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Objective: To investigate the effects of dopamine on the adverse pulmonary changes after cardiopulmonary bypass.

Design: A prospective, nonrandomized clinical investigation.

Setting: A university hospital.

Participants: One hundred fifty-seven patients who underwent elective cardiac surgery that required cardiopulmonary bypass.

Interventions: Fifty-two patients were administered intravenous infusion of dopamine (3mg/kg/min) for five minutes after weaning from cardio-

pulmonary bypass; no intervention was applied in the other 105 patients.

Measurements and Main Results: Measurements were performed under general anesthesia and mechanical ventilation before cardiopulmonary

bypass, after cardiopulmonary bypass, and after the intervention. In each protocol stage, forced oscillatory lung impedance was measured to

assess airway and tissue mechanical changes. Mainstream capnography was performed to assess ventilation- and/or perfusion-matching by calcu-

lating the normalized phase-3 slopes of the time and volumetric capnograms and the physiologic deadspace. Arterial and central venous blood

samples were analyzed to characterize lung oxygenation and intrapulmonary shunt. After cardiopulmonary bypass, dopamineinduced marked

improvements in airway resistance and tissue damping, with relatively small decreases in lung tissue elastance. These changes were associated

with decreases in the normalized phase-3 slopes of the time and volumetric capnograms. The inotrope had no effect on physiologic deadspace,

intrapulmonary shunt, or lung oxygenation.

Conclusion: Dopamine reversed the complex detrimental lung mechanical changes induced by cardiopulmonary bypass and alleviated ventila-

tion heterogeneities without affecting the physiologic deadspace or intrapulmonary shunt. Therefore, dopamine has a potential benefit on the gas

exchange abnormalities after weaning from cardiopulmonary bypass.

� 2021 Elsevier Inc. All rights reserved.
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CARDIAC SURGERY with cardiopulmonary bypass (CPB)

initiates a broad spectrum of pathophysiologic changes,

including deleterious changes in the respiratory system1-3 and

compromised cardiac pump function after weaning.4,5 The lat-

ter often is treated by the administration of positive inotropic

agents,5 such as dopamine. Dopamine commonly is used in

low-to-moderate doses to increase cardiac output, and the
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dose-dependent circulatory effects of this inotrope have been

well-characterized.6,7 In addition to its cardiovascular benefit,

dopamine alters lung mechanics by diminishing bronchial

smooth muscle tone, which decreases airway resistance,2,8-15

and has an effect on respiratory tissue viscoelasticity.2,14,15

However, this improvement of respiratory mechanics by dopa-

mine did not improve, or even worsened, gas exchange. The

decreased partial pressure of arterial oxygen (PaO2) due to

dopamine was explained by the increased cardiac output caus-

ing an elevated intrapulmonary shunt fraction.16-20

The dissociated cardiopulmonary effects of dopamine may

raise concerns among clinicians who observe improved lung

mechanics but with unchanged or even somewhat worsened

gas exchange.17-20 This seemingly controversial cardiopulmo-

nary effect of dopamine was demonstrated in healthy

subjects17,19,20 and in the presence of sepsis.18 However, it

remains unknown whether this beneficial effect on airway

function or the potentially disadvantageous consequences on

ventilation/perfusion (V/Q) matching of dopamine dominate

the pathophysiologic and clinical aspects after weaning from

CPB. Therefore, the authors here aimed to clarify the effects

of dopamine on the respiratory system by comparing its poten-

tial to alter respiratory mechanics and V/Q matching in a large

cohort of patients who underwent cardiac surgery with CPB.
Methods

Ethics Approval

This single-center prospective nonrandomized clinical trial

was approved by the Human Research Ethics Committee, Uni-

versity of Szeged, Hungary (No. WHO 2788). Written

informed consent was obtained from the patients who partici-

pated in the study. The study was registered at clinicaltrials.

