
Article

Stress Testing MQTT Brokers: A Comparative Analysis of
Performance Measurements

Biswajeeban Mishra 1,†,‡, *, Biswaranjan Mishra 2,‡, and Attila Kertesz 1,†,‡

Citation: Mishra, B.; Mishra, B.;

Kertesz, A. Title. Energies 2021, 1, 0.

https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright: © 2021 by the authors.

Submitted to Energies for possible

open access publication under the

terms and conditions of the Cre-

ative Commons Attribution (CC

BY) license (https://creativecom-

mons.org/licenses/by/ 4.0/).

1 University of Szeged, Hungary - 6720; mishra@inf.u-szeged.hu, keratt@inf.u-szeged.hu
2 #34b, 5a cross, NRI Layout, Bengaluru, India - 560043; biswaranjan.mishra@live.com
* Correspondence: mishra@inf.u-szeged.hu
† Current address: Department of Software Engineering, University of Szeged, Szeged, Hungary - 6720
‡ These authors contributed equally to this work.

Abstract: Nowadays, Internet of Things (IoT) protocols are at the heart of Machine-to-Machine1

(M2M) communication. Irrespective of the radio technologies used for deploying an IoT/M2M2

network, all independent data generated by IoT devices (sensors and actuators) rely heavily on3

the special messaging protocols used for M2M communication in IoT applications. As the demand4

for IoT services is growing, the need for reduced power consumption of IoT devices and services5

is also growing to ensure a sustainable environment for future generations. The Message Queuing6

Telemetry Transport or in short MQTT is a widely used IoT protocol. It is a low resource consuming7

messaging solution based on the publish-subscribe type communication model. This paper aims8

to assess the performance of several MQTT Broker implementations (also called as MQTT Servers)9

using stress testing, and to analyze their relationship with system design. The evaluation of the10

brokers is performed by a realistic test scenario, and the analysis of the test results is done with11

three different metrics: CPU usage, latency, and message rate. As the main contribution of this12

work, we analyzed six MQTT brokers (Mosquitto, Active-MQ, Hivemq, Bevywise, VerneMQ,13

and EMQ X) in detail, and classified them using their main properties. Our results showed that14

Mosquitto outperforms the other considered solutions in most metrics, however, ActiveMQ is15

the best performing one in terms of scalability due to its multi-threaded implementation, while16

Bevywise has promising results for resource-constrained scenarios.17

Keywords: Internet of Things; Messaging Protocol; MQTT; MQTT Brokers; Performance Evalua-18

tion; Stress testing19

1. Introduction20

In recent times, as the cost of sensors and actuators is continuing to fall, the number21

of Internet of Things (IoT) devices is rapidly growing and becoming parts of our lives.22

As a result, the IoT footprint is significantly noticeable everywhere. It is hard to find any23

industry that does not get revolutionized with the advent of this promising technology.24

A recent report [1] states that there would be around 125 billion IoT devices connected25

to the Internet by 2030. IoT networks use several radio technologies such as WLAN,26

WPAN, etc. for communication at a lower layer. Regardless of the radio technology used,27

to create an M2M network, the end device or machine (IoT device) must make their data28

accessible through the Internet [2,3]. IoT devices are usually resource-constrained. It29

means that they operate with limited computation, memory, storage, energy storage30

(battery), and networking capabilities [4], [6]. Hence, the efficiency of M2M communica-31

tions largely depends on the underlying special messaging protocols designed for M2M32

communication in IoT applications. MQTT (Message Queuing Telemetry Transport)33

[5], CoAP (Constrained Application Protocol), AMQP (Advanced Message Queuing34

Protocol), and HTTP (Hypertext Transfer Protocol) are the few to name in the M2M35

Communication Protocol segment [4,6]. Among these IoT Protocols, MQTT is a free,36

Version September 8, 2021 submitted to Energies https://www.mdpi.com/journal/energies

https://www.mdpi.com
https://orcid.org/0000-0003-2624-1905
https://orcid.org/0000-0003-0833-5748
https://orcid.org/0000-0002-9457-2928
https://doi.org/10.3390/en1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies

Version September 8, 2021 submitted to Energies 2 of 18

simple to deploy, lightweight, and energy-efficient application layer protocol. These37

properties make MQTT an ideal communication solution for IoT systems [8–10]. As38

Green Computing primarily focuses on implementing energy-saving technologies that39

help reduce the greenhouse impact on the environment [11], ideal design and imple-40

mentation of MQTT based solutions can be immensely helpful in realizing the goals of a41

sustainable future. MQTT is a topic-based publish/subscribe type protocol that runs on42

TCP/IP using ports 1883 and 8883 for non-encrypted and encrypted communication,43

respectively. There are two types of network entities in the MQTT protocol: a message44

broker, also called as the server, and the client, which actually play publisher and sub-45

scriber roles). A publisher sends messages with a topic head to a server, then it delivers46

the messages to the subscribers listening that topic [8]. Currently, we have many MQTT47

based broker (server) distributions available in the market from various vendors.48

Our main goal in this research is to answer the following question: How does a49

scalable or a non-scalable broker implementation perform in a single-core and multi-core CPU50

test-bed, when it is put under stress-conditions? The main contribution of this work is51

analyzing and comparing the performance of considered scalable and non-scalable52

brokers based on the following metrics: maximum message rate, average process CPU53

Usage in percentage at maximum message rate, normalized message rate at 100% CPU54

usage, and average latency. This work is a revised and significantly extended version55

of the short paper [12]. It highlights the relationship of a MQTT broker system design56

and its performance under stress-testing. The MQTT protocol has many application57

areas such as healthcare, logistics, smart city services etc [13]. Each application area has58

a different set of MQTT-based requirements. In this experiment, we are not evaluating59

MQTT brokers against those specific set of requirements rather we are conducting a60

system test of MQTT servers to analyze their message handling capability, the robustness61

of implementation, and efficient resource utilization potential. To achieve this, we send62

a high volume of short messages (low payload) with a limited set of publishers and63

subscribers.64

The remainder of this paper is organized as follows. Section 2 introduces back-65

ground of this study. Section 3 summarizes some notable related works. Section 466

describes the test environment, evaluation parameters and test results in detail. In67

Section 5, we discuss the evaluation results, and finally, with Section 6 we conclude the68

paper.69

2. Background70

2.1. Basics of a publish/subscribe Messaging Service71

These are the terms we often come across while working with a publish/subscribe72

or Pub/Sub System. "Message" refers to the data that flows through the system. "Topic"73

is an object that presents a message stream. "Publisher" creates messages and sends them74

to the messaging service on a particular Topic head. The act of sending messages to the75

messaging service is called "Publishing". A publisher is also referred to as a Producer.76

