
Actuator behaviour modelling in1

IoT-Fog-Cloud simulation2

Andras Markus1, Mate Biro1, Gabor Kecskemeti2, and Attila Kertesz1
3

1Software Engineering Department, University of Szeged, Szeged, Hungary4

2Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool,5

United Kingdom6

Corresponding author:7

Andras Markus1
8

Email address: markusa@inf.u-szeged.hu9

ABSTRACT10

The inevitable evolution of information technology has led to the creation of IoT-Fog-Cloud systems, which
combine the Internet of Things (IoT), Cloud Computing and Fog Computing. IoT systems are composed
of possibly up to billions of smart devices, sensors and actuators connected through the Internet, and
these components continuously generate large amounts of data. Cloud and fog services assist the data
processing and storage needs of IoT devices. The behaviour of these devices can change dynamically
(e.g. properties of data generation or device states). We refer to systems allowing behavioural changes in
physical position (i.e. geolocation), as the Internet of Mobile Things (IoMT). The investigation and detailed
analysis of such complex systems can be fostered by simulation solutions. The currently available, related
simulation tools are lacking a generic actuator model including mobility management. In this paper, we
present an extension of the DISSECT-CF-Fog simulator to support the analysis of arbitrary actuator
events and mobility capabilities of IoT devices in IoT-Fog-Cloud systems. The main contributions of our
work are: (i) a generic actuator model and its implementation in DISSECT-CF-Fog, and (ii) the evaluation
of its use through logistics and healthcare scenarios. Our results show that we can successfully model
IoMT systems and behavioural changes of actuators in IoT-Fog-Cloud systems in general, and analyse
their management issues in terms of usage cost and execution time.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1 INTRODUCTION26

Internet of Things (IoT) is estimated to reach over 75 billion smart devices around the world by 202527

(Taylor et al., 2015), which will dramatically increase the network traffic and the amount of data generated28

by them. IoT systems often rely on Cloud Computing solutions, because of its ubiquitous and theoretically29

infinite, elastic computing and storage resources. Fog Computing is derived from Cloud Computing to30

resolve the problems of increased latency, high density of smart devices and the overloaded communication31

channels, which also known as the bottleneck-effect.32

Real-time IoT applications (Ranjan et al., 2020) require faster and more reliable data storage and33

processing than general ones, especially when data privacy is also a concern. The proximity of Fog34

Computing nodes to end users usually ensures short latency values, however these nodes are resource-35

constrained as well. Fog Computing can aid cloud nodes by introducing additional layers between the36

cloud and the IoT devices, where a certain part of the generated data can be processed faster (Mahmud37

et al., 2018).38

A typical fog topology is shown in Figure 1, where sensors and actuators of IoT devices are located at39

the lowest layer. Based on their configuration and type, things produce raw sensor data. These are then40

stored and processed on cloud and fog nodes (this data flow is denoted by red dotted arrows). Sensors are41

mostly resource-constrained and passive entities with restricted network connection, on the other hand,42

actuators ensure broad functionality with Internet connection and enhanced resource capacity (Ngai et al.,43

2006).44

They aspire to make various types of decisions by assessing the processed data retrieved from the45

nodes. This data retrieval is marked by solid orange arrows in Figure 1. These actions can affect on the46

physical environment or refine the configuration of the sensors, such modification can be the increasing or47

decreasing of the data sampling period or extending the sampling period, this later results in different48

amounts of generated data. Furthermore, the embedded actuators can manipulate the behaviour of smart49

devices, for instance, restart or shutdown a device, and motion-related responses can also be expected.50

These kind of actions are noted by grey dashed arrows in Figure 1.51

Figure 1. The connections and layers of a typical fog topology

In the surrounding world of IoT devices, location is often fixed, however, the Quality of Service52

(QoS) of these systems should also be provided at the same level in case of dynamic and moving devices.53

Systems composed of IoT devices supporting mobility features are also known as the Internet of Mobile54

Things (IoMT) (Nahrstedt et al., 2020). Mobility can have a negative effect on the QoS to be ensured55

by fog systems, for instance, they could increase the delay between the device and the actual node it is56

connected to. Furthermore, using purely cloud services can limit the support for mobility (Pisani et al.,57

2020).58

Wireless Sensor Networks (WSN) are considered as predecessors of the Internet of Things. In59

a WSN, the naming convention of sensor and actuator components follows publisher/subscriber or60

producer/consumer notions (Sheltami et al., 2016), however IoT sensor and actuator appellations are61

commonly accepted by the IoT simulation community as well. Publishers (i.e. sensors or producers) share62

the data which are sensed in the environment, until then subscribers (i.e. actuators or consumers) react to63

the sensor data (or to an incoming message) with an appropriate action. In certain situations, actuators64

can have both of these roles, and behave as a publisher, especially when the result of a command executed65

by an actuator needs to be sent and further processed.66

Investigating IoT-Fog-Cloud topologies and systems in real word is rarely feasible on the necessary67

scales, thus different simulation environments are utilised by researchers and system architects for such68

purpose. It can be observed that only a few of the currently available simulation tools deal with a minimal69

ability to model actuator and/or mobility events, which strongly restricts their usability. It implies that70

a comprehensive simulation solution, with an extendable, well-detailed mobility and actuator model, is71

missing for fog-enhanced IoT systems.72

2/20

To address this open issue, we propose a generic actuator model for IoT-Fog-Cloud simulators and73

implement it by extending the DISSECT-CF-Fog (Markus et al., 2020) open-source simulator, to be74

able to model actuator components and mobility behaviour of IoT devices. As the main contributions75

of our work, our proposal enables: (i) more realistic and dynamic IoT behaviour modelling, which76

can be configured by using the actuator interface of IoT devices, (ii) the ability of representing and77

managing IoT device movement (IoMT), and (iii) the analysis of different types of IoT applications having78

actuator components in IoT-Fog-Cloud environments. Finally, the modelling of such complex systems are79

demonstrated through a logistics and a healthcare scenario.80

The rest of the paper is structured as follows: Section 2 introduces and compares the related works,81

Section 3 presents our proposed actuator model and simulator extension. Section 4 presents our evaluation82

scenarios, and finally Section 5 concludes our work.83

2 RELATED WORK84

According to the definition by (Bonomi et al., 2012), an actuator is a less limited entity than a sensor in85

terms of its network connectivity and computation power, since it is responsible for controlling or taking86

actions in an IoT environment. Usually actuators are identified as linear, motors, relays or solenoids to87

induce motion of a corresponding entity. The work in Motlagh et al. (2020) categorises actuators based88

on their energy source as following: (i) pneumatic, (ii) hydraulic, (iii) electric and finally (iv) thermal89

actuator, however this kind of classification might restrict the usability of actuators to the energy sector.90

The presence of actuators plays a vital role in higher level software tools for IoT as well, for instance91

in FogFlow (Cheng et al., 2018). It is an execution framework dedicated for service orchestrations over92

cloud and fog systems. This tool helps infrastructure operators to handle dynamic workloads of real IoT93

services enabling low latency on distributed resources. According to their definition, actuators perform94

actions (e.g. turning on/off the light) in an IoT environment, which can be coordinated by an external95

application.96

The already existing, realised actuator solutions are well-known and commonly used in Technical97

Informatics, however the modelling of an actuator entity in simulation environments is not straightforward,98

and most of the simulation tools simply omit or simplify it, nevertheless actuators are considered as99

essential components of the IoT world.100

Concerning IoT and fog simulation, a survey paper by Svorobej et al. (2019) compares seven simulation101

tools supporting infrastructure and network modelling, mobility, scalability, resource and application102

management. Unfortunately, in some cases the comparison is restricted to a binary decision, for instance103

if the simulator has a mobility component or not. Another survey by Markus and Kertesz (2020) examined104

44 IoT-Fog-Cloud simulators, in order to determine the characteristics of these tools. 11 parameters were105

used for the comparison, such as type of the simulator, the core simulator, publication date, architecture,106

sensor, cost, energy and network model, geolocation, VM management and lastly, source code metrics.107