gov (NCT04753008). All methods were carried out in accor-

dance with the relevant guidelines and regulations, and this

report included every item in the CONSORT checklist for a

prospective nonrandomized clinical trial.
Patients

Patients who underwent elective open cardiac surgery were

examined in a prospective and consecutive manner. This study

included 157 patients (99 men and 58 women), who had an

average age of 64 years (range, 32�79 years). Based on the

clinical need to support cardiac function by a positive inotrope,

the patients were assigned to the dopamine group (DA, n = 52)

or the control group (control, n = 105). The administration of

dopamine and the allocation of these patients into the DA

group was based on a clinical decision algorithm using multi-

modal monitoring approaches. The main factors in this process

involved the patients’ history and the clinical parameters dur-

ing weaning from CPB, such as central venous pressure (>8-

10 mmHg), mean arterial pressure (<65 mmHg), central

venous oxygen saturation (<70%-75%), and contractility of

the left and right ventricles estimated visually in the open

chest, or assessed by transesophageal echography. Patients
>80 years of age and those with doctor-diagnosed chronic

respiratory diseases were excluded. Patients receiving high

doses of dopamine, dobutamine, epinephrine, milrinone, or an

intra-aortic balloon pump intraoperatively were not included

in the study population. Figure 1 shows the flow of participants

through the various stages of the trial.

Anesthesia and Surgery

One hour prior to the surgery, all patients were premedi-

cated by intramuscular morphine (0.07 mg/kg) and midazolam

(0.07 mg/kg). Anesthesia was induced using intravenous mida-

zolam (30 mg/kg), sufentanil (0.4-0.5 mg/kg), and propofol

(0.3-0.5 mg/kg) and was maintained with an intravenous infu-

sion of propofol (50 mg/kg/min). Intravenous boluses of

rocuronium (0.6 mg/kg for induction and 0.2 mg/kg every 30

minutes for maintenance) were given to provide a neuromus-

cular blockade.

Endotracheal intubation was performed using a cuffed tra-

cheal tube that had an internal diameter of 7, 8, or 9 mm,

depending on the trachea size. The patients were mechanically

ventilated with an anesthesia machine (Dr€ager Zeus, L€ubeck,
Germany) in a volume-control mode with decelerating flow.

Ventilation frequency was set to 10-to-14 breaths/min to

achieve normocapnia. A tidal volume of 7 mL/kg and a posi-

tive end-expiratory pressure of 4 cmH2O were applied. The

fraction of inspired oxygen (FIO2) was initially set to 0.5 and

was increased to 0.8 after CPB. Before CPB, the membrane

oxygenator was primed with 1,500 mL of lactated Ringer’s

solution. Heparin was administered at a dose of 300 U/kg,

with the activated coagulation time maintained >400 seconds.

Moderate hypothermia (ie, esophageal temperature of 32˚C)

routinely was induced. During CPB, mechanical ventilation

was stopped, and the ventilator was disconnected without

applying positive airway pressure. Before restoring ventilation,

the lungs were inflated three times to achieve a peak airway

pressure of 30 cmH2O and maintained at this pressure for three

seconds to facilitate lung recruitment.

Characterization of Gas Exchange

Arterial and central venous blood samples were used to

characterize the gas exchange in each protocol stage. The

partial pressures of oxygen and carbon dioxide in the arte-

rial (PaO2 and PaCO2, respectively), and venous blood

samples (PvO2 and PvCO2, respectively) were determined

(Radiometer ABLTM 505, Copenhagen, Denmark). Blood

samples were used to measure the oxygen saturation in the

arterial (SaO2) and venous blood (SvO2). The lung oxygen-

ation index was calculated as PaO2/FIO2. The intrapulmo-

nary shunt fraction (Qs/Qt) was calculated using the

Berggren equation21:

Qs=Qt ¼ CcO2 � CaO2ð Þ= CcO2 � CvO2ð Þ;
where CcO2, CaO2, and CvO2 were the oxygen contents of the

pulmonary capillary, artery, and central venous blood, respec-

tively. CcO2 was calculated according to the alveolar gas



Fig 1. CONSORT flow diagram.
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equation, with the assumption that the O2 saturation of hemo-

globin in the pulmonary capillaries was 100%:

CcO2 ¼ 1:34mL=g� Hbþ 0:0031xPAO2

where 1.34 mL/g was the H€ufner’s constant, Hb was the hemo-

globin concentration in g, 713 mmHg was the total dry gas

pressure, and 0.8 was the respiratory exchange ratio, and alve-

olar oxygen tension (PAO2) was derived from the alveolar gas

equation:

PAO2 ¼ 713mmHgxFIO2 � PaCO2=0:8
Assessment of V/Q Matching Using Time and Volumetric

Capnography

During mechanical ventilation, a calibrated mainstream cap-

nograph (Novametrix, Capnogard, Andover, MA) was intro-

duced into the ventilation circuit, and a screen

pneumotachograph (Piston Ltd., Budapest, Hungary) was used

to record central airflow. Simultaneous 15-second recordings

of the CO2 and ventilation flow were digitized (sampling fre-

quency 102.4 Hz) and analyzed using custom-made

software.1,22 Volumetric capnograms were constructed from
the CO2 and integrated flow signals. Time capnograms in the

time domain, which are routinely displayed in clinical practice,

were analyzed.

The phase-3 slopes of the time (S3T) and volumetric (S3V)

capnograms were determined by fitting a linear regression line

to the last 60% of phase 3.23-25 To take into account the abso-

lute concentration of CO2 in the expired gas, both S3T and S3V
were normalized (Sn3T and Sn3V, respectively) by dividing

each slope by the average value of the corresponding end-tidal

CO2 concentration in the mixed expired gas.26-28 In addition,

deadspace fraction was calculated from the volumetric capno-

grams. The physiologic deadspace fraction according to Bohr

(VDB), which reflects the alveolar volume with decreased

or no perfusion, was calculated from the capnograms as

follows29:

VDB=VT ¼ PACO2
� PECO2

ð Þ=PACO2
;

where PACO2 was the mean alveolar partial pressure of CO2 in

the midpoint of phase 3 in the capnograms.30,31 PECO2 was the

partial pressure of mixed expired CO2 and was obtained by

calculating the area under the volumetric capnogram curves by

integration and dividing the resulting values by VT.

The physiologic deadspace calculated by Enghoff’s

approach (VDE) provides additional information on V/Q
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mismatch. Therefore, in addition to the VDB, the intrapulmo-

nary shunt (ie, alveolar volume with decreased or absent venti-

lation but maintained perfusion) was incorporated. VDE was

calculated as follows32:

VDE=VT ¼ PaCO2
� PECO2

ð Þ=PaCO2
Measurement of Airway and Lung Tissue Mechanics by

Forced Oscillations

Dopamine-induced changes in the mechanical properties of

the airways and lung tissues were assessed by measuring the

low-frequency forced oscillatory input impedance of the lungs

(ZL), as previously detailed.1,2 Briefly, a T-piece with two col-

lapsible segments was attached to the distal tracheal tube, with

one end connected to the respirator and the other end con-

nected to a loudspeaker-in-box system. This apparatus made it

possible to switch the patient from the respirator to the forced

oscillatory setup during the measurements. The pseudorandom

pressure excitations generated by the loudspeaker were intro-

duced into the trachea during short (15 seconds) end-expira-

tory apneic pauses from mechanical ventilation. The forcing

signal comprised 15 multiple integer components that had

0.4 Hz as fundamental frequency, between 0.4 and 6 Hz. To

measure tracheal airflow, a 28-mm internal diameter screen

pneumotachograph was connected to a differential pressure

transducer (ICS model 33NA002D; ICSensors, Milpitas, CA).

An identical pressure transducer was used to detect airway

opening pressure (Pao). ZL was computed from the power

spectra of Pao and V’; the ensemble average was determined

under each condition. The mean ZL data were fitted by a well-

validated four-parameter model,33 which contained frequency-

independent airway resistance (Raw) and inertance (Iaw) and

a constant-phase tissue compartment that was characterized by

the coefficients of damping (G) and elastance (H); this way,

the difference between the measured and modeled impedance

values was minimal. Raw represented the flow resistance of

the bronchial tree, whereas Iaw was related with the mass of

the gas in the airways; these parameters, Raw and Iaw, were

corrected to the instrumental resistance and inertance of the

measurement apparatuses, including the endotracheal

tube.1,2,34 The tissue parameters characterized the resistive (G)