"Subscriber", otherwise known as "Consumer", receives the messages on a specific sub-77

scription. "Subscription" refers to an interest in receiving messages on a particular topic.78

In a Pub/Sub system, producers of the event-driven data are usually decoupled from79

the consumers of the data [14,15]: meaning publishers and subscribers are independent80

components that share information by publishing event-driven messages and by sub-81

scribing to event-driven messages of choice [14]. The central component of this system82

is called an event broker. It keeps a record of all the subscriptions. A publisher usually83

sends a message to the Event broker on a specific topic head and then the event broker84

sends it to all the subscribers that previously subscribed to that topic. The event broker85

basically acts as a postmaster to match, notify, and deliver events to the corresponding86

subscribers. Fig. 1 describes the overall architecture of a Pub/Sub system [16].87

Version September 8, 2021 submitted to Energies 3 of 18

Figure 1. Overall architecture of a Pub/Sub system

2.2. Overview of MQTT Architecture88

MQTT is a simple, lightweight, TCP/IP based Pub/Sub type messaging protocol89

[11]. MQTT supports one-to-many, two-way, asynchronous communication [7]. Having90

a binary header makes MQTT a lightweight protocol to carry telemetry data transmission91

between constraint devices [17,18] over unreliable networks [19]. It has three constituent92

components:93

• A Publisher or Producer (An MQTT client).94

• A Broker (An MQTT server).95

• A Consumer or Subscriber (An MQTT client).96

In MQTT, a client that is responsible for opening a network connection, creating97

and sending messages to the server is called a publisher. The subscriber is a client that98

subscribes to a topic of interest in advance in order to receive messages. It can also99

unsubscribe from a topic in order to delete a request for application messages and close100

network connection to the server [20] as needed. The server is otherwise known as a101

broker acts as a post office between the publisher and the subscriber. It receives messages102

from the publishers and forwards them to all the subscribers. Fig. 2 presents a basic103

model of MQTT [21].104

Figure 2. MQTT Components: Publisher, MQTT Broker, and Subscriber.

Any application message carried by the MQTT protocol across the network to105

its destination contains a quality of service (QoS), payload data, a topic name [22],106

and a collection of properties. An application message can carry a payload up to107

the maximum size of 256 MB [3]. A topic is usually a label attached to all messages.108

Topic names are UTF-8 encoded strings and can be freely chosen [22]. Topic names109

can represent a multilevel hierarchy of information using a forward slash (/). For ex-110

ample, this topic name can represent a humidity sensor in the kitchen room: "home/111

sensor/humidity/kitchen". We can have other topic names for other sensors that are112

Version September 8, 2021 submitted to Energies 4 of 18

present in other rooms: "home/sensor/temperature/livingroom", and "home/ sen-113

sor/temperature/kitchen" etc. Fig. 3 shows an example of a topic tree.114

Figure 3. Topic tree hierarchy.

MQTT offers three types of QoS (Quality of Service) levels to send messages to an115

MQTT Broker or a client. It ranges from 0 to 2, see Fig. 4. By using QoS level 0: the116

sender does not store the message, and the received does not acknowledge its receiving.117

This method requires only one message and once the message is sent to the broker by118

the client it gets deleted from the message queue. Therefore QoS 0 nullifies the chances119

of duplicate messages, that is why it is also called as the "fire and forget" method. It120

provides a minimal and most unreliable message transmission level that offers the fastest121

delivery effort. Using QoS 1, the delivery of a message is guaranteed (at least once, but122

the message may be sent more than once , if necessary). This method needs two messages.123

Here, the sender sends a message and waits to receive an acknowledgment (PUBACK124

message) to receive. If it receives an acknowledgment from the client then it deletes125

the message from the outward-bound queue. In case, it does not receive a PUBACK126

message, it resends the message with the duplicate flag (DUP flag) enabled. The QoS 2127

level setting guarantees exactly-once delivery of a message. This is the slowest of all the128

levels and needs four messages. In this level, the sender sends a message and waits for129

an acknowledgment (PUBREC message). The receiver also sends a PUBREC message. If130

the sender of the message fails to receive an acknowledgment (PUBREC), it sends the131

message again with the DUP flag enabled. Upon receiving the acknowledgment message132

PUBREC, the sender transmits the message release message (PUBREL). If the receiver133

does not get the PUBREL message it resends the PUBREC message. Once the receiver134

receives the PUBREL message, It forwards the message to all the subscribing clients.135

Thereafter the receiver sends a publish complete (PUBCOMP) message. In case the136

sender does not get the PUBCOMP message, it resends the PUBREL message. Once the137

sending client receives the PUBCOMP message, the transmission process gets marked138

as completed and the message can be deleted from the outbound queue [13].139

2.3. Scalability and types of MQTT Broker Implementations140

System scalability can be defined as the ability to expand to meet increasing work-141

load [23]. Scalability enhancement of any message broker depends on two prime factors;142

the first one is to enhance a single system performance, while the second one is to143

use clustering. In case of an MQTT message broker deployment, the performance of144

an MQTT broker using a single system can be improved by using event-driven I/O145

mechanism for the CPU cores during dispatching TCP connections from MQTT clients146

[22]. The other way of achieving better scalability is clustering, when an MQTT broker147

cluster is used in a distributed fashion. In this case it seems to be a single logical broker148

for the user, but in reality, multiple physical MQTT brokers share the same workload149

[24].150

Version September 8, 2021 submitted to Energies 5 of 18

Figure 4. Different QoS levels.