These survey papers represent the starting point for our further investigations in the direction of geolocation108

and actuator modelling.109

FogTorchPI (Brogi et al., 2018) is a widely used simulator, which focuses on application deployment in110

fog systems, but it limits the possibilities of actuator interactions. Tychalas and Karatza (2018) proposed a111

simulation approach focusing on the cooperation of smartphones and fog, however the actuator component112

was not considered for the evaluation.113

The CloudSim-based iFogSim simulator (Gupta et al., 2016) is one of the leading fog simulators114

within the research community, which follows the sense-process-actuate model. The actuator is declared115

as the responsible entity for the system or a mechanism, and the actualisation event is triggered when a116

task, which known as a Tuple, determining a certain amount of instruction and size in bytes, is received117

by the actuator. In the current implementation of iFogSim, this action has no significant effect, however118

custom events also can be defined by overriding the corresponding method, nevertheless no such events119

are created by default. The actuator component is determined by its connection and network latency. The120

original version of iFogSim does not support mobility, however the static, geographical location of a node121

is stored.122

Another CloudSim extension is the EdgeCloudSim (Sonmez et al., 2018), which aims to ensure123

mobility support in simulation environments. It associates the position information of a mobile device to a124

two-dimensional coordinate point, which can be updated dynamically. This simulation solution considers125

the nomadic mobility model, by its definition, a group of nodes moves randomly from one position to126

3/20

another. This work also takes into account the attractiveness of a position to define the duration of stay at127

some place. Further mobility models can be created by extending the default class for mobility, but there128

is no actuator entity implemented in this approach.129

The FogNetSim++ (Qayyum et al., 2018) can be used to model fog networks supporting heterogeneous130

devices, resource scheduling and mobility. In this paper six mobility strategies were proposed, and new131

mobility policies can also be added. This simulator aids the entity mobility models, which handles132

the nodes independently, and takes into account parameters such as speed, acceleration, direction in a133

three-dimensional coordinate system. Unfortunately, the source code of the simulator presents examples134

of the linear and circular mobility behaviour only. This simulation tool used no actuator model.135

YAFS (Lera et al., 2019) is a simulator to analyse IoT application deployments and mobile IoT136

scenarios. The actuator in this realisation is defined as an entity, which receives messages with the given137

number of instructions and bytes, similarly to the solution of iFogSim. The paper also mentioned dynamic138

user mobility, which takes into account different routes using GPX formats (it is used by application to139

depict data on the map), but this behaviour was not explained or experimented with.

Simulator Actuator Mobility Core simulator Prog. language Year
DISSECT-CF-Fog (this work) X X DISSECT-CF Java 2020

iFogSim X - CloudSim Java 2017
EdgeCloudSim - X CloudSim Java 2017
FogNetSim++ - X OMNet++ C++ 2018
IoTSim-Edge X X CloudSim Java 2019

YAFS X X - Python 2019
MobFogSim X X iFogSim Java 2020

Table 1. Comparison of the related simulation tools

140

Jha et al. (2020) proposed the IoTSim-Edge simulation framework by extending the CloudSim to141

model towards IoT and Edge systems. This simulator focuses on resource provisioning for IoT applications142

considering the mobility function and battery-usage of IoT devices, and different communication and143

messaging protocols as well. The IoTSim-Edge contains no dedicated class for the actuator components,144

nevertheless the representative class of an IoT device has a method for actuator events, which can be also145

overridden. There is only one predefined actuator event affecting the battery of an IoT device, however146

it was not considered during the evaluation phase by the authors. This simulation tool also takes into147

consideration the mobility of smart devices. The location of a device is represented by a three-dimensional148

coordinate system. Motion is influenced by a given velocity and range, where the corresponding device149

can move, and only horizontal movements are considered within the range by the default moving policy.150

MobFogSim (Puliafito et al., 2020) aims to model user mobility and service migration, and it is one of151

the latest extension of the iFogSim, where actuators are supported by default. Furthermore, the actuator152

model was revised and improved to handle migration decisions, because migration is often affected by153

end user motions. To represent mobility, it uses a two-dimensional coordinate system, the users’ direction154

and velocity. The authors considered real datasets as mobility patterns, which describe buses and routes155

of public transportation.156

The comparison of related simulation based approaches is shown in Table 1. It highlights the existence157

of actuator and mobility interfaces, the base simulator of the approach and the programming language, in158

which the actual tool was written. We also denoted the year, when the simulation solution was released or159

published. It also reveals the leading trends for fog simulation. Based on Markus and Kertesz (2020),160

more than 70% of the simulators are written in Java programming language and only 20% of them are161

developed using Python or C++. The rest of them are more complex applications (i.e. Android-based162

software). This survey also points out that mostly the network type of simulators is written in C++, which163

focuses on fine-grained network model, however these tools typically do not have predefined models and164

components for representing cloud and fog nodes, and VM management operations. The event-driven165

general purpose simulators are usually implemented in Java.166

The actuator and mobility abilities of these simulators are further detailed in Table 2. The second167

column shows possible directions for transferring the sensor data (usually in the form of messages), in168

case the actuator interface is realised in the corresponding simulator. It can be observed that it basically169

4/20

Simulator Communication direction Actuator events Mobility Position

DISSECT-CF-Fog
(this work)

- Sensor→ Fog / Cloud→ Actuator
- Sensor→ Actuator

- 10 different predefined
actions for actuation

- Adding new by overriding

- Nomadic
- Random Walk

Latitude,
Longitude

iFogSim - Sensor→ Fog→ Actuator
- Default, but it can be

overridden - Coordinates

EdgeCloudSim - - - Nomadic Coordinates

FogNetSim++ - -
- Linear

- Circular Coordinates

IoTSim-Edge - Sensor→ Fog Device→ Actuator
- Default, but it can be

overridden - Linear Coordinates

YAFS - Sensor→ Service→ Actuator - - Real dataset
Latitude,

Longitude

MobFogSim
- Mobile Sensor→Mobile Device

→ - Mobile Actuator - Migration
- Linear

- Real dataset Coordinates

Table 2. Detailed characteristics of the related simulation tools

follows similar logic in all cases. The third column highlights actuator events that can be triggered in a170

simulator. The fourth column shows the supported mobility options (we only listed the ones offered in171

their source code) and finally we denoted the position representation manner in the last column.172

One can observe that there is a significant connection between mobility support and actuator functions,173

but only half of the investigated simulators applied both of them. Since the actuator has no commonly used174

software model within the latest simulation tools, developers omit it, or it is left to the users to implement175

it, which can be time consuming (considering the need for additional validation). In a few cases, both176

actuator and mobility models are simplified or just rudimentary handled, thus realistic simulations cannot177

be performed.178

In this paper, we introduce an actuator interface and mobility functionality for the DISSECT-CF-Fog179

simulator. We define numerous actuator events and mobility patterns to enhance and refine the actuator180

model of a simulated IoT system. To the best of our knowledge, no other simulation solution offers such181

enriched ways to model actuator components.182

3 THE ACTUATOR AND MOBILITY MODELS OF DISSECT-CF-FOG183

The heterogeneity of interconnected IoT devices often raises difficulties in simulator solutions, as the184

creation of a model that comprehensively depicts the behaviour of these diverse components is challenging.185

In a simulation environment, a concrete type of any device is described by its characteristics. For instance,186

it does not really matter, if a physical machine utilises an AMD or an Intel processor, because the187

behaviour of the processor are modelled by the number of CPU cores and the processing power of one188

core, which should be defined in a realistic way. Following this logic, the actual realisation of an actuator189

entity – which follows the traditional subscriber model –, can be any type of actuator (e.g. motors or190

relays), if the effects of it are appropriately and realistically modelled. This means that in our actuator191

implementation, a command received by an actuator must affect the network load considering bandwidth192

and latency, moreover based on certain decisions the actuator should indicate changes in the behaviour of193

the IoT device or sensor (e.g. increasing data sensing frequency or changing the actual position). In case194

of IoMT, the traditional WSN model cannot be followed, hence moving devices can act as a publisher195

