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Abstract
Spark ablation, a versatile, gas-phase physical nanoparticle synthesis method was employed to
fabricate fiber-optic surface enhanced Raman scattering (SERS) sensors in a simple single-step
process. We demonstrate that spark-generated silver nanoparticles can be simply deposited onto
a fiber tip by means of a modified low-pressure inertial impactor, thus providing significant
surface enhancement for fiber-based Raman measurements. The surface morphology of the
produced sensors was characterized along with the estimation of the enhancement factor and the
inter- and intra-experimental variation of the measured Raman spectrum as well as the
investigation of the concentration dependence of the SERS signal. The electric field
enhancement over the deposited silver nanostructure was simulated in order to facilitate the
better understanding of the performance of the fabricated SERS sensors. A potential application
in the continuous monitoring of a target molecule was demonstrated on a simple model system.

Keywords: spark discharge nanoparticle generation, spark ablation, SERS, fiber optic sensor,
silver nanoparticles, FDTD simulation

Introduction

Rapid development of optical fiber manufacturing technolo-
gies allowed the development of various fiber optic probes
and measurement systems. Optical fiber-based systems have
simple and compact design and due to their flexibility they
can also be employed for remote measurements, at hard-to-
access locations, either outside the laboratory, or in vivo
biomedical applications [1, 2]. A well-established method for
the detection of molecules is Raman spectroscopy, which is
based on the detection and analysis of light inelastically
scattered on a sample, directly representing its vibrational and

rotational energy levels [3]. Employing Raman spectroscopy
via optical fibers is complicated by the fact that the fiber
material, especially due to the long interaction length, gen-
erates a considerable contribution to the Raman spectrum [4].
This is further complicated by the fact that Raman scattering
itself has a very small cross section leading to rather poor
signal-to-noise ratios in case of fiber optic Raman experi-
ments. One way of increasing the intensity of the Raman
signal is based on the so called surface enhanced Raman
scattering (SERS), which exploits the so called chemical and
the plasmonic field enhancement occurring in the vicinity of a
nanostructured - appropriate - metal surface [5]. Thus, an
optical fiber equipped with a SERS-active structure on one
end allows for spatially separating the monitored environment
from the monitoring personnel and instrumentation, while
maintaining a sufficiently high sensitivity. Such fiber optic
SERS sensors have found many promising applications in the
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fields of biology, food science, detection of environmental
pollutants, pharmaceutics or in vitro an in vivo biosensing
[6–8]. One approach for creating a suitable surface for SERS
on the tip of an optical fiber is based on microfabrication
either by etching [9, 10], lithography [11, 12], or e.g. pho-
topolymerization [13] followed by the homogenous deposi-
tion of a metallic layer onto the structure. The other main
approach relies on the preparation of a nanostructured
metallic layer on the fiber tip. Nanoparticles (NPs) can be
grown directly on the fiber tip via e.g. photoreduction
[14–16], or synthesized via e.g. the well-known Lee–Meisel
method [17] and deposited on the fiber tip in a second step
[18, 19]. Both of the above mentioned approaches have their
limitation either regarding the complexity of the fabrication
method or by the purity of the formed structure [13]. As for
the cleanliness of the surface, gas-phase, physical NP synth-
esis methods can provide real alternatives to chemical routes
as they are able to omit the use of different reagents and
solvents from the process [20]. A prominent example is spark
ablation, which relies on the electrical plasma-based atomi-
zation of bulk electrodes in a controlled gaseous environment,
thus being able to provide exceptionally pure particles [21].
Moreover, spark-based NP synthesis is technically simple and
straightforward. It has recently been shown that spark ablation
can be used to fabricate versatile SERS substrates both from
pure Ag NPs [22] and Au/Ag binaries with continuously
tunable enhancement [23]. In the present study we demon-
strate that spark-generated Ag NPs can be deposited onto the
tip of an optical fiber by using a modified low-pressure
inertial impactor and thus SERS sensors can be fabricated in a
facile and straightforward way, thus providing a reasonable
platform for simple and low-cost Raman-based sensing
applications. The surface morphology of the fibers as well as
the effect of particle deposition time and analyte concentra-
tion on the SERS performance are discussed along with the
reproducibility and enhancement factor. The electric field
enhancement over the deposited Ag nanostructure was
simulated by finite-difference time-domain (FDTD) method
for better understanding the effect of experimental factors on
the performance of the sensors. The potential applicability of
the fabricated SERS sensors in the continuous monitoring and
detection of a target molecule has been demonstrated on a
simple model system.