There are two types of message broker implementations: single or fixed number of151

threads non-scalable broker implementations and multi-thread or multi-process scalable152

broker implementations that can efficiently utilize all available resources in a system [16].153

For example, Mosquitto and Bevywise MQTT Route are non-scalable broker implementa-154

tions that cannot utilize all system resources, and broker implementations like ActiveMQ,155

HiveMQ, VerneMQ, and EMQ X are scalable [24]. It is be noted that Mosquitto provides156

a "bridge mode" that can be used to form a cluster of message brokers. In this mode,157

multiple cores get utilized according to the number of Mosquitto processes running158

Version September 8, 2021 submitted to Energies 6 of 18

in the cluster. However, the drawback of this mode is the communication overhead159

between the processes inside the cluster results in the poorer overall performance of the160

system [16].161

2.4. Evaluating the Performance of a Messaging Service162

Google in its "Cloud Pub/Sub" product guide [14] nicely narrates the parameters163

to judge the performance of any publish/subscribe type messaging service. The per-164

formance of a publish/subscribe type messaging services can be measured in three165

factors "latency", "scalability", and "availability". However, these three aspects frequently166

contradict each other and involve compromises on one to boost the other two. The fol-167

lowing paragraphs put some light on these terms in a pub/sub type messaging service168

prospective.169

2.4.1. Latency170

Latency is a time-based metric for evaluating the performance of a system. A good171

messaging service has to optimize and reduce latency, wherever it is possible. The172

latency metric can be defined for a publish/subscribe service in the following: it denotes173

the time the service takes to acknowledge a sent message, or the time the service takes to174

send a published message to its subscriber. Latency can also be defined as the time taken175

by a messaging service to send a message from the publisher to the subscriber [14].176

2.4.2. Scalability177

Scalability usually refers to the ability to scale up with the increase in load. A robust178

scalable service can handle the increased load without an observable change in latency179

or availability. One can define load in a publish/subscribe type service by referring to180

the number of topics, publishers, subscribers, subscriptions or messages, as well as to181

the size of messages or the payload, and to the rate of sent messages, called throughput182

[14].183

2.4.3. Availability184

Systems can fail. It has many reasons. It may occur due to a human error while185

building or deploying software or configurations or it may be caused due to hardware186

failures such as disk drives malfunctioning or network connectivity issues. Sometimes a187

sudden increase in load results in resource shortage and thus causes a system failure.188

When we say "sound availability of a system" - it usually refers to the ability of the189

system to handle a different type of failure in such a manner that is unobservable at the190

customer’s end [14].191

3. Related Work192

There have been numerous works around the performance evaluation of various193

IoT communication protocols. In this section, we briefly summarize some of the no-194

table works published in recent years. Table 1 presents a comparison of related works195

according to their main contributions.196

In 2014, Thangavel, Dinesh, et al. [25], conducted multiple experiments using a197

common middleware, to test MQTT and CoAP protocols, bandwidth consumption and198

end-to-end delay. Their results showed that using CoAP messages showed higher delay199

and packet loss rates than using MQTT messages.200

Chen, Y., and Kunz, T., in 2016 [26], evaluated in a medical test environment MQTT,201

CoAP, and DDS (Data Distribution Service) performance, compared to a custom, UDP-202

based protocol. They used a network emulator, and their findings showed that DDS203

consumes higher bandwidth than MQTT, but it performs significantly better for data204

latency and reliability. DDS and MQTT, being TCP-based protocols, produced zero205

packet loss under degraded network conditions. The custom UDP and UDP-based206

CoAP showed significant data loss under similar test conditions.207

Version September 8, 2021 submitted to Energies 7 of 18

Mishra, B., in 2019 [20], investigated the performance of several public and locally208

deployed MQTT brokers, in terms of subscription throughput. The performance of209

MQTT brokers was analyzed under normal and stressed conditions. The test results210

showed that there is an insignificant difference between the performance of several211

MQTT brokers in normal deployment cases, but the performance of various MQTT212

brokers significantly varied from each other under the stressed conditions.213

Pham, M. L., Nguyen, et al., in 2019 [27], introduced an MQTT benchmarking tool214

named MQTTBrokerBench. The tool is useful to analyze the performance of MQTT215

brokers by manually specifying load saturation points for the brokers.216

Bertrand-Martinez, Eddas, et al [28], in 2020, proposed a method for the classi-217

fication and evaluation of IoT brokers. They performed qualitative evaluation using218

the ISO/IEC 25000 (SQuaRE) set of standards and the Jain’s process for performance219

evaluation. The authors have validated the feasibility of their methodological approach220

with a case study on 12 different open source brokers.221

Koziolek H, Grüner S, et al. [29], in 2020 compared three distributed MQTT brokers222

in terms of scalability, performance, extensibility, resilience, usability, and security. In223

their edge gateway, the cluster-based test scenario showed that EMQX had the best224

performance, while HiveMQ showed no message loss, while VerneMQ managed to225

deliver up to 10K msg/s, respectively. The authors also proposed six decision points to226

be taken into account by software architects for deploying MQTT brokers.227

Referring back to this work of ours, we compare both scalable and non-scalable228

MQTT brokers and analyze the performance of six MQTT brokers in terms of message229

processing rate at 100% process/system CPU utilization, normalized message rate at230

unrestricted resource (CPU) usage, and average latency. We also analyze how each231

broker performs in a single-core and multi-core processor environment. For a better232

analysis of the performances of MQTT brokers, we conducted this experiment in a233

low-end local testing environment as well as in a comparatively high-end cloud-based234

testing environment. This experiment deals with an important problem of the relation235

of MQTT broker system design and its performance under stress testing. Although236

It is a well-known fact that modular systems better perform on scalable and elastic237

requirements but we lack experiment-based information about that relationship. So,238

results obtained in this study would be immensely helpful to developers of real-time239

systems and services.240

4. Local and Cloud Test Environment Settings and Benchmarking Results241

This section presents the setup of our realistic testbed in detail. To conduct stress242

tests on various MQTT Brokers, we have built two emulated IoT environments:243

• one is a local testing environment, and244

• the other one is a cloud-based testing environment.245

The local testbed was created using an Intel NUC (NUC7i5BNB), a Toshiba Satellite246

B40-A laptop PC, and an Ideapad 330-15ARR laptop PC. To diminish network bottle-247

neck issues, the devices were connected through a Gigabit Ethernet switch. The Intel248

NUC7i5BNB was configured as a server running an MQTT Broker, the Ideapad 330-249

15ARR laptop was used as a publisher machine, and the Toshiba, Satellite B40-A was250

used as a subscriber machine. The Ideapad 330-15ARR (publisher machine), with 8251

hardware threads, is capable enough of firing messages at higher rates. Table 2 presents252

a summary of the specifications of the hardware and software used to build our local253

evaluation environment.254

The cloud testbed was configured on Google Cloud Platform (GCP) [30]. We created255

three c2-standard-8 virtual machine (VM) instances that are having 8 vCPUs, 32 GB of256

memory, and 30 GB local SSD each to act as publisher, subscriber, and server respectively.257

All the VM instances are placed within a Virtual Private Cloud (VPC) Network subnet258

using Google’s high-performing premium tier network service [31]. Table 3 presents a259

summary of the specifications of our cloud test environment [32].260

Version September 8, 2021 submitted to Energies 8 of 18

Table 1: Comparison of related works according to their main contributions.