(monitoring) and subscriber as well (receiving commands related to movements).196

Our proposed actuator interface of the DISSECT-CF-Fog simulator aims to provide a generic, unified,197

compact and platform-independent representation of IoT actuator components. DISSECT-CF-Fog is based198

on DISSECT-CF (Kecskemeti, 2015), which was proposed as a general purpose simulator to investigate199

the energy consumption of cloud infrastructures. The evolution phases of DISSECT-CF-Fog can be seen200

in Figure 2, where each background colour represents a milestone of the development, and it also depicts201

the layers of the simulation tool.202

Typical event-driven simulators are lacking predefined models for complex behaviours (e.g. con-203

sidering both detailed network and computational resource utilisation), nevertheless DISSECT-CF has204

such abilities. It utilises its own discrete event simulation (DES) engine, which is responsible to manage205

the time-dependent entities (Event System) and also considers low-level computing resource sharing,206

for instance balancing network bandwidth (Unified Resource Sharing) or enabling the measurement of207

5/20

different energy usage patterns of resources (Energy Modelling). Through the Infrastructure Simulation208

and Infrastructure Management layers, general IaaS clouds can be modelled with different scheduling209

policies.210

The current version of DISSECT-CF-Fog strongly build on the subsystems of the basic simulator,211

which is proven to be accurate. This system has been leveraged since 2017 to realise different aspects of212

complex IoT-Fog-Cloud systems. First, we added the typical components of IoT systems (denoted by213

green in Figure 2) like IoT Sensor, IoT Device and IoT Application, to model various IoT use cases with214

detailed configuration options. The naming DISSECT-CF-Fog was introduced at the end of 2019, after215

developing the Cost Modelling layer to apply arbitrary IoT and cloud side cost schemes of any providers216

(shown by blue coloured boxes in Figure 2). The tree main components of the fog extension, denoted217

by yellow (Figure 2), are the Fog and Cloud Node, which are responsible for the creation of multi-tier218

fog topology, the Device Strategy, which chooses the optimal node for a device, and (iii) the Application219

Strategy, which enables offloading decisions between the entities of the fog topology. The strategies can220

take into account various parameters of the system, such as network properties (e.g. latency), cost and221

utilised CPU and memory.222

The main contribution of this paper are denoted by red in Figure 2. To satisfy the increasing need for223

a well-detailed and versatile simulator, we complete the IoT layer by adding the IoT Actuator component,224

with its corresponding management elements Actuator Strategy and Device Mobility, to realise the business225

logic for such related behaviours. In the former versions of DISSECT-CF-Fog, the position of IoT devices226

were static and fixed, and also the backward communication channels (from the computational nodes to227

actuators through the IoT devices) did not exist.228

Figure 2. The evolution of DISSECT-CF-Fog through its components

3.1 Actuator Model229

In the layered architecture of IoT, actuators are located in the perception layer, which is often referred to230

as the lowest or physical layer that requires the most detailed level of abstraction in IoT.231

In this paper, we are focusing mainly on software-based actuator solutions due to their increasing232

6/20

prevalence in the field of IoT. The DISSECT-CF-Fog actuator model is fairly abstract, hence it mainly233

focuses on the actuators’ core functionality and its effect on the simulation results, but it does not go deep234

into specific actuator-device attributes.235

The actuator interface should facilitate a more dynamic device layer and a volatile environment in236

a simulation. Therefore, it is preferred to be able to implement actuator components in any kind of237

simulation scenario, if needed. In our model, one actuator is connected to one IoT device for two reasons238

in particular: (i) it is observing the environment of the smart device and can act based on previously239

specified conditions, or (ii) it can influence some low-level sensor behaviour, for instance it changes the240

sampling interval of a sensor, resets or completely stops the smart device.241

The latter indirectly conveys the conception of a reinterpreted actuator functionality for simulator242

solutions. The DISSECT-CF-Fog actuator can also behave as a low-level software component for sensor243

devices, which makes the model compound.244

The actuator model of DISSECT-CF-Fog can only operate with compact, well-defined events, that245

specify the exact influence on the environment or the sensor. The set of predefined events during a246

simulation provides a restriction to the capability of the actuator and limits its scope to certain actions that247

are created by the user or already exist in the simulator. A brief illustration of sensor-based events are248

shown in Figure 3.249

Figure 3. Low-level sensor events

The determination of the exact event, executed by the actuator, happens in a separate, reusable and250

extendable logic component. This logic component can serve as an actual actuator configuration, but can251

also be used as a descriptor for environmental changes and their relations to specific actuator events. This252

characteristic makes the actuator interface thoroughly flexible and adds some more realistic factors to253

certain simulation scenarios.254

With the help of the logic component, the actuator interface works in an automatic manner. After a255

cloud or fog node has processed the data generated by the sensors, it sends a response message back to256

the actuator, which chooses an action to be executed. This models the typical sensor-service-actuator257

communication direction.258

Unexpected actions may occur in real-life environments, which are hard to be defined by algorithms,259

and the execution of some events may not require cloud or fog processes, e.g. when a sensor fails. To be260

able to handle such issues, the actuator component is capable of executing events apart from its predefined261

configuration. This feature facilitates the immediate and direct communication between sensors and262

actuators.263

For the proper behaviour of the actuator, the data representation in the simulator needs to be more264

detailed and comprehensive. Consequently, this extension of the DISSECT-CF-Fog simulator introduces265

a new type of data fragment in the system, to store specific details throughout the life-cycle of the266

sensor-generated data.267

Finally, the DISSECT-CF-Fog actuator should be optional for simulation scenarios. In consideration268

of certain scenarios, where the examined results do not depend on the existence of actuator behaviours,269

7/20

the simulation can be run without the actuator component. This might significantly decrease the actual270

runtime of the simulation, as there could potentially be some computing heavy side effects, when applying271

actuator functionalities.272

3.2 Requirements for modelling the Internet of Mobile Things273

The proximity of computing nodes is the main principle of Fog Computing and it has numerous benefits,274

but mobile IoT devices may violate this criterion. These devices can move further away from their275

processing units, causing higher and unpredictable latency. When a mobile device moves out of range of276

the currently connected fog node, a new, suitable fog node must be provided. Otherwise, the quality of277

service would drastically deteriorate and due to the increased latencies, the fog and cloud nodes would278

hardly be distinguishable in this regard, resulting in losing the benefits of Fog Computing.279

Another possible problem that comes with mobile devices is service migration. The service migration280

problem can be considered as when, where and how (W2H) questions. Service migration usually happens281

between two computing nodes, but if there is no fog node in an acceptable range, the service could be282

migrated to the smart device itself, causing lower performance and shorter battery time. However, service283

migration only makes sense when there are stateful services, furthermore it is beyond the topic of this284

paper, we consider stateless services and decisions of their transfer among the nodes only.285

The physical location of fog nodes in a mobile environment is a major concern. Placing Fog Computing286

nodes too far from each other will result in higher latency or connection problems. In this case, IoT287

devices are unable to forward their data, hence they are never processed. Some devices may store their288

data temporarily, until they connect to a fog node, but this contradicts real-time data processing promises289

of fogs.290

A slightly better approach would be to install fog nodes fairly dense in space to avoid the problem291

discussed above. However, there might be some unnecessary nodes in the system, causing a surplus in the292

infrastructure, which results in resource wastage.293

Considering different mobility models for mobile networks in simulation environments have been294

researched for a while. The survey by Camp et al. (2002) presents 7 entity and 6 group mobility models295

in order to replace trace files, which can be considered as the footprints of movements in the real world.296

