
FoBSim: An extensible open-source1

simulation tool for integrated2

Fog-Blockchain systems3

Hamza Baniata and Attila Kertesz4

Department of Software Engineering, University of Szeged, Hungary5

Corresponding author:6

H. Baniata7

Email address: baniatah@inf.u-szeged.hu8

ABSTRACT9

A lot of hard work and years of research are still needed for developing successful Blockchain (BC) appli-
cations. Although it is not yet standardized, BC technology was proven as to be an enhancement factor
for security, decentralization, and reliability, leading to be successfully implemented in cryptocurrency
industries. Fog computing (FC) is one of the recently emerged paradigms that needs to be improved to
serve Internet of Things (IoT) environments of the future. As hundreds of projects, ideas, and systems
were proposed, one can find a great R&D potential for integrating BC and FC technologies. Examples
of organizations contributing to the R&D of these two technologies, and their integration, include Linux,
IBM, Google, Microsoft, and others. To validate an integrated Fog-Blockchain protocol or method im-
plementation, before the deployment phase, a suitable and accurate simulation environment is needed.
Such validation should save a great deal of costs and efforts on researchers and companies adopting
this integration. Current available simulation environments facilitate Fog simulation, or BC simulation, but
not both. In this paper, we introduce a Fog-Blockchain simulator, namely FoBSim, with the main goal is
to ease the experimentation and validation of integrated Fog-Blockchain approaches. According to our
proposed workflow of simulation, we implement different Consensus Algorithms (CA), different deploy-
ment options of the BC in the FC architecture, and different functionalities of the BC in the simulation.
Furthermore, technical details and algorithms on the simulated integration are provided. We validate
FoBSim by describing the technologies used within FoBSim, highlighting FoBSim novelty compared to
the state-of-the-art, discussing the event validity in FoBSim, and providing a clear walk-through validation.
Finally, we simulate two case studies, then present and analyze the obtained results.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

1 INTRODUCTION29

In light of the general tendency towards skepticism around Blockchain (BC) systems being reliable,30

huge research and industrial projects are being encouraged to address issues and vulnerabilities of those31

systems. This is because it is believed that a successful BC deployment would definitely advance the32

Internet-of-Everything (IoE) applications. Dubai, for example, has been planning for being the first smart33

city powered by BC [1]. China had launched, in late 2019, a BC-based smart city ID system [2], while34

it is planning to have its own official digital currency [3]. Before that, Liberstad, a private smart city in35

Norway, has officially adopted City Coin as its official currency 1.36

BC is a Distributed Ledger Technology (DLT) in the form of a distributed transactional database,37

secured by cryptography, and governed by a consensus mechanism [4]. This technology was first38

introduced as the backbone of the Bitcoin ecosystem in 2009 [5]. As BC got high reputation and attention39

among research and industry communities, as well as governments, it has proven robustness against the40

disadvantages of classical centralized systems. Furthermore, different versions, uses, paradigms, and41

platforms were proposed, aiming to extend the deployment of BC beyond cash and payment purposes.42

Concerning smart things, homes, and cities, Fog Computing (FC) paradigms become reality. FC is a43

horizontal, physical or virtual resource paradigm that resides between smart end-devices and traditional44

1https://www.liberstad.com/

cloud data centers [6]. FC is conceptually an extension of the cloud at the edge of the network. Hence,45

most cloud services should be introduced by the fog layer as well, except the fog provides better latency46

measures.47

Different reference architectures were proposed for the FC paradigm, e.g. by Habibi et al. [7],48

Dastjerdi et al. [8], the OpenFog consortium [9], and Cisco [10]. Nevertheless, they all have the same49

general properties of middling between end-users and the clouds, providing cloud services at the edge of50

the network, managing mobility issues, and introducing reliable and secure communications.51

We have previously investigated the integration of BC with FC in [11]. Accordingly, we concluded52

that such integration may ease the optimization of several current Cloud-Edge issues, such as enhancing53

security, credibility, and resource efficiency. Also, decentralizing FC applications decreases the appearance54

of single points of failure and the control of a centralized authority. However, we found that major55

challenges still need more research efforts such as:56

• The lack of individual standardization of both technologies, FC and BC, which leads to the lack of57

standardization of the integration of them.58

• Many privacy issues and threats remain, such as the location awareness property of fog components,59

which raises some concerns.60

• Ironically, as FC enhances the latency of end-user applications, BC causes the exact opposite, if61

the consensus mechanisms were not properly designed. Other major issues may also represent62

barriers if this latency issue was not addressed, such as authentication, scalability, and heterogeneity63

problems. This is because solving the latency problem may require waiving some advantageous64

protocols or mechanisms of FC.65

• The aforementioned challenges may further lead to somewhat low Trust levels of the BC-FC66

integration, which is the main cause of the illegalization of BC technologies in general.67