Paper Publication Year Aim

Thangavel, Dinesh, et al. [25] 2014 testing performance of MQTT and CoAP protocols
in terms of end-to-end delay and bandwidth consumption

Chen, Y., & Kunz, T. [26] 2016 evaluating performance of MQTT, CoAP, DDS and a
custom UDP-based protocol in a medical test environment

Mishra, B. [20] 2018 comparing performance of MQTT brokers under basic
domestic use condition

Pham, M. L., Nguyen, et al. [27] 2019 introduced an MQTT benchmarking tool named
MQTTBrokerBench.

Bertrand-Martinez, Eddas, et al. [28] 2020 proposed a methodology for the classification
and evaluation of IoT brokers.

Koziolek H, Grüner S, et al. [29] 2020 compared performance of three distributed MQTT brokers

Our work 2020
comparing and analyzing performance of
MQTT brokers by them under stress test, both scalable and
non-scalable brokers taken into consideration

In this experiment we used a higher message publishing rate with multiple pub-261

lishers, and the overall CPU usage we experienced stayed below 70% on the publisher262

machine. On the other hand, we also noticed that CPU usage on the subscriber side did263

not exceed 80%. We experienced no swap usage at the subscriber, broker or publisher264

machines during the evaluation.265

For this experiment, we have developed a Paho Python MQTT library [33] based266

benchmarking tool called MQTT Blaster [34] from scratch to send messages at very high267

rates to the MQTT server from the publisher machine. The subscriber machine used the268

"mosquitto_sub" command line subscribers, which is an MQTT client for subscribing269

to topics and printing the received messages. During this empirical evaluation, the270

"mosquitto_sub" output was redirected to the null device (/dev/null). In this way we271

could ensure that resources are not consumed to write messages, and each subscriber272

was configured to subscribe to the available published topics. In this way we made the273

server reaching its threshold at reasonable message publishing rates. Fig. 5 presents the274

evaluation environment topology.275

Figure 5. The evaluation environment topology.

4.1. Evaluation Scenario276

This experiment was conducted on four widely used scalable and two non-scalable277

MQTT broker implementations. The other criteria for the selection of brokers were278

ease of availability and configurability. The tested brokers are: "Mosquitto 1.4.15" [35],279

"Bevywise MQTT Route 2.0" [36], "ActiveMQ 5.15.8" [37], "HiveMQ CE 2020.2" [38],280

"VerneMQ 1.10.2" [39] and "EMQ X 4.0.8" [40]. Out of these MQTT brokers, Mosquitto281

and Bevywise MQTT Route are non-scalable implementations, and the rest are scalable282

in nature. It is to be mentioned that Mosquitto is a single-threaded implementation, and283

Bevywise MQTT Route uses a dual thread approach, in which the first thread acts as284

an initiator of the second that processes messages. Table 4 presents an overview of the285

brokers.286

Version September 8, 2021 submitted to Energies 9 of 18

Table 2: Hardware and software details of the local testing environment.

HW/SW Details Publisher MQTT Broker Subscriber

CPU 64 bit AMD Ryzen 5
2500U @3.6 GHz

64 bit An Intel(R)
Core(TM) i5-7260U
CPU @2.20GHz

Intel(R) Pentium(R)
CPU 2020M
@2.40GHz

Memory

8GB, SODIMM DDR4
Synchronous Unbuffered
(Unregistered)
2400 MHz (0.4 ns)

8GB, SODIMM DDR4
Synchronous Unbuffered
(Unregistered)
2400 MHz (0.4 ns)

2GB, SODIMM DDR3
Synchronous
1600 MHz (0.6 ns)

Network

1Gbit/s,
RTL8111/8168/8411
PCI Express Gigabit
Ethernet Controller

1Gbit/s,
Intel Ethernet
Connection (4) I219-V

AR8161
Gigabit Ethernet,
speed=1Gbit/s

HDD

WDC WD10SPZX-24Z
(5400rpm), 1TB,
connected over
SATA 6gbps interface

WDC WD5000LPCX-2
(5400rpm),

500TB,
connected over
SATA 6gbps interface

HGST HTS545050A7

OS, Kernel Elementary OS 5.1.4,
Kernel 4.15.0-74-generic

Elementary OS 5.1.4,
Kernel 4.15.0-74-generic

Linux Mint 19,
Kernel 4.15.0-20-generic

Table 4: A bird’s-eye view of the tested brokers.

MQTT Brokers Mosquitto Bevywise MQTT Route ActiveMQ HiveMQ CE VerneMQ EMQ X
OpenSource Yes No Yes Yes Yes Yes
Written in
(prime programming language) C C, Python Java Java Erlang Erlang

MQTT Version 3.1.1, 5.0 3.x, 5.0 3.1 3.x, 5.1 3.x, 5.0 3.1.1
QoS Support 0, 1, 2 0, 1, 2 0, 1, 2 0, 1, 2 0, 1, 2 0, 1, 2

Operating System
Support

Linux, Mac,
Windows

Windows, Windows
server, Linux, Mac and
Raspberry Pi

Windows, Unix/
Linux/Cygwin

Linux, Mac,
Windows

Linux,
Mac OS X

Linux, Mac,
Windows, BSD

Table 3: Hardware and software details of the cloud testing environment.

HW/SW details Publisher/Subscriber/Server
Machine type c2-standard-8 [30]
CPU 8 vCPUs
Memory 32 GB
Disk size local 30 GB SSD
Disk type Standard persistent disk
Network Tier Premium

OS, Kernel 18.04.1-Ubuntu SMP x86_64 GNU/Linux,
5.4.0-1038-gcp

4.1.1. Evaluation conditions287

All the brokers were configured to run on these test conditions, see Table 5, without288

authentication method enabled and RETAIN flag set to true. It is to be noted that with289

increase in the number of subscribers or the number of topics or message rate results290

in an increased load on the broker. In our test environment, with the combination of291

3 different publishing threads (1 topic per thread) and 15 subscribers, we were able292

to push the broker to 100% process usage and limit the CPU usage on publisher and293

subscriber machines below 70% and 80% respectively.294

Version September 8, 2021 submitted to Energies 10 of 18

Table 5: Test conditions for the experiment.