Applying mobility models is a reasonable decision, because they mimic the movements of IoT devices in297

a realistic way. The advent of IoT and the technological revolution of smartphones have brought the need298

for seamless and real time services, which may require an appropriate simulation tool to develop and test299

the cooperation of Fog Computing and moving mobile devices.300

The current extension of the DISSECT-CF-Fog was designed to create a precise geographical position301

representation of computing nodes (fog, cloud) and mobile devices and simulate the movements of devices302

based on specified mobility policies. As the continuous movement of these devices could cause connection303

problems we consider the following events shown in Figure 4.304

Figure 4. Actuator events related to mobility behaviour

Examining the occurrence of these specific events can help in optimising the physical allocation of305

fog nodes depending on the mobility features of IoT devices.306

8/20

3.3 Actuator implementation in DISSECT-CF-Fog307

DISSECT-CF-Fog is a discrete event simulator, which means there are dedicated moments, when system308

variables can be accessible and modifiable. The extended classes of the timing events, which can be309

recurring and deferred, ensure to create the dedicated time-dependent entities in the system.310

As mentioned in Section 3.1, a complex, detailed data representation in the simulator is mandatory311

in order to provide sufficient information for the actuator component. Data fragments are represented312

by DataCapsule objects in the system of DISSECT-CF-Fog. The sensor-generated data is wrapped in a313

well-parameterized DataCapsule object, and forwarded to an IoT Application located in a fog or cloud314

node to be processed. A DataCapsule object uses the following attributes:315

• source: Holds a reference to the IoT device generating sensor data, so the system keeps track of the316

data source.317

• destination: Holds a reference to the Application of a fog node where the data has been originally318

forwarded to.319

• dataFlowPath: In some cases fog nodes cannot process the current data fragment, therefore they320

might send it to another one. This parameter keeps track of the visited fog nodes by the data before321

it has been processed.322

• bulkStorageObject: Contains one or more sensor-generated data that has been wrapped into one323

DataCapsule.324

• evenSize: The size of the response message sent from a fog node to the actuator component (in325

bytes). This helps to simulate network usage while sending information back to the actuator.326

• actuationNeeded: Not every message from the IoT device requires an actuator response event. This327

logical value (true - false) holds true, if the actuator should take action after the data has been328

processed, otherwise it is false.329

• fogProcess: A logical value (true - false), that is true, if the data must be processed in a fog node,330

and should not be sent to the cloud. It is generally set to true, when real-time response is needed331

from the fog node.332

• startTime: The exact time in the simulator, when the data was generated.333

• processTime: The exact time in the simulator, when the data was processed.334

• endTime: The exact time in the simulator, when the response has been received by the actuator.335

• maxToleratedDelay and priorityLevel: These two attributes define the maximum delay tolerated by336

the smart device and the priority of the data. Both of them could play a major role in task-scheduling337

algorithms (e.g., priority task scheduling), but they have no significant role in the current extension.338

• actuatorEvent: This is the specific event type that is sent back to the actuator for execution.339

To set these values accurately, some sensor-specific and environment-specific properties are required.340

The SensorCharacteristics class integrates these properties and helps to create more realistic simulations.341

The following attributes can be set:342

• sensorNum: The number of applied sensors in a device. It is directly proportional to the size of the343

generated data.344

• mttf : The mean time until the sensor fails. This attribute is essential to calculate the sensor’s average345

life expectancy, which helps in modelling sensor failure events. If the simulation’s time exceeds the346

mttf value, the sensor has a higher chance to fail. If a sensor fails, the actuator forces it to stop.347

• minFreq and maxFreq: These two numbers represent the maximum and minimum sampling rate of348

the sensor. If a sensor does not have a predefined sampling rate but rather senses changes in the349

environment, then these are environment-specific attributes and their values could be defined by350

estimating the minimum and maximum time interval between state changes in the environment.351

These attributes are necessary to limit the possible frequency value of a sensor when the actuator352

imposes an event which affects the frequency.353

9/20

• fogDataRatio: An estimation on how often the sensor generates data, that requires a fog process.354

This value is usually higher in the case of sensors that generate sensitive data or applications that355

require real-time response.356

• actuatorRatio: An estimation on how often the sensor generates data, that requires actuator357

action. This is typically an environment-specific attribute. The more inconsistent and variable the358

environment is, the higher its chance to trigger the actuator, thus the value of this attribute should359

be set higher. This attribute has an impact on the DataCapsule’s actuationNeeded value. If the360

actuatorRatio is higher, then it is more likely to set the actuationNeeded attribute to true.361

• maxLatency: Its value determines the maximum latency tolerated by the device when communi-362

cating with a computing node. For instance, in the case of medical devices, this value is generally363

lower than in the case of agricultural sensors. Mobile devices may move away from fog nodes364

inducing latency fluctuations and this attribute helps to determine whether a computing node is365

suitable for the device, or the expected latency exceeds this maxLatency limitation, therefore the366

device should look for a new computing node. This attribute plays a major role in triggering367

fog-selection actuator events when the IoT device is moving between fog nodes.368

• delay: The delay of the data generating mechanism of the sensor.369

Figure 5. Data flow in the DISSECT-CF-Fog

When creating an IoT device in the simulation, its SensorCharacteristics features should also be370

defined. This will enable the simulated device to start generating DataCapsule objects according to371

its characteristics. This is the start of the life-cycle of a DataCapsule object. DataCapsule objects are372

forwarded to a certain Application of a fog node, based on the fog selection strategy of the device.373

The corresponding timed method (called (tick())) of the Application is responsible for processing374

the data on a fog node. If the actual fog node has adequate resources to process the received data, the375

processing happens, and if the actuationNeeded attribute of the processed DataCapsule object was true,376

then it is sent back to the actuator (i.e., the data source) expanded with a specific actuatorEvent object377

(denoting an action to be performed by the actuator). After the data object stored in the DataCapsule is378

received by the actuator, it executes the event. If the actuationNeeded attribute was false during the data379

processing, then the procedure mentioned before is omitted. Otherwise, if the current fog node does not380

have the capacity to process the data, it sends them over to another node based on the actual strategy of381

the Application.382

10/20

The life-cycle of a DataCapsule object ends, when the actuator interface receives a notification383

indirectly by triggering a consumption event for which the IoT device has been subscribed to.By definition384

of the DataCapsule, its life-cycle can also end without actualisation events, if the actuationNeeded is set385

to false. A simplified demonstration of the DataCapsule’s path in the system (meaning the data flow) can386

be seen in Figure 5.387

The actuator model in DISSECT-CF-Fog is represented as the composition of three entities that highly388

depend on each other. These entities are the Actuator, ActuatorStrategy and the ActuatorEvent. The389

entities are serving input directly or indirectly for each other, as shown in Figure 6.390

Figure 6. Operation of the actuator model

As mentioned in Section 3.1 the actuator model must only operate with predefined events to limit its391

scope to certain actions. These events are represented by the ActuatorEvent component, which is the392

core element of this model. By itself, the ActuatorEvent is only an interface and should be implemented393

in order to specify an exact action. There are some predefined events in the system: five of them are394

low-level, sensor-related events (as discussed in Section 3.1, the other five are related to the mobile395

functionality of the devices, but these can be extended to different types of behaviours.396

Since the actuator has the ability to control the sensing process itself (Pisani et al., 2020), half of the397

predefined actuator events foster low-level sensor interactions. The Change filesize event can modify398

the size of the data to be generated by the sensor. Such behaviour reflects use cases, when more or399

less detailed data are required for the corresponding IoT application, or the data should be encrypted or400

compressed for some reason. The Increase frequency and Decrease frequency might be useful when the401

IoT application requires an increased time interval between the measurements of a sensor. A typical use402

case of this behaviour is when a smart traffic control system of a smart city monitors the traffic at night,403

when usually less inhabitants are located outside. The maximum value of the frequency is regulated by404

the corresponding SensorCharacteristics object. The Decrease frequency is the opposite of the previously405

mentioned one, a typical procedure may appear in IoT healthcare, for instance the blood pressure sensor406

of a patient measures continuously increasing values, thus more frequent perceptions are required. The407

minimum value of the frequency is regulated by the corresponding SensorCharacteristics. The Stop408

device event imposes fatal error of a device, typically occurring randomly, and it is strongly related to the409

mttf of the SensorCharacteristics. The mttf is considered as a threshold, before reaching it, there is only a410

small chance for failure, after exceeding it, the chance of a failure increases exponentially. Finally, the411