and elastic properties of the lung parenchyma (H).
Measurement Protocol

Upon stabilization of the hemodynamic and respiratory

mechanical conditions after midline sternotomy, measure-

ments were performed five minutes before starting CPB (pre-

CPB). The measurements included recordings of four capno-

gram traces, analyses of arterial and central venous blood gas

samples, registration of the total resistance (R) and dynamic

respiratory compliance displayed by the ventilator (C) and col-

lection of four ZL data epochs. The measurements took

approximately three minutes at each time point. The same set

of data was collected five minutes after weaning from CPB,
when stable circulatory and ventilator conditions were reestab-

lished (post-CPB). Subsequently, patients in group DA

received an intravenous infusion of dopamine, 3 mg/kg/min.

Five minutes after initiating the dopamine infusion, the third

data collection step was taken in the same manner as detailed

earlier (ie, intervention: INT). The same timing and data col-

lection procedures were followed for patients in whom the

administration of any inotrope or other vasoactive or bron-

choactive drugs was not needed (control group).

Statistical Analyses

Scatters in measured variables were expressed as a 95%

confidence interval of the mean. Normality of the data was

checked with the Kolgomorov-Smirnov test with Lilliefors

correction. Two-way repeated measures analysis of variance,

with the inclusion of an interaction term, was used for all of

the measured variables. To establish the effects of CPB and

the subsequent administration of dopamine, the protocol stage

was the within-subject factor (before CPB, after CPB, and after

intervention), and group allocation was the between-subject

factor (DA or control group). The Holm�Sidak multiple com-

parison procedure was adopted to compare the variables

between the study groups at different protocol stages. Differ-

ences in the demographic, anthropometric, and clinical charac-

teristics were assessed using a chi-square test. Sample sizes

were estimated to enable detection of a clinically relevant 25%

difference in the primary outcome parameter of Raw after

CPB. Accordingly, the analysis of variance test indicated that

at least 45 patients in each group were required to detect a sta-

tistically significant difference, with an assumed variability of

10%, a power of 80%, and a significance level of 5%. The sta-

tistical tests were performed using SigmaPlot software pack-

age (Version 14, Systat Software, Inc., Chicago, IL). All

reported p values were two-sided.

Results

Sex, age, height, body weight, and the parameters related

with the surgery types did not significantly differ between the

protocol groups (Table 1).

Figure 2 demonstrates the airway and lung tissue mechani-

cal parameters at the different protocol stages in both study

groups. CPBinduced marked and significant changes in Raw

and G and smaller but significant changes in H, R, and C, with

no difference between the protocol groups in the magnitude of

CPB-induced changes (p < 0.001 for all). Patients in the con-

trol group exhibited no significant changes in any of the mea-

sured parameters after CPB. Conversely, patients in the DA

group had significantly decreased Raw, G, and H (p < 0.001

for all) but no significant changes in the R and C on the venti-

lator display.

The normalized shape factors and deadspace parameters

obtained by time and volumetric capnography are summarized

in Figure 3. The elevations in Sn3T and Sn3V after CPB were

associated with decreases in VDB in both groups (p < 0.001

for both), whereas VDE was elevated only in group DA (p <



Table 1

Demographic, Anthropometric, and Clinical Characteristics of the Patients

Group Group CTRL

(n = 105)

Group DA

(n = 52)

Male/female 67/38 32/20

Age, y 63 § 11 65 § 12

Height, cm 167 § 9 168 § 9

Weight, kg 79 § 12 82 § 11

Left ventricular EF 58.2 § 10.8 54.0 § 11.7

Left atrial dimensions, mm 49§ 8£ 50§ 8£ 60

§ 7

53 § 12 £ 52 § 8

£ 61 § 9

EuroSCORE 4.2 § 2.0 5.7 § 2.1*

Postoperative inotropic

medication

Patients, %

dose,mg/kg/min

43.9

3.7 § 2.2

80.9*

5.7 § 6.2*

Postoperative vasoconstrictor

use

% of patients

3.2 11.1*

Surgery AVR/AVP 38 17

Surgery AVR + CABG 33 17

Surgery MVR/MVP 17 7

Surgery MVP + CABG 8 7

Other surgery 9 4

Redo surgery, % of patients 3.2 2.2

Duration of CPB, min 101 § 31 90 § 27*

Intraoperative blood loss, ml 1050§ 575 1065 § 536

Postoperative blood loss, ml 651 § 830 511 § 472

Anthropometric data are presented as mean § 95% confidence interval. Other

surgery included left atrial myxoma removal, atrial septal defect closure, and

ascending aorta aneurysm repair.