Method

The spark ablation setup—referred to as spark discharge NP
generator, or SDG—used in the present experiment has been
described elsewhere [23], therefore we only give a brief
overview of the relevant parameters here. Ag NPs were
generated by sparking between two axially aligned Ag elec-
trodes (3.0 mm diameter, 99.9% purity, Goodfellow Cam-
bridge Ltd) placed 2.0 mm apart in a gas-tight chamber
operated slightly above atmospheric pressure. Sparking was
maintained by continuously charging and discharging an 8 nF
capacitor (450PM980, General Atomics Inc.) with a repetition
rate of 100 Hz. Argon (99.996% purity, Messer Hungarogáz

Kft.) was used as carrier gas to quench the atomic vapor
generated by the spark plasma and to carry away the NPs
formed. In order to deposit the Ag NPs dispersed in the Ar
gas onto the tip of an optical fiber, a modified low-pressure
impactor (LPI) was used. LPIs are based on the inertia of the
particles which can exceed the drag force of the gas at suf-
ficiently low pressures. They are often used to sample gas-
borne NPs, usually employing small, planar substrates such as
transmission electron microscopy grids or adhesive tapes
[24, 25]. For adapting the concept of inertial particle
deposition to optical fibers, we have built a modified LPI,
being able to encase a fiber with proper positioning while
maintaining the low pressure inside the LPI chamber. This is
schematically shown in figure 1 along with the generation
scheme. The optical fiber—without connectors and jacket—
enters the LPI chamber via an 8 mm outer diameter plastic
tube through a vacuum feedthrough connected to a custom-
made fiber holder. The fiber holder is housing a fiber optic
ferrule with an inner diameter of 400 μm. This element is
responsible for centering the fiber and holding it in place.
Once aligned, the fiber can be fixed in the holder by a plastic
screw. For maintaining the tightness of the system, the other
end of the inlet tubing is sealed with an element made of
standard vacuum components.

Multimode, silica fibers were used in the experiments
with a core/cladding diameter of 200/220 μm and NA of
0.22 (FG200LEA, Thorlabs Inc.) with a length of about
50–60 cm. The coating was stripped from one of the fiber
ends and it was cleaved before the deposition process by
using an automatic fiber cleaver (CT105, Fujikura Ltd). The
coating-free, cleaved section of the fiber was 10 mm long in
every experiment. No further preparation of the fiber surface
was carried out prior to particle deposition. The fiber tip was
exposed to the particle-laden gas stream for a couple of
minutes (typically in the range of 2–30 min), after which the
other, intact end of the fiber was also cleaved before testing
the SERS performance. None of the fiber ends were con-
nectorized or otherwise prepared before SERS measurements,
thus ensuring simple and low-cost fabrication. Testing of the
fiber optic sensors was carried out in the so called optrode
geometry (see figure 1), i.e. both the exciting 785 nm laser
light and the Raman signal was transmitted through the same
fiber coupled to a home-built Raman spectrometer system
(laser: LASER-785-LAB-FC, spectrometer: QE65000, both
Ocean Optics Inc.). The performance of the sensors was
assessed by measuring the Raman spectrum of Rhodamine
6G (R6G) dissolved in water, having a concentration in the
range of 10 nm–1 mM. The spectrum of the optical fiber, i.e.
the measurement background was acquired by dipping it into
pure water. The Raman spectrum was both measured when
the fiber was in the solution and in air after dipping and
drying the analyte on the fiber tip. The power of the Raman
laser coupled to the probe was 3.2 mW, only a fraction of
which could transmit through the silver structure and interact
with the analyte, depending on the deposition condition (see
in the next chapter). The spectra were acquired for 10 s
without averaging. The morphology of the nanostructured
probe surface was investigated by atomic force microscopy
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(AFM, XE-100, PSIA) and scanning electron microscopy
(SEM, S-4700, Hitachi Ltd).

To investigate the possible field localization, the dis-
tribution of the electric field along the surface of the nanos-
tructured silver layer has to be calculated. For this purpose,
we performed FDTD simulations with a commercially
available software package (Lumerical FDTD Solutions). For
being able to monitor the field localization properties of the
deposited nanostructures, AFM images recorded from the
surface were directly introduced to the simulations. The
simulated 3D unit cell (5 μm×5 μm×1 μm) contained the
nanostructured silver surface on top of a bulk fused silica
substrate. The substrate was modeled with a constant refrac-
tive index n=1.45. Optical data of silver was taken from
literature [26]. For illumination, we used a plane wave source
with 785 nm wavelength in a backside illumination geometry.
Distribution of the electric field was monitored in the nearest
mesh cells above the silver surface. The FDTD simulation
parameters given above were set according to a strict conv-
ergence check.