Restart device reboots the given device to simulate software errors or updates.412

Customised events can be added to the simulation by defining the actuate() method of the Actu-413

atorEvent class, that describes the series of actions to occur upon executing the event. The event is414

selected corresponding to the ActuatorStrategy, which is a separate and reusable logic component and415

indispensable according to Section 3.1. It is also an interface, and should be implemented to define416

scenario-specific behaviour. Despite its name, the ActuatorStrategy is capable of more than just simulating417

the configuration of an actuator and its event selection mechanism. This logic component can also be418

used to model the environmental changes and their side effects.419

DISSECT-CF-Fog is a general fog simulator that is capable of simulating a broad spectrum of scenarios420

only by defining the key features and functionalities of each element of a fog and cloud infrastructure.421

The ActuatorStrategy makes it possible to represent an environment around an IoT device, and make422

11/20

the actuator component reactive to its changes. For instance, let us consider a humidity sensor and a423

possible implementation of the actuator component. We can then mimic an agricultural environment in the424

ActuatorStrategy with the help of some well-defined conditions to react to changes in humidity values, and425

select the appropriate customised actuator events (e.g. opening windows, or watering), accordingly. This426

characteristic enables DISSECT-CF-Fog to simulate environment-specific scenarios, while maintaining427

its extensive and generic feature.428

Finally, the Actuator component executes the implemented actions and events. There are two possible429

event executions offered by this object:430

1. It can execute an event selected by the strategy. This is the typical usage, and it is performed431

automatically for devices needing actualisation, every time after the data have been processed by a432

computing unit, and a notification is sent back to the device.433

2. Single events can also be fired by the actuator itself. If there is no need for an intermediate434

computing unit (i.e. data processing and reaction for the result), the actuator can act immediately,435

wherever it is needed as we mentioned in Section 3.1.436

There might be a delay between receiving an ActuatorEvent and actually executing it, especially when437

the execution of the event is a time consuming procedure. This possible delay can be set by the latency438

attribute of the Actuator. By default, a device has no inherent actuator component, but it can be explicitly439

set by the setActuator() method in order to fulfil the optional presence of the actuator as mentioned in440

Section 3.1.441

3.4 Representing IoMT environments in DISSECT-CF-Fog442

The basis of mobility implementations in the competing tools usually represent the position of users443

or devices as two or three-dimensional coordinate points, and the distance between any two points444

is calculated by the Euclidean distance, whereby the results can be slightly inaccurate. To overcome445

this issue and have a precise model (as we stated in Section 3.2, we take into account the physical446

position of the end users, IoT devices and data centres (fog, cloud) by longitude and latitude values. The447

representative class called GeoLocation calculates distance using the Haversine formula. Furthermore,448

applying geographical location with a coordinate system often results in a restricted map, where the449

entities are able to move, thus in our case worldwide use cases can be implemented and modelled.450

Figure 7. Random Walk mobility model

In real life, the motion of an entity can be represented by a continuous function, however in DISSECT-451

CF-Fog the discrete events reflect the state of the function describing a motion, thus continuous movements452

are transformed into such events, for instance modifying the direction in discrete moments. Therefore, the453

12/20

actual position only matters and is evaluated before the decisions are made by a computing appliance or a454

device, for instance when the sensed data is ready to be forwarded.455

As we stated in Section 3.2, the mobile device movements are based on certain strategies. Currently456

two mobility strategies are implemented. We decided to implement one entity and one group mobility457

model according to Camp et al. (2002), but since we provide a mobility interface, the collection of the458

usable mobility models can be easily extended.459

The goal of the (i) Nomadic mobility model is that entities move together from one location to another,
in our realisation multiple locations (i.e. targets) are available. It is very similar to the public transport of
a city, where the route can be described by predefined points (or bus stops), and the dedicated points (Pi)
are defined as entities of the GeoLocation class. An entity reaching the final point of the route will no
longer move, but may function afterwards. Between the locations, a constant v speed is considered, and
there is a fixed order of the stops as follows:

P(lat,long)
1

v→ P(lat,long)
2

v→ ...
v→ P(lat,long)

n

The (ii) Random Walk mobility takes into consideration entities with unexpected and unforeseen460

movements, for instance the observed entity walks around the city, unpredictably. The aim of this policy461

is to avoid moving in straight lines with a constant speed during the simulation, because such movements462

are unrealistic. In this policy, a range of the entity is fixed (r), where it can move with a random speed463

(v). From time to time, or if the entity reaches the border of the range, the direction and the speed of the464

movement dynamically change (Pi). That kind of movement is illustrated in Figure 7.465

The MobilityDecisionMaker class is responsible for monitoring the position of the fog nodes and466

IoT devices, and making decisions knowing these properties. This class has two main methods. The467

(i) handleDisconnectFromNode() closes the connection with the corresponding node in case the latency468

exceeds the maximum tolerable limit of the device, or the IoT device is located outside of the range of the469

node. The (ii) handleConnectToNode() method is used, when a device finds a better fog node instead470

of the current one, or the IoT device runs without connection to any node, and it finds an appropriate471

one. These methods are directly using the actuator interface to execute the corresponding mobility-based472

actuator events.473

As we mentioned earlier, actuation and mobility are interlinked, thus we introduce five actuator events474

related to mobility according to Section 3.2. Position changes are done by Change position event of the475

actuator. The connection or disconnection methods of a device are handled by the Disconnect from node476

and Connect to node events, respectively. When a more suitable node is available for a device than the477

already connected one, the Change node actuator event is called. Finally, in some cases a node may stay478

without any connection options due to its position, or in cases when only overloaded or badly equipped479

fog nodes are located in its neighbourhood. The Timeout event is used to measure the unprocessed data480

due to these conditions, and to empty the device’s local repository, if data forwarding is not possible.481

4 EVALUATION482

We evaluated the proposed actuator and mobility extensions of the DISSECT-CF-Fog simulator with two483

different scenarios, which belong to the main open research challenges in the IoT field (Marjani et al.,484

2017). The goal of these scenarios is to present the usability and broad applicability of our proposed485

simulation extension. We also extended one of the scenarios with larger scale experiments, in order486

to determine the limitations of DISSECT-CF-Fog (e.g. determining the possible maximum number of487

simulated entities).488

Our first scenario is IoT-assisted logistics, where more precise location tracking of products and trucks489

can be realised, than with traditional methods. It can be useful for route planning (e.g. for avoiding traffic490

jams or reducing fuel consumption), or for better coping with different environmental conditions (e.g. for491

making weather-specific decisions).492

Our second scenario is IoT-assisted (or smart) healthcare, where both monitoring and reporting493

abilities of the smart systems are heavily relied on. Sensors wore by patients continuously monitor the494

health state of the observed people, and in case of data spikes it can immediately alarm the corresponding495

nurses or doctors.496

During the evaluation of our simulator extension we envisaged a distributed computing infrastructure497

composed of a certain number of fog nodes (hired from local fog providers) to serve the computational498

13/20

needs of our IoT applications. Beside these fog resources, additional cloud resources can be hired from a499

public cloud provider. For each of the experiments, we used the cloud schema of LPDS Cloud of MTA500

SZTAKI1 to determine realistic CPU processing power and memory usage for the physical machines.501

Based on this schema we attached 24 CPU cores and 112 GB of memory for a fog node, and set at most502

48 CPU cores and 196 GB of memory to be hired from a cloud provider to start virtual machines (VMs)503

for additional data processing.504

The simulator can also calculate resource usage costs, so we set VM prices according to the Amazon505

Web Services2 (AWS) public cloud pricing scheme. For a cloud VM having 8 CPU cores and 16 GB506