Abbreviations: AVP, aortic valve plasty; AVR, aortic valve replacement;

CABG, coronary artery bypass grafting; CPB, cardiopulmonary bypass; EF,

ejection fraction; MVP, mitral valve plasty; MVR, mitral valve replacement.

* p < 0.05 between groups.
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0.005). The DA group had significantly decreased Sn3T, Sn3V,

and VDE (p < 0.01 for all) but no detectable change in VDB.

In the control group, the corresponding changes in any of those

parameters did not reach statistical significance in the interven-

tion period (post-CPB versus INT).

The changes in the parameters associated with oxygenation

and intrapulmonary shunt are demonstrated in Figure 4. In

both groups, CPB significantly decreased the PaO2/FIO2,

increased the Qs/Qt, and decreased the SvO2 and

PvCO2�PaCO2 (p < 0.001 for all). In the DA group, there

were no significant detectable changes in PaO2/FIO2 and Qs/

Qt, but there was a significant increase in SvO2 and a signifi-

cant decrease in PvCO2�PaCO2 (p < 0.001 for both).

Discussion

In this large cohort of patients who underwent cardiac sur-

gery with CPB, the study authors observed that the ability of

dopamine to improve airway and lung tissue mechanics was

associated with its benefit on V/Q matching. The importance

of the study stemmed from the fact that previous studies

reported that the beneficial effects of dopamine on airway

function may be associated with its potentially deleterious con-

sequences on V/Q matching. Forced oscillatory measurements
demonstrated the ability of dopamine to reverse the detrimen-

tal lung function changes that were induced by extracorporeal

circulation. In addition, capnography and blood gas measure-

ments revealed that these mechanical changes were associated

with improvements in V/Q matching and deadspace ventila-

tion without any detrimental consequences on lung oxygen-

ation or intrapulmonary shunt.

Effects of CPB

The systemic inflammatory response after CPB leads to

pathophysiologic changes, which range from mild organ dys-

function to multisystem organ failure, with the lungs being

one of the most commonly affected organs.35,36 Accordingly,

prominent bronchoconstriction after CPB was observed. This

airway pathology was associated with moderate but significant

deteriorations in the viscoelastic properties of the lung tissue

(Fig 2), which can be attributed to intrinsic alteration in the

lung tissue properties and/or atelectasis development. The

forced oscillatory airway and tissue changes were more sensi-

tive, compared with the observations in the resistance and

compliance displayed by the ventilator. This apparent discrep-

ancy can be explained by the inclusion of instrumental resis-

tance in R, which blunted the CPB-induced changes in the

airway resistance.34 Although the current results on the effects

of CPB on lung mechanics were in accordance with those

reported previously,1-3 the underlying pathophysiologic mech-

anisms have not been fully clarified. Airway narrowing due to

mucosal thickening, along with the endogenous release of

mediators and/or inflammatory cytokines that can cause bron-

choconstriction, may be implicated as the mechanism.35-37

Deterioration in lung tissue viscoelasticity after CPB can be a

consequence of intrinsic changes in the dissipation and elastic

properties of the pulmonary parenchyma secondary to intersti-

tial edema formation,38 in addition to persistent alveolar dere-

cruitment; these lead to heterogeneous loss of ventilated lung

volume.39

The association of the adverse lung mechanical changes

after weaning from CPB with increased normalized phase-3

slopes on the time and volumetric capnograms indicated

impairment of alveolar emptying and/or V/Q matching (Fig 3).