Number of topics: 3
(via 3 publishers threads)

Number of publishers: 3
Number of subscribers: 15 (subscribing to all 3 topics)
Payload: 64 bytes
Topic names used to
publish large number
of messages:

’topic/0’, ’topic/1’, ’topic/2’

Topic used to
calculate latency ’topic/latency’

4.1.2. Latency Calculations295

Latency is defined as the time taken by a system to transmit a message from a296

publisher to a subscriber [13]. This experiment tries to simulate a realistic scenario of a297

client trying to publish a message, when the broker is overloaded with a large number298

of messages on various topics from different clients. To achieve this, a different topic299

was used to send messages for latency calculations from the topics on which messages300

were fired to overload the system. It is noteworthy that an ideal broker implementation301

should always be able to efficiently process messages irrespective of the rate of messages302

fired to it.303

4.1.3. Message Payload304

By using the MQTT protocol, all messages are transferred using a single telemetry305

parameter [9]. Baring this in mind, we utilized a small payload size not to overload the306

server memory. Concerning the message payload size setting, we used 64 bytes for the307

entire testing.308

4.2. Benchmarking Results309

We separate our experimental results into three distinct segments for better inter-310

pretation and understanding. We had taken 3 samples for each QoS in each segment and311

the best result with the maximum rate of message delivery, and zero message drop was312

considered for comparison. The three different categories are:313

1. Projected message processing rates of non-scalable brokers at 100% process CPU314

usage. See Table 6, 9.315

2. Projected message processing rates of scalable brokers at 100% system CPU usage.316

See Table 7, 10.317

3. Latency comparison of all the brokers (both scalable and non-scalable brokers) –318

see Table 8, 11.319

Table 8: Latency comparison of all the brokers in local test environment.

Brokers Average latency in ms.
QoS0 QoS1 QoS2

Mosquitto1.4.15 1.65 0.74 1.38
Bevywise
MQTT Route 2.0 1.13 0.96 1.53

ActiveMQ 5.15.8 2.33 1.38 2.14
HiveMQ CE
2020.2 7.69 58.48 3.66

VerneMQ
1.10.2 1.53 1.98 2.89

EMQ X 4.0.8 1.34 0.87 3.68

Version September 8, 2021 submitted to Energies 11 of 18

Table 6: Projected message processing rates of non-scalable brokers at 100% process CPU usage (local test results).

QoS QoS0 QoS1 QoS2

Observations/Broker (non-scalable) Mosquitto
1.4.15

Bevywise
MQTT Route 2.0

Mosquitto
1.4.15

Bevywise
MQTT Route 2.0

Mosquitto
1.4.15

Bevywise
MQTT Route 2.0

Peak message rate (msgs/sec) 32016.00 32839.00 9488.00 3542.49 6585.00 2649.00
Average process CPU usage(%)
at above message rate 84.29 97.93 89.00 95.79 96.73 98.20

Projected message processing rate
at 100% process CPU usage 37983.15 33533.14 10660.67 3698.18 6807.61 2697.56

Average latency (in ms) 1.65 1.13 0.74 0.96 1.38 1.53

Important note* Mosquitto and Bevywise are fixed thread/single thread broker implementations. They cannot scale up to utilize
all cores available in the system.

Table 7: Projected message processing rates of scalable brokers at 100% system CPU usage (local test results).

QoS QoS0 QoS1 QoS2

Observations/Broker (scalable) ActiveMQ
5.15.8

HiveMQ
CE 2020.2

VerneMQ
1.10.2

EMQ X
4.0.8

ActiveMQ
5.15.8

HiveMQ
CE 2020.2

VerneMQ
1.10.2

EMQ X
4.0.8

ActiveMQ
5.15.8

HiveMQ
CE 2020.2

VerneMQ
1.10.2

EMQ X
4.0.8

Peak message rate (msgs/sec) 39479.00 8748.00 11760.00 18034.00 12873.00 708.00 4655.00 4633.41 10508.00 579.00 2614.00 2627.31
Average system CPU usage(%)
at above message rate 91.78 97.93 96.51 98.71 92.56 63.44 97.34 96.82 90.91 64.28 96.79 95.54

Projected message processing rate
at 100% system CPU usage 43014.82 8932.91 12185.27 18269.68 13907.74 1116.02 4782.21 4785.59 11558.68 900.75 2700.69 2749.96

Average latency (in ms) 2.33 7.69 1.53 1.34 1.38 58.48 1.98 0.87 2.14 3.66 2.89 3.68
Important note* All the brokers listed in this table are scalable in nature and can utilize all cores available in the system.

5. Discussion320

5.1. Local evaluation results321

In Table 6, we present a comparative performance analysis of non-scalable MQTT322

brokers. For non-scalable brokers like Mosquitto and Bevywise MQTT Route, the323

projected message rate at 100% CPU usage (Rns) can be calculated with the below324

Equation 1:325

Rns =
Peak Message rate

Average Process CPU Usage
∗ 100 (1)

Note: The CPU usage of a process (process CPU usage) is a measure of how much (in percentage)326

of the CPU’s cycles are committed to the process that is currently running. Average process327

CPU utilization indicates the observed average of CPU utilization by the process during the328

experiment [41].329

In this segment, Mosquitto 1.4.15 beats Bevywise MQTT Route 2.0 in terms of330

projected message processing rate at approximately 100% process CPU usage across all331

the QoS categories. See Figure 6.332

It is to be mentioned that being non-scalable Mosquitto and Bevywise MQTT Route333

cannot make use of all available cores on the system. In terms of average latency (round334

trip time), we found that at QoS0 Bevywise MQTT Route 2.0 leads the race, while in335

all other QoS categories (QoS1 and QoS2), Mosquitto 1.4.15 occupies the top spot. See336

Figure 7.337

Table 7 shows the benchmarking results of scalable broker implementations. In338

this comparison, ActiveMQ 5.15.8 beats all other broker implementations (HiveMQ339

CE 2020.2, VerneMQ 1.10.2, EMQ X 4.0.8) in terms of "average latency" across all QoS340

categories. See Figure 7.341

In a multi-core or distributed environment, a scalable broker implementation342

would scale up to utilize the maximum system resources available. Hence, the CPU343

utilization data sum up the CPU utilization by the process group consisting of all sub-344

processes/threads. The process group CPU utilization for scalable brokers can reach345

up to 100*n% (where n = the number of cores available in the system). Here, in this346

test environment as n = 4, the CPU utilization percent for the deployed brokers could347

go up to 400%. This comparison gives a fair idea of how various brokers scale up and348

Version September 8, 2021 submitted to Energies 12 of 18

Figure 6. Projected message rate (msgs/sec) of non-scalable brokers at 1̃00% process CPU usage
in the local evaluation environment.

