showed the most homogenous 
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distribution of compounds on the map trained on approved 
drugs. ChEMBL is a bioactivity database containing valua-
ble experimental data and information on which compounds 
were identified as active or inactive by experimental biologi-
cal screening against macromolecular targets. We therefore 
extracted compounds from the ChEMBL database reported 
as active (pChEMBL > 6) on maximum 1 (i), maximum 2 
(ii), or minimum 10 (iii) unique and different targets (mul-
tiple activities on the same target considered as one activ-
ity). In case, the underrepresented regions of the maps were 
featuring non-selective, promiscuous compounds we would 
expect more examples of group (iii) than groups (i) or (ii) on 
the underrepresented regions. We have compared the distri-
bution of the full ChEMBL database (see Fig. 2a) with the 
distribution of the promiscuous molecules (Fig. 5).

While only one promiscuous grid point was identified 
as an underrepresented grid point containing 16 molecules 
(0.37% of all the ChEMBL molecules in underrepresented 
areas), we found three promiscuous grid points which were 
also identified as overrepresented corresponding to 2,156 
molecules (5.15% of all ChEMBL molecules in overrepre-
sented areas). From another perspective, the ratio of over- 
and underrepresented grid points of the total ChEMBL 
database was 66:766, while the ratio of over- and under-
represented grid points of promiscuous ChEMBL molecules 
was 3:1. In summary, an opposite trend (enrichment of selec-
tive ligands) was found suggesting that the underrepresented 
areas could be indeed populated by druglike compounds, and 
thus, they are of great potential.

Exemplary approved drugs residing in underrepresented 
property profile regions are shown in Fig. 6 and a more com-
prehensive overview of one of the largest underrepresented 
regions in Fig. 7.

We have selected an exemplary neighboring over- and 
an underrepresented region of Mcule stock database 
([[37:41];[20;24]] and [[38;42];[8;12]], respectively) to 
analyze their physicochemical property profile differences 
in more detail. These regions have a similar distribution of 
some properties while they greatly differ in others— (Fig. 8). 
By comparing these two regions covering 16–16 gridpoints, 
we can see how these molecules differ from each other at 
the level of physicochemical properties. Notable differences 
can be seen in the number of rotatable bonds, carbon atoms 
and H-bond acceptors (Fig. 8a and b) (lower in case of the 
underrepresented molecules). PSA and molar mass (Fig. 8e 
and f) are lower too.

In contrast, halogen atom counts slightly different, while 
other properties such as heteroatom ratio (Fig. 3c and D) and 

H-bond donors are equivalent. In case of logP, we can see a 
moderate decrease in the over-versus to the underrepresented 
regions, but it is interesting to see the wide range in case 
of that property in the overrepresented regions. Comparing 
these distributions to the Ro5 filters, we can conclude that 
both examined regions comply with all the Ro5 rules and 
Ro5 were not able to distinguish them. The logP and molar 
mass distributions of the overrepresented set (left side) seem 
to fall a little closer to the Ro5 criteria: 500 vs. 330 and 
5 versus 2.5, respectively. The biggest observed difference 
is in the number of H-bond donors but even this number 
in case of the overrepresented regions (~ 6) is far from the 
maximum (10) and the molecules identified in the under-
represented region have an even lower average value of 4.