Notably, the Sn3T value tended to be greater in group DA than

in the control group; this result can be attributed to the pres-

ence of more severe cardiovascular defects in the former. This

trend corresponded with the need for cardiovascular support

therapy in patients who were assigned to group DA, thereby

implying that the need for dopamine was determined by the

clinical outcomes related to cardiac function. Interestingly,

slight but opposite changes were observed in the deadspace

parameters VDB and VDE after weaning from CPB. Because

VDB reflects ventilated alveoli with absent or insufficient per-

fusion, minor decreases in this parameter may be attributed to

increased bronchial tone and hypocapnia-induced local bron-

choconstriction.22 Conversely, the CPB-induced increase in

VDE reflects expansion of ventilated but poorly perfused or

nonperfused alveolar compartments, which may be a conse-

quence of persistent atelectasis after weaning from CPB.39



Fig 2. Mean (symbols) with 95% confidence interval (error bars) of the forced oscillatory airway resistance (Raw) and lung tissue damping (G) and elastance (H)

in patients treated with 3 mg/kg/min of dopamine (DA group, n = 52) and in patients who did not receive the inotrope (control group, n = 105); *p < 0.05 vs. pre-

CPB condition within a group. $p < 0.05 vs. post-CPB condition within a group; # p < 0.05 between the protocol groups within a stage. CPB, cardiopulmonary

bypass; INT, intervention.
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Moreover, the authors’ findings indicated that deteriorated

airway and tissue mechanics, V/Q mismatch, and high VDE

after CPB led to impaired oxygenation ability of the lungs and

intrapulmonary shunting, which was determined by the Bergg-

ren equation (Fig 4). The diminished arterial oxygen content

secondary to hemodilutional anemia and the declined cardiac

output may be responsible for the decrease in SvO2 after

CPB,40 which was distinctly observed in patients who required

inotrope therapy.

Effects of Dopamine

The compromised airway and tissue mechanics induced by

CPB improved markedly by the intravenous infusion of dopa-

mine (Fig 2). This finding was in accordance with the previ-

ously demonstrated benefit of dopamine in relaxing the

cholinergic8,14,15 or histaminic9,14 elevations in bronchial

smooth muscle tone and its potential to improve airway
function in patients with chronic obstructive lung

disease.2,10,11 The dopamine-induced drops in the viscoelastic

parameters (ie, G and H) of the lung tissue may be attributed

to the improvement of the intrinsic properties of the lung

parenchyma through reduction of the interstitial alveolar

edema after CPB.41 However, this mechanism was unlikely to

play a major role in the five-minute window. It seemed more

probable that dopamine enabled the recruitment of some ate-

lectatic alveolar compartments after CPB via indirect mecha-

nisms related to the marked bronchodilation that facilitates

aeration of the lung periphery, thereby reducing overall lung

tissue stiffness and dissipation.1,2 The more pronounced drops

in G than in H can be explained by the decreased heteroge-

neous constriction of the peripheral airways.1,14 These changes

in the forced oscillatory mechanical parameters likewise were

manifested in the R and C values displayed by the ventilator,

although in a blunted manner; this may be secondary to the

biasing effects of the instrumental resistance34 and the



Fig 3. Mean (symbols) with 95% confidence interval (error bars) of the normal-

ized phase-3 slope of time (Sn3T) and volumetric capnograms (Sn3V) and the venti-

lation deadspace fractions according to Bohr (VDB) and Enghoff (VDE) in patients

treated with 3mg/kg/min of dopamine (DA group, n = 52) and in patients who did

not receive the inotrope (control group, n = 105). Error bars represent standard devi-

ations; *p< 0.05 vs. pre-CPB condition within a group.

$ p< 0.05 vs. post-CPB condition within a group; # p< 0.05 between the pro-

tocol groups within a stage. CPB, cardiopulmonary bypass; INT, intervention.

Fig 4. Mean (symbols) with 95% confidence interval (error bars) of the lung oxy-

genation index (PaO2/FIO2), intrapulmonary shunt (Qs/Qt), venous oxygen satura-

tion (SvO2), and venoarterial carbon dioxide difference (PvCO2-PaCO2) in patients

treated with 3mg/kg/min of dopamine (DA group, n = 52) and in patients who did

not receive the inotrope (control group, n = 105). Error bars represent standard devi-

ations; *p< 0.05 vs. pre-CPB condition within a group.