Figure 7. A comparison of average latency of all scalable and non-scalable brokers in the local
evaluation environment.

perform when they are deployed on a multi-core set-up. For scalable brokers, Equation349

2 calculates the projected message rate at the unrestricted resource (CPU) (Rs):350

Rs =
Peak Message rate

Average System CPU Usage
∗ 100 (2)

Note: System CPU usage refers to how the available processors whether real or virtual in351

a System are being utilized. Average System CPU usage refers to the observed average system352

CPU utilization by the process during the experiment [42].353

Version September 8, 2021 submitted to Energies 13 of 18

At QoS0, in terms of the projected message processing rate at 100% system CPU354

usage, EMQ X leads the race, at QoS1 and QoS2 ActiveMQ seems to be showing the best355

performance among all the brokers put to test; see Figure 8.356

Figure 8. Projected message rate (msgs/sec) of scalable brokers at 1̃00% system CPU usage in the
local evaluation environment.

Sorting all the MQTT brokers according to the message processing capability with357

full system resource utilization (from highest to lowest: left to right) - At QoS0: Ac-358

tiveMQ, Mosquitto, Bevywise MQTT Route, EMQ X, VerneMQ, HiveMQ CE. At QoS1:359

ActiveMQ, Mosquitto, EMQ X, VerneMQ, Bevywise MQTT Route, HiveMQ CE. At QoS2:360

ActiveMQ, Mosquitto, VerneMQ, Bevywise MQTT Route, HiveMQ CE.361

Table 7 shows a side-by-side comparison of both scalable and non-scalable brokers362

in terms of average latency recorded. Sorting all the tested brokers according to the aver-363

age latency recorded (from lowest to highest: left to right) - At QoS0: Bevywise MQTT364

Route, EMQ X, VerneMQ, Mosquitto, ActiveMQ, HiveMQ CE. At QoS1: Mosquitto,365

EMQ X, Bevywise MQTT Route, ActiveMQ, VerneMQ, HiveMQ CE. At QoS2: EMQ X,366

Mosquitto, Bevywise MQTT Route, HiveMQ CE, VerneMQ, ActiveMQ.367

5.2. Cloud-based evaluation results368

In this subsection, we discuss the performance of MQTT brokers on the Google369

Cloud test environment. It is to be mentioned that the stress testing on MQTT brokers in370

the cloud environment is done with the latest versions of the brokers available. Table371

9 lists average latency and projected message processing rates of non-scalable brokers372

at 100% CPU usage. In terms of projected message processing rate and average latency373

recorded Mosquitto 2.0.7 beats Bevywise MQTT 3.1- build 0221-01; see Figure 9 and 10.374

Table 10 shows the benchmarking results of scalable broker implementations. In375

this comparison, ActiveMQ 5.16.1 beats all other broker implementations (HiiveMQ376

CE 2020.2, VerneMQ 1.11.0, EMQX 4.2.7) in terms of the projected message processing377

rate at 100% system CPU usage across all QoS categories. Concerning the average378

latency recorded, EMQX 4.2.7 leads the race at QoS0, VerneMQ 1.11.0 tops at QoS1, and379

ActiveMQ 5.16.1 leads at QoS2 among all the scalable brokers put to test. See Figure 11380

and 10.381

Sorting all the tested MQTT brokers according to the message processing capability382

with full system resource utilization (from highest to lowest: left to right) - At QoS0:383

ActiveMQ, EMQX, Mosquitto, HiveMQ, VerneMQ, Bevywise MQTT Route. At QoS1:384

Version September 8, 2021 submitted to Energies 14 of 18

Figure 9. Projected message rate (msgs/sec) of non-scalable brokers at 1̃00% process CPU usage
in the cloud evaluation environment.

Figure 10. A comparison of average latency of all scalable and non-scalable brokers in the cloud
evaluation environment.

ActiveMQ, EMQX, HiveMQ, Mosquitto, Bevywise MQTT Route, VerneMQ. At QoS2:385

ActiveMQ, EMQX, HiveMQ, Mosquitto, Bevywise MQTT Route, VerneMQ.386

Table 10 shows a side-by-side comparison of both scalable and non-scalable brokers387

in terms of average latency recorded. Sorting all the tested brokers according to the388

average latency recorded (from lowest to highest: left to right)- At QoS0: Mosquitto,389

EMQ X, VerneMQ, Bevywise MQTT Route, HiveMQ. At QoS1: Mosquitto, Bevywise390

MQTT Route, VerneMQ, EMQX, HiveMQ. At QoS2: ActiveMQ, Mosquitto, VerneMQ,391

EMQ X, Bevywise MQTT Route, HiveMQ.392

To summarize our evaluation experiments, we can state that ActiveMQ scales393

well to beat all other brokers’ performance on our local testbed (using a 4 core/8GB394

Version September 8, 2021 submitted to Energies 15 of 18

Figure 11. Projected message rate (msgs/sec) of scalable brokers at 1̃00% system CPU usage in
cloud evaluation environment.

machine), and cloud testbed (on an 8 vCPU/32GB machine). It is the best scalable395

broker implementation we have tested so far. EMQ X, VerneMQ, HiveMQ CE also396

perform reasonably well in our test environment. On the other hand, if the hardware is397

resource-constrained (CPU/Memory/IO/Performance) or having a lower specification,398

than the local testbed used in this experiment, then Mosquitto or Bevywise MQTT Route399

can be taken as better choices over other scalable brokers. Another important point400

to observe is that when we moved from a local testing environment to a cloud testing401

environment having stronger hardware specification in terms of number of cores and402

memory, significant improvement in latency is shown by each of the brokers.403

6. Conclusion404

M2M protocols are the foundation of Internet of Things communication. There405

are many M2M communication protocols such as MQTT, CoAP, AMQP, and HTTP,406

are available. In this work, we reviewed and evaluated the performance of six MQTT407

brokers in terms of message processing rate at 100% process group CPU utilization,408

normalized message rate at unrestricted resource (CPU) usage, and average latency by409

putting the brokers under stress test.410

Our results showed that broker implementations like Mosquitto and Bevywise411

could not scale up automatically to make use of the available resources, yet they412

performed better than other scalable brokers on a resource-constrained environment.413

Mosquitto was the best performing broker in the first evaluation scenario, followed by414

Bevywise. However, in a distributed/multi-core environment, ActiveMQ performed415

the best. It scaled well, and showed better results than all other scalable brokers we416

put to test. The findings of this research highlight the significance of the relationship417

between MQTT broker system design and its performance under stress testing. It aims418

to fill the gap of lack of test-driven information on the topic, and helps real-time system419

developers to a great extent in building and deploying smart IoT solutions.420

In the future, we would like to continue our evaluations in a more heterogeneous421

cloud deployment, and further study the scalability aspects of bridged MQTT broker422

implementations.423

Version September 8, 2021 submitted to Energies 16 of 18

Table 9: Projected message processing rates of non-scalable brokers at 100% process CPU usage (cloud test results)