Consequently, the research and industry communities have been working hand-in-hand to solve68

these major challenges, along with other technical issues. Such efforts require reliable and flexible69

simulation environments that can mimic real-life scenarios with the lowest possible costs. Old, out-dated,70

or somewhat close simulation tools that were initially implemented for classical Peer-to-Peer networks,71

such as PeerSim [12], may not be able to cover all the mechanisms of a modern BC system. Although72

some recently proposed systems use PeerSim, such as [13], which required vast amount of changes,73

modifications, and additions to redesign it into a BC simulation tool.74

In this paper, we propose a Fog-Blockchain simulation environment, called FoBSim, that is able to75

simulate different integration scenarios of FC and BC. Concerning our main contributions, we discuss76

and analyze the architectural elements of FC and BC based systems, and present the modules, algorithms,77

and strategies implemented in FoBSim. We also describe in detail the validation, the incentivization, and78

the confirmation mechanisms deployed in the current version of FoBSim. To exemplify its utilization, we79

discuss possible application scenarios of FC-BC integration, and we clarify how such applications can be80

simulated and optimized using FoBSim.81

The main properties of the current version of FoBSim are as follows:82

1. FoBSim provides different Consensus Algorithms (CA), namely PoW, PoS, and PoA that are ready83

to be deployed in any scenario.84

2. FoBSim allows the easy deployment of the BC miners in the fog layer or the end-user layer.85

3. FoBSim allows different services to be reliably provided by the BC network, namely Data Man-86

agement, Identity Management, Computational Services (through Smart Contracts (SC)), and87

Payment/Currency transfer Services.88

4. FoBSim provides both, parallel execution and non-parallel execution, of mining processing. While89

gossiping is conducted efficiently so that the distributed chain is consistent in different possible90

network topologies.91

5. FoBSim is the first simulation environment that aims to mimic any integration scenario of FC and92

BC technologies.93

2/33

The remainder of the paper is organized as follows: Section 2 presents and discusses the state-of-the-94

art simulation environments that are maybe suitable to simulate FC-BC systems. To properly introduce95

FoBSim, we discuss, in detail, how FC architectural elements are deployed in Section 3. Additionally, we96

discuss the categories of BC systems, each with its properties and components in Section 4. Accordingly,97

we propose the components, the algorithms, and the functions of the FoBSim environment in Section 5.98

To validate FoBSim, we simulate some use cases and present the simulation results in Section 6. Finally,99

we present our future work and conclude in Section 7.100

2 RELATED WORK101

Searching the literature for tools specifically implemented for simulating FC-BC integration scenarios,102

we found that no previous work has directly targeted our objective. That is, we found several simulation103

tools that mimic fog-enhanced cloud systems, IoT-Fog-Cloud scenarios, etc., and several tools that mimic104

BC scenarios, each with specific constraints on the used CAs. Nevertheless, some proposals for IoT-BC105

simulation tools can be somewhat related to our work. For example, the ABSOLUT tool, investigated106

in [14], models the deployment of BCs in IoT environments. Accordingly, some critical analysis were107

provided regarding network latency, effects of miners number on the overall efficiency of the IoT network,108

and simulation errors.109

Liaskos et al. [15] proposed a general architecture that a BC simulation needs to follow in order to110

be considered comprehensive. Further, some properties were declared as necessary for encouraging the111

adoption and re-usability of the simulation. The proposed architecture includes extensible connection112

strategies, BC nodes, BC chains, Transactions and Transaction pools, users, events, Blocks, and most113

importantly Consensus mechanisms. Events can include different triggers to other events - that may be114

performed by any entity of the network - (such as transaction/block arrival, transaction/block validation,115

connection requests, etc.). Also, Events need to be handled by concise and well implemented strategies.116

In light of the lack of simulation tools similar to our proposal, we found it more suitable to present117

this section in two separate groups: namely FC simulation tools, and BC simulation tools.118

2.1 FC simulation tools119

Recently, our research group has started to investigate the state-of-the-art related to cloud, IoT and fog120

simulation tools in [16]. Within this study, several simulation tools were classified, compared, and121

analyzed, such as the DockerSim tool [17], FogNetSim++ [18], and EdgeCloudSim [19]. Furthermore,122

technical details, advantages, vulnerabilities, and software quality issues were also discussed.123

Rahman et al. [20] surveyed 15 simulation tools for cloud and data centers networks scenarios. The124

tools were discussed and compared according to several criteria, such as the Graphical User Interface (GUI)125

availability, the language with which the simulator was implemented, and the communications model.126

Consequently, they proposed the Nutshell tool which addresses some drawbacks that were ignored by most127

of the surveyed simulators. For example, most surveyed simulators had abstract network implementation128

and low-level details were missing. Further, non of the studied tools provided an addressing scheme, a129

congestion control mechanism, or a traffic pattern recognition mechanism. Out of those 15 presented130

simulation tools, seven were defined as extensions of the CloudSim toolkit [21].131