Results and discussion

The experimental setup described above and schematically
depicted in figure 1 allowed for the direct deposition of spark-
generated Ag NPs onto the tip of an optical fiber. The time of
particle deposition was arbitrarily set to 10 min, after which
the SERS performance of the fiber was tested along with the
characterization of the fiber tip exposed to the aerosol stream.
The Raman spectrum of R6G solution measured before and
after particle deposition is shown in figure 2. Please note that
particles were always deposited onto a freshly cleaved
surface.

It can be seen in figure 2(A), that the reference spectrum
measured with a bare fiber, without NPs on the surface does
not exhibit any of the characteristic peaks of R6G. Only the
Raman spectrum of the silica fiber was visible which is not
shown in this graph. After 10 min of Ag deposition the fiber

tip is fully covered with particles, as shown in the inset of
figure 2(B), and the Raman peaks of R6G are clearly dis-
cernible. In order to give an estimate on the SERS enhance-
ment factor, the Raman spectrum of R6G must be measured
without the presence of nanostructure, according to the well-
known formula given in e.g. [27]. To this end, R6G solution
with a concentration of 1 M and a freshly cleaved optical fiber
was used. At these conditions, the spectrum was heavily
affected by fluorescence, but the peak intensity of the 1506
cm−1 line could be deduced. By comparing this value with
the corresponding SERS intensity measured at 1 μM R6G
concentration (see figure 2(B)) an enhancement factor of ca.
5×104 was obtained. The value is even higher when the so-
called dip-and-dry technique is used. Such an enhancement
favorably compares to the values given in the literature for
different fiber optic SERS probes, typically ranging from 103

to 105 [13, 28, 29]. In order to examine the intensity-stability
of the prepared fibers, we recorded the variation of the R6G
spectrum—both in solution and with the dip-and-dry method
—for 45 min. The relative root mean square deviation of the
intensity of the 1506 cm−1 R6G line, characteristic to the
intra-experimental variation was obtained to be less than 15%
for measurements in solution and less than 5% for the dip-
and-dry method, indicating very good intensity stability dur-
ing a measurement.

It is suggested by the optical micrograph shown in the
inset of figure 2(B) that Ag NPs uniformly cover the fiber tip.
This is confirmed by the SEM measurements, shown in
figure 3(A). A nanostructured silver layer is formed on the
surface, with a typical particle size of ca. 40±5 nm, but
much larger, micron-sized particles can also be found. It
should be noted that under the experimental conditions used
in the present study, spark ablation produces NP aggregates of
a few tens of nanometers, consisting of primary particles with
a typical diameter of only a few nanometers [30, 31].
Therefore, the particles seen in the SEM picture are repre-
senting the Ag NP aggregates generated in our setup, which
have an approx. 35 nm modal electrical mobility diameter, as
measured by a scanning mobility particle sizer. In order to

Figure 1. Schematic experimental setup for particle deposition and Raman measurements.
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characterize the roughness of the spark-produced nanos-
tructure on the fiber tip, the AFM mapping of the surface was
also carried out. The surface topography can be seen in
figure 3, upon which an average roughness of 23 nm was
determined. By calculating the surface area of the nanos-
tructure from AFM traces carried out at different locations
over the fiber tip, the total increase of the surface of the fiber
end was estimated. This resulted in a less than 10% surface
increase due to the Ag deposition, which proves that the
enhancement factor given above can indeed be attributed to
the SERS effect.

AFM measurement data shown in figure 3(B) were also
used as input for the FDTD simulation of the electric field
enhancement over the Ag nanostructure. As shown in
figure 4(A), the overall electric field enhancement is quite low
over the surface, there are smaller ‘islands’ where the
enhancement factor is above 2. If we take a closer look on one
of these islands, enhancement factors as high as 50 can be
found, as exemplified in figure 4(B). When comparing this

region with the respective AFM profile (figure 4(C)), one can
conclude that the higher enhancement correlates not only with
the presences of particle gaps but with small thickness of the
structure as well. This is probably due to the backside illu-
mination geometry, i.e. that the laser light is directed through
the Ag structure before reaching its surface. Please note that
the values shown in figure 4 represent the electric field
enhancement factor, from which the SERS enhancement can
be obtained by employing the generally used E4 approx-
imation [32]. The peak enhancement corresponding to the
area shown in figure 4(B) is ca. 6×106 but typical values at
most regions of the structure are much lower. By calculating
the SERS enhancement at every point of the surface the
average enhancement factor was estimated to be around
2×102 in the investigated area. Since it is not realistic to
simulate the electric enhancement over the whole fiber tip,
such a value remains a rough estimate of the total electro-
magnetic enhancement, because the existence of a few hot
spots could significantly contribute to the average

Figure 2. Reference Raman spectrum of 1 mM concentration R6G solution measured by using a bare optical fiber (A), and the Raman
spectrum of 1 μM concentration R6G solution measured by an optical fiber covered with spark-generated Ag NPs (B). The spectra are
corrected for baseline. The optical micrograph of the fiber tip is shown in the insets for both cases.