QoS QoS0 QoS1 QoS2

Observations/ Broker (non-scalable) Mosquitto 2.0.7 Bevywise MQTT Route
3.1- build 0221-017 Mosquitto 2.0.7 Bevywise MQTT Route

3.1- build 0221-017 Mosquitto 2.0.7 Bevywise MQTT Route
3.1- build 0221-017

Peak message rate (msgs/sec) 17946.00 7815.00 8927.00 4861.00 4423.00 3688.00
Average process CPU usage(%)
at above message rate 85.12 100.31 84.70 100.34 83.24 97.91

Projected message processing rate
at 100% process CPU usage 21083.18 7790.85 10539.55 4844.53 5313.55 3766.72

Average latency (in ms) 0.47 0.89 0.50 0.69 0.98 1.30
Important note* Mosquitto and Bevywise are fixed thread/single thread broker implementations. They cannot scale up to utilize all the cores available in the system.

Table 10: Projected message processing rates of scalable brokers at 100% system CPU usage (cloud test results)

QoS QoS0 QoS1 QoS2
Observations/ Broker

(non-scalable) ActiveMQ 5.16.1 HiveMQ
CE 2020.2 VerneMQ 1.11.0 EMQX Broker

4.2.7 ActiveMQ 5.16.1 HiveMQ
CE 2020.2 VerneMQ 1.11.0 EMQX Broker

4.2.7 ActiveMQ 5.16.1 HiveMQ
CE 2020.2 VerneMQ 1.11.0 EMQX Broker

4.2.7
Peak message rate (msgs/sec) 41697.00 13338.00 14332.00 17838.00 9663.00 8188.00 2622.00 11054.00 6196.00 4887.00 2240.00 7342
Average process CPU usage
(%) at above message rate 82.77 80.09 88.29 76.83 60.73 70.43 82.16 79.28 59.97 68.32 72.70 76.84

Projected message rate
at 100% system CPU usage 50376.95 16653.76 16232.87 23217.49 15911.41 11625.73 3191.33 13942.99 10331.83 7153.10 3081.16 9554.92

Average latency (in ms) 0.83 2.07 0.79 0.59 1.09 4.48 0.90 1.35 0.64 3.38 1.10 1.22
Important note* All the brokers listed in this table are scalable in nature and can utilize all cores available in the system.

Table 11: Latency comparison of all the brokers in the cloud evaluation environment.

Brokers Average latency in ms.
QoS0 QoS1 QoS2

Mosquitto 2.0.7 0.47 0.50 0.98
Bevywise MQTT Route
3.1- build 0221-017 0.89 0.69 1.30

ActiveMQ 5.16.1 0.83 1.09 0.64
HiveMQ CE 2020.2 2.07 4.48 3.38
VerneMQ 1.11.0 0.79 0.90 1.10
EMQ X 4.2.7 0.59 1.35 1.22

Author Contributions: Conceptualization, A.K., B.M and B.M.; methodology, A.K, B.M and B.M;424

software, B.M and B.M; validation, A.K., B.M and B.M.; formal analysis,A.K., B.M and B.M;425

investigation, B.M and B.M.; resources, B.M and B.M.; data curation, B.M and B.M.; writing—426

original draft preparation, B.M.; writing—review and editing, A.K., B.M.; visualization, B.M;427

supervision, A.K.; project administration, A.K.; funding acquisition, A.K. All authors have read428

and agreed to the published version of the manuscript.429

Funding: The research leading to these results was supported by the Hungarian Government and430

the European Regional Development Fund under the grant number GINOP-2.3.2-15-2016-00037431

("Internet of Living Things"). The experiments presented in this paper are based upon work432

supported by Google Cloud.433

Data Availability Statement: The source code of our benchmarking tool called MQTT Blaster we434

used for the analysis is available on GitHub [29]. The measurement data we gathered during the435

evaluation are shared in the tables and figures of this paper.436

Conflicts of Interest: The authors declare no conflict of interest.437

References
1. IHS Markit, Number of Connected IoT Devices Will Surge to 125 Billion by 2030. Available at: https://technology.ihs.com/596542/.

Accessed Aug. 06, 2020
2. Karagiannis V, Chatzimisios P, Vazquez-Gallego F, Alonso-Zarate J. "A survey on application layer protocols for the internetof

things," Transaction on IoT and Cloud computing 015; 3(1): 11–17. 2015
3. N. Naik, “Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP”, 2017 IEEE International

Systems Engineering Symposium (ISSE), 2017, doi: 10.1109/syseng.2017.8088251
4. S. Bandyopadhyay and A. Bhattacharyya, “Lightweight Internet protocols for web enablement of sensors using constrained

gateway devices”, 2013 International Conference on Computing, Networking and Communications (ICNC), 2013, doi: 10.1109/ic-
cnc.2013.6504105

Version September 8, 2021 submitted to Energies 17 of 18

5. “MQTT v5.0”. Available at: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html. Accessed Aug. 06, 2020)
6. “Messaging Technologies for the Industrial Internet and the Internet Of things”. Available at: https://www.smartindustry.com/as-

sets/Uploads/SI-WP-Prismtech-Messaging-Tech.pdf. Accessed Aug. 06, 2020
7. N. S. Han, "Semantic service provisioning for 6lowpan: powering internet of things applications on web", Ph.D. thesis (2015)
8. R. Kawaguchi and M. Bandai, “Edge Based MQTT Broker Architecture for Geographical IoT Applications”, 2020 International

Conference on Information Networking (ICOIN), 2020, doi: 10.1109/icoin48656.2020.9016528
9. Y. Sasaki and T. Yokotani, “Performance Evaluation of MQTT as a Communication Protocol for IoT and Prototyping,” Advances

in Technology Innovation, vol. 4, no. 1, pp. 21 - 29, 2019
10. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, "Internet of Things: A Survey on Enabling Technologies,

Protocols, and Applications," in IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347-2376, Fourthquarter 2015, doi:
10.1109/COMST.2015.2444095

11. Farhan, L., Kharel, R., Kaiwartya, O., Hammoudeh, M., and Adebisi, B. (2018). Towards green computing for Internet of things:
Energy oriented path and message scheduling approach. Sustainable Cities and Society, 38, 195-204.