RAMs we set 0.204$ hourly price (a1.2xlarge), while for a fog VM having 4 CPU cores and 8 GB RAMs507

we set 0.102$ hourly price (a1.xlarge). This means that the same amount of data is processed twice faster508

on the stronger, cloud VM, however the cloud provider also charges twice as much money for it. In our509

experiments, we proportionally scale the processing time of data, for every 50 kBytes, we model one510

minute of processing time on the Cloud VM.511

For both scenarios, we used a PC with Intel Core i5-4460 3.2GHz, 8GB RAM and a 64-bit Windows512

10 operating system to run the simulations. Since our simulations take into account random factors, each513

experiment was executed ten times, and the average values are presented below.514

Figure 8. Applied fog ranges in the first scenario

4.1 The Logistics IoT Scenario515

In the first scenario, we simulated a one year long operation of a smart transport route across cities located516

in Hungary. This track is exactly 875 kilometers long, and it takes slightly more than 12 hours to drive517

through it by a car based on the Google Maps, which means the average speed of a vehicle is about 73518

km/h.519

We placed fog nodes in 9 different cities maintained by a domestic company, and we used a single520

cloud node of a cloud provider located in Frankfurt. Each fog node has direct connection with the cloud521

node, the latency between them is set based on the values provided by the WonderNetwork service 3.522

A fog node forms a cluster with the subsequent and the previous fog node on the route as depicted in523

Figure 8. This figure also presents the first test case (a), when the range of a fog node is considered as 25524

kilometers radius (similarly to a LoRa network). For the second test case (b), we doubled the range to525

50 kilometers radius. The IoT devices (placed in the vehicles to be monitored) were modelled with 4G526

network options with an average 50 ms of latency.527

All vehicles were equipped by three sensors (asset tracking sensor, AIDC (automatic identification528

and data capture) and RFID (radio-frequency identification)) generating 150 bytes4 of data per sensor. A529

daemon service on the computational node checks the local storage for unprocessed data in every five530

minutes, and allocates them in a VM for processing. Each simulation run deals with increasing number of531

1LPDS Cloud of MTA SZTAKI website is available at: https://www.sztaki.hu/en/science/departments/lpds. Accessed in October,
2020.

2Amazon Web Service website is available at: https://aws.amazon.com/ec2/pricing/on-demand/. Accessed in October, 2020
3WonderNetwork website is available at: https://wondernetwork.com/pings. Accessed in October, 2020
4Ericsson website is available at: https://www.ericsson.com/en/mobility-report/articles/massive-iot-in-the-city. Accessed in May,

2021

14/20

Actuator Strategy Random
Fog node range (km) 25 50

Vehicle (pc.) 2 20 200 2 20 200
VM (pc.) 19 19 19 19 19 19

Generated data (MB) 48 491 4868 79 801 8025
Fog + Cloud cost ($) 1988.5 2973.1 9619.9 3061.1 4026.1 10357.4

Delay (min.) 5.0 4.01 2.03 5.0 4.02 2.02
Runtime (sec.) 3 13 141 4 16 169

Change file size (pc.) 20 937 210 009 2 102 215 34 873 348 226 3 477 983
Change node (pc.) 0 0 0 11 573 115 535 1 155 243

Change position (pc.) 181 388 1 812 784 18 137 172 181 447 1 814 159 18 141 355
Connect / disconnect

to node (pc.) 12 985 129 944 1 299 099 1556 15 833 158 751

Increase frequency (pc.) 21 239 210 352 2 104 912 34 812 346 774 3 479 261
Decrease frequency (pc.) 10 591 105 888 1 059 124 17 282 174 314 1 739 929
Restart / stop device (pc.) 0 0 0 0 0 0

Timeout (pc.) 70 941 709 384 7 091 262 0 0 0
Timeout data (MB) 27 274 2752 0 0 0

Table 3. Results of the Random Actuator strategy and number of events during the first scenario

IoT entities, we initialise 2, 20 and 200 vehicles in every twelve hours, which go around on the route. Half532

of the created objects are intended to start their movements in the opposite direction (selected randomly).533

During our experiments, we considered two different actuator strategies: the (i) RandomEvent models534

a chaotic system behaviour, where both mobility and randomly appearing actualisation events of a535

sensor can happen. The failure rate of IoT components mttf were set to 90% of a year, and avoiding536

unrealistically low or high data generation frequencies, we limited them to a range of one to 15 minutes537

(minFreq,maxFreq). Finally, we enhanced the unpredictability of the system by setting the actuatorRatio538

to 50%. The (ii) TransportEvent actuator policy defines a more realistic strategy to model asset tracking,539

which aims to follow objects based on a broadcasting technology (e.g. GPS). A typical use case of this,540

when a warehouse can prepare for receiving supplies according to the actual location of the truck. In our541

evaluation, if the asset was located closer than five kilometers, it would send position data in every two542

minutes. In case of five to 10 kilometers, the data frequency is five minutes, and from 10 to 30, the data543

generation is set to 10 minutes, lastly if it is farther than 30 kilometers, it informs changes in 15 minutes.544

The results are shown in Table 3 and 4. The comparison are based on the following parameters:545

(i) VM reflects the number of created VMs during the simulation on the cloud and fog nodes, which546

process the amount of generated data. As we mentioned earlier, our simulation tool is able to calculate547

the utilisation cost of the resources based on the predefined pricing schemes (Fog+Cloud cost). Delay548

reflects the timespan between the time of last produced data and the last VM operation. Runtime is a549

metric describing how long the simulation run on the corresponding PC. The rest of the parameters are550

previously known, it shows the number of the defined actuator and mobility events. Nevertheless Timeout551

data is highlighting the amount of data lost, which could not been forwarded to any node, because the552

actual position of a vehicle is to far for all available nodes.553

Interpreting the results, we can observe that in case of the 25 kilometers range, the RandomEvent554

drops more than half (around 56,19%) of the unprocessed data losing information, whilst the same average555

is about 23,4% for the TransportEvent. In case of 50 kilometers range, there is no data dropped, because556

the nodes roughly cover the route and the size of gaps cannot trigger the Timeout event. In contrary, the557

ranges do not cover each other in case of the 25 kilometers range, which results in zero Change node558

event.559

Based on the Fog+Cloud cost metric, one can observe that the TransportEvent utilises the cloud and560

fog resources more, than the RandomEvent, nevertheless the average price of a device (applying two561

vehicles) is about 1197.7$, in case of 20 assets it decreases to about 206.2$, and lastly operating 200562

objects reduce the price to about 50.6$, which means that the continuous load of the vehicles utilises the563

VMs more effectively.564

15/20

Actuator Strategy Transport
Fog node range (km) 25 50

Vehicle (pc.) 2 20 200 2 20 200
VM (pc.) 19 19 19 19 19 19

Generated data (MB) 65 642 6445 83 851 8469
Fog + Cloud cost ($) 1974.7 4492.9 10231.1 2557.8 5006.5 10312.7

Delay (min.) 5.0 4.03 2.02 5.0 4.04 4.01
Runtime (sec.) 3 13 119 4 15 128

Change file size (pc.) 20 012 198 221 1 986 157 20 107 189 693 1 870 594
Change node (pc.) 0 0 0 6111 65 424 654 135

Change position (pc.) 91 167 910 014 9 122 057 93 088 970 373 9 791 859
Connect / disconnect

to node (pc.) 13 140 131 455 1 314 037 7029 66 349 659 573

Increase frequency (pc.) 19 833 198 888 1 982 648 19 573 66 117 1 872 881
Decrease frequency (pc.) 19 735 199 759 1 983 997 19 646 189 298 1 875 489
Restart / stop device (pc.) 0 0 0 0 0 0

Timeout (pc.) 35 379 354 788 3 536 881 0 0 0
Timeout data (MB) 15 149 1557 0 0 0

Table 4. Results of the Transport Actuator strategy and number of events during the first scenario