Figure 3. Surface morphology (A) and topography (B) of the Ag nanostructure deposited onto the fiber tip based on SEM and AFM
measurements, respectively.
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enhancement. Nevertheless, considering that a total
enhancement factor of ca. 5×104 was experimentally
determined, this suggests that the chemical enhancement is
approx. 2×102, which agrees well with the typical literature
value [33].

FDTD simulation results shown in figure 4 indicates that
besides the well-known significance of hot spot formation, the
thickness of the nanostructure also plays an important role in
the overall performance of the fabricated SERS sensors. In
order to investigate this effect from a practical point of view
of sensor fabrication, we used the ‘transmission’ of the sensor
as a cumulative parameter affected by both the porosity,
thickness, and surface coverage of the deposited nanos-
tructure. It should be noted that such an indirect parameter is
naturally unable to grasp every important aspect of SERS
enhancement—such as exact surface morphology—but as
will be shown below, it is still useful in the assessment of the
performance of fiber optic SERS sensors. The transmission is
defined as the ratio of the laser power going through the Ag-
covered fiber and the maximum laser power transmittable
through an identical reference fiber without nanostructure. By
varying the deposition time, we have fabricated Ag-covered
fibers with different transmission and measured their perfor-
mance both in solution and with the dip-and-dry method. The
variation of the intensity of the 1506 cm−1 peak of R6G as a
function of the transmission—measured at the 785 nm
wavelength of the laser used in the Raman measurements—is
shown in figure 5. It can be seen that the SERS intensity of
the selected peak—correlating with the enhancement of the
Ag structure—increases with increasing transmission until
reaching an optimum around 30%–40%, which is followed by
a gradual decrease. In our view, this behavior qualitatively
explainable by the same considerations concluded from
FDTD simulations above. When the transmission is high, the
thickness of the nanostructure and/or the surface coverage is

low, hindering hot spot formation and resulting in weak
overall enhancement. By depositing more particles, a higher
coverage can be achieved also promoting the formation of hot
spots in small NP gaps, which results in increasing
enhancement eventually reaching a point when the thickness
of the structure and hence the transmission is so low that the
laser light can barely excite the surface plasmons and interact
with the analyte molecules, hence producing a low SERS
signal. Figure 5 indicates that the enhancement varies by a
factor of ca. 1.7 in the approx. 15%–50% transmission range,
i.e. between the very low or high transmission regions. It can
also be seen in figure 4 that the measured Raman intensity
scatters in the ±20% of the fitted intensity-transmission
curve, indicating the reproducibility of the fiber-optic SERS

Figure 4. FDTD simulation of the electric field enhancement over a characteristic surface region of the Ag nanostructure of the fiber optic
SERS sensor (A) and close-up of a region exhibiting relatively high electric field enhancement factors (B) together with the AFM profile of
the same area (C).

Figure 5. Intensity of the 1506 cm−1 R6G Raman peak as a function
of the transmission measured in solution of 1 mM concentration
(black) and with the dip-and-dry method (red). Please note that the
total line intensity, i.e. the integral of the line profile is shown in the
vertical axis.
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probes’ performance at a given transmission. It should be
noted that this is a composite value, incorporating both the
fabrication and the measurement process. Considering the
technical challenges potentially affecting the measurement—
especially through the fiber coupling—this is considered to be
a good reproducibility. It should also be added that the main
field of application of fiber optic SERS probes is sensing or
qualitative monitoring, rather than quantitative analytical
analysis. This means that even a bigger variation in the
enhancement factor might be acceptable as long as the
enhancement is still high enough for detecting the desired
molecule. As can be seen in figure 5, the FWHM of the
curves is about 35%, which means that considerable
enhancement can be achieved in a relatively broad exper-
imental range, proving the robustness of the present fabrica-
tion method. Nevertheless, in order to investigate the
dependence of the SERS signal on the concentration of the
analyte—and hence assessing the potential applicability of the
present fiber optic SERS sensors in quantitative measure-
ments—systematic measurements were carried out at varying
R6G concentrations. To this end, SERS sensors were fabri-
cated ensuring that their transmission always stays within the
optimal 15%–50% range (see figure 5).