Conclusion

We analyzed the chemical space of approved drugs using 
self-organizing maps by means of sixteen widely used 
physicochemical parameters. The analysis of compounds 
described previously in drug discovery research programs 
(ChEMBL database) as well as compounds manufactured 
for drug discovery (individual supplier’s stock and virtual 
catalogs and the Mcule chemical marketplace database) 
revealed that there are still significant areas of the druglike 
property space that are yet unexplored. Furthermore, it has 
been shown that these regions represent compounds which 
are (i) compatible with very rigorous property filtering, (ii) 
not enriched in unwanted substructures, (iii) nor in potential 
promiscuous false positives. The presence of such property 
profiles emphasizes the need for commercially or otherwise 
accessible libraries representing these yet-unexplored por-
tions of chemical space. Furthermore, our results suggest 
that in case of a sufficient number of hits/leads, it makes a 
lot of sense to prioritize compounds by Ro5, our described 
Strict filter or similar rules as there is still a lot to discover 
within such filtered space. On the other hands, in case the 
number of hits/leads are limited, it is suggested to investi-
gate compounds beyond Ro5 as well [54], but one should 
be prepared for a longer development time and a higher risk 
of failure. Our presented approach based on self-organizing 
maps (SOMs) is well suited for the multiparameter analysis 
of the physicochemical parameter space and can identify 
property profiles that are otherwise missed by traditional fil-
ters such as Ro5 or Ro3 and they can thereby minimize false 
negatives and false positives of in silico ADMET screen-
ing. It has to be mentioned that the chemical space can be 
represented in an infinite number of ways, and in our study, 
we analyzed compounds from one aspect only: by sixteen 
physicochemical parameters. Nevertheless, these included 
descriptors most frequently applied by the industrial drug 
research programs. The results suggest that a virtual library 

Fig. 1   Elimination rates of the individual filters of Ro5 and the dif-
ferent numbers of violations (a, b) and the elimination rates of the 
applied Strict filters (c, d) on the analyzed databases. Exact numbers 
can be found in Supporting Information (Table S2)

◂
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Fig. 2   ChEMBL database 
(a), the chemical marketplace 
Mcule stock library (b) Supplier 
#1 stock library (c), and the 
Supplier #1 virtual library (d), 
Supplier #2 (e), Supplier #3 (f), 
Supplier #4 (g), Supplier #5 (h), 
Supplier #6 (i) and Supplier #7 
(j) placed on a self-organizing 
map trained on approved drugs 
filtered by Strict filter. The 
values (therefore colors) of each 
grid points are the percent of 
molecules of the given database 
that are assigned to that point 
based on their properties. Maxi-
mum values in all heatmaps 
were set to 3.0 which is the 
highest value occurred in either 
of the databases. The green 
parts of the colorbars and the 
maps indicate the “ideal” num-
ber of molecules falling to one 
point—in a case of a completely 
heterogenic database
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based on the combination of an extensive and diverse set of 
stock building blocks and robust reactions can result in better 
sampling and could effectively populate the identified under-
represented regions. Such a library may be able to address 
difficult drug discovery targets associated with yet-unmet 
medical needs.

Experimental section

Databases

The supplier databases have been downloaded in either 
SMILES or SDF format. DrugBank (version: 5.0.10.) was 
downloaded in SDF format. For ChEMBL database, we 
used version 23 and where applicable we filtered it by the 
activity notations (pChEMBL > 6 and the activity comment 
is “active”). The records have been converted to SMILES, 
and structures were ionized at their physiological (pH = 7.4) 
state using Indigo toolkits. Mcule stock and supplier Ta
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Fig. 3   Number of overrepresented and underrepresented grid points 
of various libraries placed on the map (a) and map heterogeneity 
scores and the percent of libraries in overrepresented grid points (b)
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catalogs were downloaded and extracted from Mcule web-
site (03/11/2020 https://​mcule.​com/​datab​ase/).

Filters

The Ro5 filters applied in our study were identical with the 
ones in the original publication [1] (Table S1). Our Strict 
filter was defined based on our industrial pharma part-
ners’ feedback—see Table S1. For the elimination of the 
promiscuous and problematic substructures—as we called 
SMARTS filtering we used both Open Babel [55] and Indigo 
[56] and eventually applied the stricter of the two as we have 
noticed slight differences in their output. Furthermore, we 
used Lilly Medchem Rules as a standalone application for 
the most accurate elimination of such substructures. We have 

also contributed to the application with the addition of the 
feature to process files containing multiple SMARTS pat-
terns. Settings were as follows:

For the generation of the physicochemical properties, the 
SDF input files were applied. For those properties available 
in Open Babel (halogen atom count, heteroatom count, chi-
ral center count, rotatable bonds, H-bond donors, H-bond 
acceptors, aromatic rings, molar mass, logP, PSA, heteroatom 
ratio, aliphatic rings), we used the Open Babel functions using 

Fig. 4   Distributions of mol-
ecules that failed the unwanted 
substructural filters (a) and 
the full ChEMBL database (b) 
(identical to Fig. 2a)