$ p< 0.05 vs. post-CPB condition within a group; # p< 0.05 between the pro-

tocol groups within a stage. CPB, cardiopulmonary bypass; INT, intervention.
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relatively low sensitivity of C to lung mechanical changes, due

to the increased lung volume at end-inspiration when this

parameter is measured.1

The ability of dopamine to homogenize lung ventilation and

improve V/Q matching was further evidenced by the diminished

phase-3 slopes of the time and volumetric capnograms (Fig 3).

The absence of dopamine effect on the VDB implied that the rela-

tive volume of alveolar compartments with high V/Q ratio was

not affected by dopamine. This finding indicated that in these

lung zones, enhanced lung ventilation, as demonstrated by the

improved pulmonary mechanics, was associated with parallel

increases in lung perfusion because of the positive inotropic effect

of dopamine. Interestingly, dopamine decreased VDE, suggesting

that V/Q mismatch may be detected when alveolar regions with

low V/Q ratio (intrapulmonary shunting) are taken into account.

This apparent controversy can be explained by the dopamine-

induced increase in cardiac output, which facilitated elimination

of CO2 during this short phase of the study while its production

was maintained.

One of the most prominent findings of the present study was

preservation of the PaO2/FIO2 and Qs/Qt during dopamine admin-

istration after weaning from CPB. The maintained gas exchange

ability of the lungs was in accordance with the constant physio-

logic deadspace and intrapulmonary shunt. These seemingly
contradicting findings between the two parameters that reflect

intrapulmonary shunt (ie, VDE and Qs/Qt) can be explained by

the better diffusion coefficient of CO2 than of O2. The absence of

changes in these gas exchange parameters is of particular interest

in the context of marked improvements in lung mechanics. Taken

together, these data confirmed that dopamine had a bronchial

effect, which was mainly on the central conducting airways, as

demonstrated previously in an experimental model of broncho-

constriction.14 Previous findings demonstrated a lack of benefit or

even worsened lung oxygenation index and intrapulmonary shunt

after dopamine administration in healthy patients17,19,20 and in

those with sepsis.18 These results from earlier reports may raise

concerns about the gas exchange benefit of dopamine, particularly

in patients with lung disorders. In the present study, the authors

found that the increase in cardiac output (Qt) caused by dopamine

led to proportional elevations in shunted intrapulmonary blood

flow (Qs); this may explain the absence of change in the Qs/Qt.

Accordingly, dopamine had no effect on the V/Q mismatch after

CPB, despite the increased absolute value of the shunt fraction.

Study Limitations

Some limitations and technical aspects of this study warrant

discussion. Because the administration of dopamine was based
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on the clinical need to support the cardiovascular system, ran-

domization of the patients into groups was not possible. How-

ever, this study design did not cause bias in most of the

measured outcomes before the intervention period, with differ-

ences observed only in the Sn3T and VDB, in agreement with

the clinical symptoms. This fact confirmed the validity of the

comparisons between the study groups for the assessment of

outcomes on lung mechanics, ventilation, and gas exchange. A

further technical aspect of the study was the lack of systematic

invasive measurement of the cardiac output. Nevertheless, the

decreased venoarterial CO2 content difference and the elevated

SvO2 provided evidence for the increased cardiac output and

improved cardiac function after dopamine infusion.42 Because

the measurement techniques applied in the present study

required general anesthesia and mechanical ventilation, study-

ing the intraoperative changes was the focus. Further studies

are required to identify the long-term beneficial effects of

dopamine after surgery.

Summary and Conclusions

In conclusion, the present study demonstrated the ability of

dopamine to alleviate compromised airway function and venti-

lation heterogeneities that were triggered by CPB. Although

these favorable effects of dopamine on lung mechanics were

not reflected in the physiologic deadspace ventilation or intra-

pulmonary shunt, there was no evidence of any disadvantage

on the gas exchange abnormalities after weaning from CPB.

Therefore, this inotrope can be safely recommended in the

post-CPB period to improve cardiac function and to mitigate

the compromised lung function, without the risk for disadvan-

tageous consequences on V/Q matching. Moreover, the find-

ings here implied the need for recruitment maneuvers to

increase alveolar ventilation, along with the increased cardiac

output, in order to allow gas exchange to improve with the

lung mechanical changes after weaning from CPB.
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