Since the IoT application frequency was set to five minutes, we considered the Delay acceptable, when565

it was equal or less than five minutes. Based on the results, all test cases fulfilled our expectation. It is566

worth mentioning that mttf might be effective only in simulating years of operation, thus neither software567

nor hardware error is triggered (Restart / stop device) in this case. The Runtime metric also points to568

the usability and reliability performance of DISSECT-CF-Fog; less than three minutes was required to569

evaluate a one year long scenario with thousand of entities (i.e. simulated IoT devices and sensors running570

for a year).571

4.2 Smart healthcare scenario572

In the second scenario, we continued our experiments with a smart healthcare case study. In this scenario,573

patients wear blood pressure and heart rate monitors. We automatically adjust the data sampling period if574

the monitors report off nominal behaviour: (i) in case of blood pressure lower than 90 or higher than 140;575

(ii) in case of heart rate values lower than 60, and higher than 100.576

In this scenario, each patient represents a different data flow (starting from its IoT device), similarly577

to the previously mentioned way. First the data is forwarded to the fog layer, if the data processing is578

impossible there due to overloaded resources, then the data is moved to the cloud layer to be allocated579

to a VM for processing. As IoT healthcare requires as low latency as possible, the frequency of the580

daemon services on the computational node was set to one minute. Similarly to the first scenario, one581

measurement of a sensor creates (a message of) 150 bytes.582

We focus on the maximum number of IoT devices which can be served with minimal latency by the583

available fog nodes, and we are also interested in the maximum tolerable delay, if the raw data is processed584

in the cloud. We applied the same VM parameters as in the previous scenario, and the simulation period585

took one day. We did not implement mobility in this scenario, nevertheless actualisation events were still586

required in case of health emergency to see how the system adapts to the unforeseen data.587

Similarly to the first scenario, the hospital was assumed to use a public cloud node in Frankfurt, but it588

was also assumed to maintain three fog nodes on the premises of the hospital. During our experiments,589

we considered various number of patients (100, 1000 and 10 000), and we investigated how the operating590

costs and delay change and adapt to the different the number of fog VMs and actualisation events.591

Since each fog node is available in the local region, the communication latency was set randomly592

between 10 and 20 ms (regarding to AWS5), furthermore the actuatorRatio was set to 100%, because of593

5AWS Architecture Guidelines and Decisions website is available at: https://aws.amazon.com/blogs/compute/low-latency-
computing-with-aws-local-zones-part-1/. Accessed in May, 2021

16/20

the vital information of the sensed data, thus each measurement required some kind of actuation. The rest594

of the parameters were the same we used in the logistics scenario.595

Actuator Strategy Healthcare
Fog / cloud node ratio 3 / 1 2 / 1 1 / 1 0 / 1

Patient (pc.) 10 000 1000 100 10 000 1000 100 10 000 1000 100 10 000 1000 100
VM (pc.) 21 11 12 17 8 9 12 5 5 6 2 2

Generated data (MB) 251 27 2 231 27 2 197 27 2 145 27 2
Fog + Cloud cost ($) 48.1 25.1 27.8 42.0 19.7 22.7 35.2 15.3 14.9 37.1 10.8 9.9

Delay (min.) 7.74 1.41 1.06 9.51 1.46 1.07 9.50 1.79 1.05 14.8 2.44 1.22
Runtime (sec.) 8 1 1 8 1 1 8 1 1 11 1 1

Increase frequency (pc.) 132 125 14 687 1431 119 954 14 192 1392 98 975 14 127 1468 71 153 13 927 1399
Decrease frequency (pc.) 750 751 80 718 8068 684 829 80 845 8104 563 198 80 295 8023 406 155 81 105 8115
Restart / stop device (pc.) 0 0 0 0 0 0 0 0 0 0 0 0

Table 5. Results and number of events during the second scenario

Our findings are depicted in Table 5. One can observe that the increasing number of applied fog nodes596

reduces the average costs per patient, in case of three fog nodes the mean cost (projected on one patient)597

is around 83.7$. This amount of money is continuously grows as the fog nodes are omitted one by one,598

the corresponding average operating costs are about 97.7$, 118.7$ and 124.0$, respectively, which means599

maintaining fog nodes also might be economically worthy.600

Figure 9. Delay values of the second scenario

Figure 9 presents the delay of the IoT application concerning the number of utilised fog and cloud601

nodes. Using a higher number of fog nodes can foster faster data processing, however in case of 10 000602

patients, the best delay is 7.74 minutes, which points out that the utilised resources were overloaded. In603

the other cases the system managed the patients’ data with less than three minutes delay, but decreasing604

the number of usable fog nodes can continuously increase the delay.605

Lastly, we can observe that no failure happened during the evaluation (Restart / stop device), because606

of the reliability of medical sensors and the short time of simulation. We can also realise that our607

simulation tool is able to model thousands of smart objects (e.g. IoT devices and sensors), and their one608

day long simulated operation could be done in 11 seconds of elapsed time (Runtime) in the worst case.609

4.2.1 Large-scale experiments of the smart healthcare scenario610

In this section our goal was to point out the possible limitations of DISSECT-CF-Fog using the previously611

detailed smart healthcare scenario. The runtime of DISSECT-CF-Fog largely depends on the used612

execution environment and its actual hardware resources (mostly memory), similarly to any other software.613

Our findings are presented in Table 6, in which we used the same metrics as before.614

17/20

Actuator Strategy Healthcare
Fog / cloud node ratio 3 / 1 7 / 1 55 / 1

Patient (pc.) 170 000 180 000 190 000 190 000 190 000
VM (pc.) 24 24

Out of memory

48 336
Generated data (MB) 1 196 1 261 1 513 1 679
Fog + cloud cost ($) 197.6 208.5 244.9 674.9

Delay (min.) 6256.0 6796.0 5886.0 9.9
Runtime (sec.) 186 256 159 163

Increase frequency (pc.) 624 860 657 725 790 999 810 153
Decrease frequency (pc.) 3 557 783 3 751 754 4 498 906 4 049 325
Restart / stop device (pc.) 0 0 0 0 0

Table 6. Results and number of events in the scalability studies

For this scalability study, we also applied the earlier used topology with three fog nodes and a cloud615

node. To determine the exact number of IoT devices that can be modelled by the simulator is not possible,616

because our system takes into account random factors. Nevertheless, we can give an estimate by scaling617

of the number of IoT devices, in our case the amount of active devices (i.e. patients).618

In this evaluation we increased the number of patients with 10 000 for the test cases, and examined619

the memory usage of the execution environment. The results showed that even for cases of 170 000620

and 180 000 IoT devices, the fog and cloud nodes can process the vast amount of data generated by the621

modelled IoT sensors, however the Delay value also increased dramatically to 6 256 minutes, in the first622

case, and 6 796 minutes, in the second case. It is worth mentioning that besides such a huge number of623

active entities, the Runtime values are below five minutes. When we simulated 190 000 IoT devices, the624

simulator consumed all of the memory of the underlying hardware.625

In the fourth test case, we applied seven fog nodes. Our findings showed that the Delay value626

decreased spectacularly to 5 886 minutes, however it is far from what we experienced in the second627

scenario, therefore our further goal was to define how many computational resources (i.e. fog nodes) are628

required to decrease the Delay parameter below ten minutes, similary to what we expected in the second629

scenario.630

We can clearly seen in the fifth test case that at least 55 fog nodes are required for 190 000 IoT devices631

to process and store their data. In this case, the Delay value is 9.9 minutes, but because of the higher632

number of computational nodes, both numbers of the utilised VMs (336 pieces) and these costs (674.9$)633

increased heavily. The Java representation of the fog and cloud nodes hardly differ, therefore we could634

reach similar results, if we increased the number of cloud nodes as well.635

It can be clearly seen that the critical part of DISSECT-CF-Fog is the number of IoT devices utilising636

in the system, however if we also increase the number of the simulated computing resources (i.e. fog and637

cloud nodes), we can reach better scalability (i.e. the delay and simulation runtime would not grow). The638

reason for this is that the actual Java implementation of DISSECT-CF-Fog stores the references of model639

entities of the devices and the unprocessed data. To conclude, the current DISSECT-CF-Fog extension is640

capable of simulating even up to 200 thousand system entities. Limitations are only imposed by the the641

hardware parameters utilised, and the wrongly (or extremely) chosen ratio of the number of IoT devices642

and computing nodes set for the experiments.643

5 CONCLUSION644

In this paper, we introduced the extended version of DISSECT-CF-Fog to support actuators and mobility645

features. Concerning our main contribution, we designed and developed an actuator model that enables646

broad configuration possibilities for investigating IoT-Fog-Cloud systems. With our extensions, various647