As can be seen in figure 6(A), the SERS signal increases
monotonically with increasing concentration in the 10 nM–

100 μM concentration range. On a logarithmic scale, the
concentration dependence of the intensity can be reasonably
well described by a linear relationship, opening up the pos-
sibility of calibrated measurements as well. In solution, the
detection limit is around 10 nM, at which concentration the
signal-to-noise ratio decreased significantly, as shown in
figure 6(B). Using the dip-and-dry method the measured
intensities are consistently higher, indicating that even lower
concentrations could be detectable.

SERS was shown to have promising applications in the
field of biosensing [7], where the use of fiber optic SERS
platforms would be an organic step towards successful in vivo
measurements. In one potential application fiber optic SERS

sensors could be employed to detect a specific marker
molecule. In such a case, it is crucial for the applied sensor to
be operational in a liquid medium for a prolonged time and
also to be able to detect the potential concentration variation
of the target analyte—at least qualitatively. As a proof of
concept, a simplified experiment was carried out to model a
similar situation. To this end, a fabricated fiber optic SERS
sensor was introduced to pure water (3 ml volume), while the
Raman spectrum was continuously acquired at the distal end
of the fiber. After a few minutes, a drop of 100 μM R6G
solution (30 μl volume) was added to the water. The addition
of R6G was repeated two more times with volumes of 300 μl
of the same, 100 μM concentration. The variation of the
intensity of the SERS signal measured at 1506
cm−1

—i.e. at the most intense peak of R6G—is shown in
figure 7.

Although, the conditions here are much more ideal than
that in a real, turbid biological environment, the results shown
in figure 7 well exemplify that the fabricated SERS sensor is
able to detect the appearance of an analyte, indicated by the
sudden increase in the measured intensity (around 6 min in
figure 7). Moreover, the variation of the concentration of the
analyte can also be monitored, as evidenced by the intensity
changes correspond to the moments when more R6G was
added to the solution. It can be seen in figure 7 that after
adding R6G, the signal increases and in about 1 min the
intensity clearly exceeds the typical intra-experimental var-
iation, indicating a reasonable response time. Please also note
that the intensities shown in figure 7 agree reasonably well
with the values predicted by the concentration dependence
measurements (see figure 6), which were performed with
freshly prepared fibers at each concentration value. This
suggests that the saturation of the surface structure is not
dominant in the present concentration and time range. This
experiment provides a simple yet demonstrative example of
the potential lying in fiber optic SERS sensors fabricated via
spark ablation. Considering the nowadays readily available,
tabletop SDGs [34, 35] and the inherent advantages of the

Figure 6.Variation of the SERS intensity measured at the 1506 cm−1 line of R6G as a function of the concentration. Please note that the total
line intensity, i.e. the integral of the line profile is shown in the vertical axis (A). Variation of the SERS spectra measured in solution at
different R6G concentrations. The spectra are smoothed, baseline corrected and vertically shifted for better clarity (B).
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spark-based process, such as the facile composition-tuning of
high purity binary NPs [23, 36–38], together with the sim-
plicity of the process the fabrication technique proposed here
might be capable for the production of tailored yet inexpen-
sive disposable fiber optic SERS sensors for real-life
applications.

Conclusions

In the present study, the single-step fabrication of fiber-optic
SERS sensors was demonstrated by depositing spark ablation-
produced Ag NPs onto the tip of an optical fiber. The Ag
particles produced in a spark discharge generator were
directly deposited onto a freshly cleaved fiber tip with a
modified low-pressure inertial impactor. The SERS perfor-
mance of the as-prepared fibers were tested by measuring the
Raman spectrum of Rhodamine 6G both in solution and with
the dip-and-dry method. It has been shown that the
enhancement factor is in the order of 104, which is accom-
panied by a 15% and 5% intra-experimental intensity varia-
tion in solution and via dip-and-dry, respectively. The
fabrication method is robust enough to maintain these values
over a broad experimental range with a reproducibility better
than 20%. By simulating the electrical field enhancement over
the surface of the sensors, the significance of the thickness of
the deposited nanostructure was demonstrated. Based on the
simulation results, a practical experimental parameter—the
transmission of the SERS sensors—was used to optimize their
performance. The applicability of the produced sensors in the
monitoring of the appearance and concentration-variation of a
specific molecule in a liquid medium was demonstrated by a
model experiment. The dependence of the SERS signal on the
analyte concentration was also experimentally determined,
which indicates promising potential in calibrated

measurements. Our results prove that spark ablation is a
promising method for fabricating simple and inexpensive yet
effective and inherently tunable fiber-optic SERS probes that
can be potentially applied in any applications where the fast
detection and identification of specific molecules are targeted.
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