Fig. 5   Distributions of selective 
(1 target) (a), fairly selective 
(targets = 2) (b), non-selective 
(2 < targets) (c) and particularly 
promiscuous (10 < targets) (d) 
compounds

https://mcule.com/database/
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Fig. 6   Examples of approved drugs with underrepresented property profiles

Fig. 7   Property distributions of the grid points [35–45; 5–15] of the generated SOMs represented by 37 drugs (4 exemplified in Fig. 8d). Boxes 
cover the 2nd and 3rd quartile of the data, while lines cover 1st and 4th quartiles
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Fig. 8   The property distribution of molecules residing on an over-
represented region [37:41];[20;24] is shown on the left (a, c and e) 
and the properties of molecules residing on a neighboring underrep-

resented region [38;42];[8;12] are shown on the right (b, d and f). 
Boxes cover the 2nd and 3rd quartile of the data, while lines cover 1st 
and 4th quartiles
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default parameters. For the remaining properties (acidic group 
count; basic group count; carbon atom count, fsp3), we cre-
ated our own SMARTS definitions and counted the number 
of matching atoms for each molecule:

The generated SDF files have been converted to CSV and 
LRN files. (The latter was used as the input for generating 
the self-organized maps by Somoclu.)

Self‑organized maps (SOMs)

To generate self-organized maps, we applied Somoclu [57], 
implementation. Before the training of our self-organized 
maps, we had to collect the highest and lowest values for 
each property present in our initial sets that was dependent 
of the filtering methods used. For example, without property 
filtering, we had an extremely high number of chiral centers 
and molar mass values in certain datasets. Using these maxi-
mum and minimum values, we have normalized each prop-
erty to a range of 0–1. Using the Somoclu implementation 
of a self-organizing map algorithm, we have created a map 
of 60 × 45 grid points—each of them had 16 dimensions. 
The size of 60 × 45 was sufficiently small to be trainable 
with our training datasets and the “deployment” of the big 
datasets could be achieved within a few hours on a standard 
computer (4 core CPU: i5-8250U; 8 GB RAM). The 60 × 45 
mapsize was also sufficiently high for detailed comparison 
of the databases. Furthermore, choosing a not symmetrical 
map is beneficial for the visual evaluation and comparison.

During training, the 16 dimensions (properties) have 
been first filled with random values between 0 and 1. For 
the training of the maps, we have used the appropriate (prop-
erty filtered) version of the DrugBank database. During the 
training process, each molecule of the training set was intro-
duced to the map and the most similar grid point (using 
Euclidean distance calculation) was chosen as the winning 
node. This node and its neighbors were then modified to be 
more similar to the molecule introduced to them. This pro-
cess was repeated for every molecule of the dataset in every 
epoch. In every following epoch, both the learning rate and 

the learning neighborhood area were lowered. The SOMs 
used in our study were trained for 500 epochs.

As a result, we got a map where the drugs—filtered by 
Strict filter—were evenly distributed. On these maps, we 
examined the distribution of the collected compound librar-
ies (ChEMBL, Mcule stock, Supplier #1 stock, Supplier #1 
virtual and Supplier #2-#7 catalogs). Each molecule of the 
catalogs was introduced to every gridpoint of the map and 
was assigned to the one with the lowest Euclidian distance 
(calculated between the 16 parameters of the molecules 
and the gripdpoints). Based on the number of molecules 
assigned to each gridpoint over- and underrepresented 
regions of the commercial and non-commercial databases 
were identified. Underrepresented gridpoints were defined 
as follows: number of molecules on gridpoint < (total num-
ber of molecules/2700/5). Overrepresented gridpoints were 
defined as follows: number of molecules on gridpoint > (all 
molecules/2700 * 5). Furthermore, we calculated map het-
erogeneity scores to characterize the heterogeneity of SOMs’ 
physicochemical property distributions as follows: ((number 
of overrepresented gridpoints + number of underrepresented 
gridpoints)/total number of gridpoints), thus the lower the 
map heterogeneity score, the higher the diversity of the 
database.

The heatmaps and Figure S1 were created by using mat-
plotlib [58] functions.
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