IoT device behaviours and management policies can be defined and evaluated with ease in this simulator.648

We also evaluated our proposal with two different case studies of frequently used IoT applications, and649

we extended the smart healthcare scenario with large-scale experiments to determine the limitations of our650

approach. These IoT scenarios utilise the predefined actuator events of the simulator. We also presented651

how to use different actuator strategies, in order to define specific application (and sensor/actuator)652

18/20

behaviour. In essence, our solution ensures a compact, generic and extendable interface for actuator653

events, which is unique among state-of-the-art simulators in the area.654

Our future work will address more detailed and extended mobility models for migration and resource655

scaling decisions. We also plan to extend the actuator strategies to model various types and behaviour of656

IoT entities.657

SOFTWARE AVAILABILITY658

The source code of the extension can be found on GitHub:659

https://github.com/andrasmarkus/dissect-cf/tree/actuator/660

ACKNOWLEDGMENTS661

This research was supported by the Hungarian Scientific Research Fund under the grant number OTKA662

FK 131793, and by the Hungarian Government under the grant number EFOP-3.6.1-16-2016-00008.663

REFERENCES664

Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog computing and its role in the665

internet of things. Proceedings of the MCC workshop on Mobile Cloud Computing, DOI:666

10.1145/2342509.2342513.667

Brogi, A., Forti, S., and Ibrahim, A. (2018). Deploying fog applications: How much does it cost, by668

the way? 8th International Conference on Cloud Computing and Services Science (CLOSER), DOI:669

10.5220/0006676100680077.670

Camp, T., Boleng, J., and Davies, V. (2002). A survey of mobility models for ad hoc network research.671

Wireless Communications and Mobile Computing, DOI: 10.1002/wcm.72.672

Cheng, B., Solmaz, G., Cirillo, F., Kovacs, E., Terasawa, K., and Kitazawa, A. (2018). Fogflow: Easy673

programming of iot services over cloud and edges for smart cities. IEEE Internet of Things Journal,674

DOI: 10.1109/JIOT.2017.2747214.675

Gupta, H., Dastjerdi, A., Ghosh, S., and Buyya, R. (2016). ifogsim: A toolkit for modeling and simulation676

of resource management techniques in the internet of things, edge and fog computing environments.677

Software: Practice and Experience, DOI: 10.1002/spe.2509.678

Jha, D. N., Alwasel, K., Alshoshan, A., Huang, X., Naha, R., Battula, S., Garg, S., Puthal, D., James, P.,679

Zomaya, A., Dustdar, S., and Ranjan, R. (2020). Iotsim-edge: A simulation framework for modeling the680

behavior of internet of things and edge computing environments. Software: Practice and Experience,681

DOI: 10.1002/spe.278.682

Kecskemeti, G. (2015). Dissect-cf: A simulator to foster energy-aware scheduling in infrastructure clouds.683

Simulation Modelling Practice and Theory, DOI: 10.1016/j.simpat.2015.05.009.684

Lera, I., Guerrero, C., and Juiz, C. (2019). Yafs: A simulator for iot scenarios in fog computing. IEEE685

Access, DOI: 10.1109/ACCESS.2019.2927895.686

Mahmud, R., Kotagiri, R., and Buyya, R. (2018). Fog computing: A taxonomy, survey and future687

directions. Internet of Everything: Algorithms, Methodologies, Technologies and Perspectives, DOI:688

10.1007/978-981-10-5861-5 5.689

Marjani, M., Nasaruddin, F., Gani, A., Karim, A., Hashem, I. A. T., Siddiqa, A., and Yaqoob, I. (2017).690

Big iot data analytics: Architecture, opportunities, and open research challenges. IEEE Access, DOI:691

10.1109/ACCESS.2017.2689040.692

Markus, A., Gacsi, P., and Kertesz, A. (2020). Develop or dissipate fogs? evaluating an iot application in693

fog and cloud simulations. 10th International Conference on Cloud Computing and Services Science694

(CLOSER), DOI: 10.5220/0009590401930203.695

Markus, A. and Kertesz, A. (2020). A survey and taxonomy of simulation environments modelling fog696

computing. Simulation Modelling Practice and Theory, DOI: 10.1016/j.simpat.2019.102042.697

Motlagh, N. H., Mohammadrezaei, M., Hunt, J., and Zakeri, B. (2020). Internet of things (iot) and the698

energy sector. Energies, DOI: 10.3390/en13020494.699

Nahrstedt, K., Li, H., Nguyen, P., Chang, S., and Vu, L. (2020). Internet of mobile things: Mobility-driven700

challenges, designs and implementations. IEEE First International Conference on Internet-of-Things701

Design and Implementation (IoTDI), DOI: 10.1109/IoTDI.2015.41.702

19/20

Ngai, E. C. H., Lyu, M. R., and Liu, J. (2006). A real-time communication framework for wireless703

sensor-actuator networks. IEEE Aerospace Conference, DOI: 10.1109/AERO.2006.1655885.704

Pisani, F., de Oliveira, F. M. C., Gama, E. S., Immich, R., Bittencourt, L. F., and Borin, E. (2020). Fog705

computing on constrained devices: Paving the way for the future iot. Advances in Edge Computing:706

Massive Parallel Processing and Applications, DOI: 10.3233/APC200003.707

Puliafito, C., Gonçalves, D. M., Lopes, M. M., Martins, L. L., Madeira, E., Mingozzi, E., Rana, O.,708

and Bittencourt, L. F. (2020). Mobfogsim: Simulation of mobility and migration for fog computing.709

Simulation Modelling Practice and Theory, DOI: 10.1016/j.simpat.2019.102062.710

Qayyum, T., Malik, A., Khan, M., Khalid, O., and Khan, S. (2018). Fognetsim++: A toolkit for modeling711

and simulation of distributed fog environment. IEEE Access, DOI: 10.1109/ACCESS.2018.2877696.712

Ranjan, R., Villari, M., Shen, H., Rana, O., and Buyya, R. (2020). Software tools and techniques for fog713

and edge computing. Software: Practice and Experience, DOI: 10.1002/spe.2813.714

Sheltami, T. R., Al-Roubaiey, A. A., and Mahmoud, A. S. H. (2016). A survey on developing715

publish/subscribe middleware over wireless sensor/actuator networks. Wireless Networks, DOI:716

10.1007/s11276-015-1075-0.717

Sonmez, C., Ozgovde, A., and Ersoy, C. (2018). Edgecloudsim: An environment for performance718

evaluation of edge computing systems. Transactions on Emerging Telecommunications Technologies,719

DOI: 10.1002/ett.3493.720

Svorobej, S., Endo, P. T., Bendechache, M., Filelis-Papadopoulos, C., Giannoutakis, K. M., Gravvanis,721

G. A., Tzovaras, D., Byrne, J., and Lynn, T. (2019). Simulating fog and edge computing scenarios: An722

overview and research challenges. Future Internet, DOI: 10.3390/fi11030055.723

Taylor, R., Baron, D., and Schmidt, D. (2015). The world in 2025 - predictions for the next ten years.724

10th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT),725

DOI: 10.1109/IMPACT.2015.7365193.726

Tychalas, D. and Karatza, H. (2018). Simulation and performance evaluation of a fog system. Third Inter-727

national Conference on Fog and Mobile Edge Computing (FMEC), DOI: 10.1109/fmec.2018.8364041.728

20/20