12. B. Mishra and B. Mishra, "Evaluating and Analyzing MQTT Brokers with stress testing," in The 12th Conference of PHD
Students in Computer Science, CSCS 2020, Szeged, Hungary, June 24 – June 26, 2020, pp. 32-35. Available at: http://www.inf.u-
szeged.hu/~cscs/pdf/cscs2020.pdf. Accessed Jan. 06, 2021

13. “Mishra, B., and Kertesz, A. (2020). The use of MQTT in M2M and IoT systems: A survey. IEEE Access, 8, 201071-201086.)
14. “Pub/Sub: A Google-Scale Messaging Service | Google Cloud”. Available at: https://cloud.google.com/pubsub/architecture.

Accessed Aug. 06, 2020
15. C. Wenzhi, Liubai and F. Zhenzhu, "Bayesian Network Based Behavior Prediction Model for Intelligent Location Based Services,"

2006 2nd IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications, Beijing, 2006, pp.
1-6, doi: 10.1109/MESA.2006.296936

16. P. Jutadhamakorn, T. Pillavas, V. Visoottiviseth, R. Takano, J. Haga, and D. Kobayashi, “A scalable and low-cost MQTT broker
clustering system”, 2017 2nd International Conference on Information Technology (INCIT), 2017, doi: 10.1109/incit.2017.8257870

17. “MQTT and CoAP, IoT Protocols | The Eclipse Foundation”. Available at: https://www.eclipse.org/community/eclipse_news-
letter/2014/
february/article2.php. Accessed June 10, 2021

18. Foster, Andrew. "Messaging technologies for the industrial internet and the internet of things." PrismTech Whitepaper (2015): 21
19. B.Mishra. "Performance evaluation of MQTT broker servers." In International Conference on Computational Science and Its

Applications, pp. 599-609. Springer, Cham, 2018
20. P.T. Eugster, P.A. Felber, R. Guerraoui, and A.-M. Kermarrec,“The Many Faces of Publish/Subscribe,” ACM Computing Surveys,

vol.35, no.2,pp.114–131, 2003
21. S. Lee, H. Kim, D. Hong and H. Ju, "Correlation analysis of MQTT loss and delay according to QoS level," The International

Conference on Information Networking 2013 (ICOIN), Bangkok, 2013, pp. 714-717, doi: 10.1109/ICOIN.2013.6496715
22. W. Pipatsakulroj, V. Visoottiviseth, and R. Takano, “muMQ: A lightweight and scalable MQTT broker”, 2017 IEEE International

Symposium on Local and Metropolitan Area Networks (LANMAN), 2017, doi: 10.1109/lanman.2017.7972165
23. Bondi, André B. "Characteristics of scalability and their impact on performance." Proceedings of the 2nd international workshop

on Software and performance. 2000
24. A. Detti, L. Funari and N. Blefari-Melazzi, "Sub-linear Scalability of MQTT Clusters in Topic-based Publish-subscribe Applica-

tions," in IEEE Transactions on Network and Service Management, doi: 10.1109/TNSM.2020.3003535
25. Thangavel, Dinesh, et al. "Performance evaluation of MQTT and CoAP via a common middleware." 2014 IEEE ninth international

conference on intelligent sensors, sensor networks and information processing (ISSNIP). IEEE, 2014
26. Chen, Yuang, and Thomas Kunz. "Performance evaluation of IoT protocols under a constrained wireless access network." 2016

International Conference on Selected Topics in Mobile & Wireless Networking (MoWNeT). IEEE, 2016
27. Pham, Manh Linh, Truong Thang Nguyen, and Manh Dong Tran. "A Benchmarking Tool for Elastic MQTT Brokers in IoT

Applications." International Journal of Information and Communication Sciences 4.4 (2019): 70-78
28. Bertrand-Martinez, Eddas, et al. "Classification and evaluation of IoT brokers: A methodology." International Journal of Network

Management (2020): e2115
29. Koziolek, Heiko, Sten Grüner, and Julius Rückert. "A Comparison of MQTT Brokers for Distributed IoT Edge Computing."

European Conference on Software Architecture. Springer, Cham, 2020
30. “Documentation | Google Cloud”. Available at: https://cloud.google.com/docs. Accessed 24 Mar. 2021
31. “Using Network Service Tiers | Google Cloud.”. Available at: https://cloud.google.com/network-tiers/docs/using-network-

service-tiers. Accessed 24 Mar. 2021
32. “Machine Types | Compute Engine Documentation | Google Cloud”. Available at: Google Cloud, https://cloud.google.com/com-

pute/docs/machine-types. Accessed 24 Mar. 2021
33. “paho-mqtt PyPI”. Available at: https://pypi.org/project/paho-mqtt/. Accessed Aug. 10, 2020
34. "MQTT Blaster". Available at: https://github.com/MQTTBlaster/MQTTBlaster. Accessed June 28, 2021
35. “Mosquitto man page | Eclipse Mosquitto”. Available at: https://mosquitto.org/man/mosquitto-8.html. Accessed Aug. 10,

2020

Version September 8, 2021 submitted to Energies 18 of 18

36. “MQTT Broker Developer documentation-MQTT Broker-Bevywise”. Available at: https://www.bevywise.com/mqtt-
broker/developer-guide.html. Accessed Aug. 10, 2020

37. “ActiveMQ Classic”. Available at: https://activemq.apache.org/components/classic/. Accessed Aug. 10, 2020
38. “HiveMQ Community Edition 2020.3 is released”. Available at: https://www.hivemq.com/blog/hivemq-ce-2020-3-released/.

Accessed Aug. 10, 2020
39. “Getting Started - VerneMQ”. Available at: https://docs.vernemq.com/getting-started. Accessed Aug. 10, 2020
40. “MQTT Broker for IoT in 5G Era | EMQ”. Available at: https://www.EMQX.io/. Accessed Aug. 10, 2020
41. “Understanding CPU Usage in Linux | OpsDash”. Available at: https://www.opsdash.com/blog/cpu-usage-linux.html/.

Accessed Sep. 03, 2021
42. “System CPU Utilization workspace | IBM”. Available at: https://www.ibm.com/docs/en/om-zos/5.6.0?topic=workspaces-

system-cpu-utilization-workspace/. Accessed Sep. 03, 2021

	Introduction
	Background
	Basics of a publish/subscribe Messaging Service
	Overview of MQTT Architecture
	Scalability and types of MQTT Broker Implementations
	Evaluating the Performance of a Messaging Service
	Latency
	Scalability
	Availability

	Related Work
	Local and Cloud Test Environment Settings and Benchmarking Results
	Evaluation Scenario
	Evaluation conditions
	Latency Calculations
	Message Payload

	Benchmarking Results

	Discussion
	Local evaluation results
	Cloud-based evaluation results

	Conclusion
	References