Yousefpour et al. [22] presented a complete survey about FC, referencing 450 publications specifically132

concerned with FC development and applications. Within their extended survey, some FC simulation133

tools, such as iFogSim [23, 24], Emufog [25], Fogbed [26], and MyiFogSim [27] were discussed. As134

iFogSim was conceptually built using the CloudSim communications model, it inherited some of its135

properties, such as the ability to co-execute multiple tasks at the same time and the availability of plugable136

resource management policies.137

Generally speaking, any cloud simulation tool can be extended to be a fog-enabled simulation tool.138

This is because of the fundamental property of the fog layer acting as a bridge between end-users and the139

cloud. In other words, adding a fog module to a cloud simulation tool, describing communications, roles,140

services, and parameters of fog nodes, is sufficient to claim that the tool is a fog-enhanced cloud simulation141

tool. Additionally, in a project that targets a Fog-BC integration applications, many researchers used a142

reliable, general-purpose fog simulator and implemented the BC as if it was an application case, such as143

in [28]. The results of such a simulation approach can be trusted valid for limited cases, such as providing144

a proof of concept of the proposal. However, critical issues, such as scalability and heterogeneity in huge145

networks, need to be simulated in a more specialized simulation environments. To mention one critical146

3/33

Ref. PL PoW PoS PoA SC DM PM IDM F
[35, 36] Python X χ χ X χ X χ χ

[37] Python X χ χ χ χ X χ χ

[39] Java X χ χ X χ χ χ χ

[40] Python X X χ χ X χ χ χ

[41] Python χ χ χ χ χ X χ χ

[42] Java X χ χ X χ X χ χ

FoBSim Python X X X X X X X X

Table 1. Blockchain simulation tools and their properties

case, the BC protocols deployed in different CAs require more precise and accurate deployment of the147

BC entities and inter-operation in different layers of a Fog-enhanced IoT-Cloud paradigm. Consequently,148

as some simulation scenarios need an event-driven implementation, while others need a data-driven149

implementation, a scenario outputs may differ when simulated using different simulation environments.150

Such possibility of fluctuated simulation outputs should normally lead to unreliable simulation results.151

2.2 BC simulation tools152

As we have previously investigated how a Fog-Blockchain integration is envisioned, we started the153

implementation of FoBSim with a simple BC simulation tool described in [29]. Consequently, we discuss154

the state of the art regarding BC simulation tools available in the literature. In later sections, we describe155

how FoBSim serves as a reliable tool to mimic an FC-BC integration scenario.156

Anilkumar et al. [30] have compared different available simulation platforms specifically mimicking157

the Ethereum BC, namely Remix Ethereum [31], Truffle Suite [32], Mist [33], and Geth [34]. The158

comparison included some guidelines and properties such as the initialization and the ease of deployment.159

The authors concluded that truffle suite is ideal for testing and development, Remix is ideal for compilation160

and error detection and correction, while Mist and Geth are relatively easy to deploy. Alharby et al. [35]161

and Faria et al. [36] proposed a somewhat limited simulation tool, namely BlockSim, implemented in162

Python, which specifically deploys the PoW algorithm to mimic the BitCoin and Ethereum systems.163

Similarly, Wang et al. [37] proposed a simulation model to evaluate what is named Quality of Blockchain164

(QoB). The proposed model targeted only the PoW-based systems aiming to evaluate the effect on165

changing different parameters of the simulated scenarios on the QoB. For example, average block size,166

number of transactions per block/day, the size of the memPool, etc. affecting the latency measurements.167

Further, the authors identified five main characteristics that must be available in any BC simulation tool,168

namely the ability to scale through time, broadcast and multi-cast messages through the network, be169

Event-Driven, so that miners can act on received messages while working on other BC-related tasks,170

process messages in parallel, and handle concurrency issues.171

Gervais et al. [38] analyzed some of the probable attacks and vulnerabilities of PoW-based BCs172

through emulating the conditions in such systems. Sub-consequently, they categorized the parameters173

affecting the emulation into consensus-related, such as block distribution time, mining power, and the174

distribution of the miners, and network-related parameters, such as the block size distribution, the number175

of reachable network nodes, and the distribution of those nodes. However, they basically presented a176

quantitative framework to objectively compare PoW-based BCs rather than providing a general-purpose177

simulation tool.178

Memon et al. [39] simulated the mining process in PoW-based BC using the Queuing Theory, aiming179

to provide statistics on those, and similar systems. Zhao et al. [40] simulated a BC system for specifically180

validating their proposed Proof-of-Generation (PoG) algorithm. Hence, the implementation objective181

was comparing the PoG with other CAs such as PoW and PoS. Another limited BC implementation was182

proposed by Piriou et al. in [41], where only the blocks appending and broadcasting aspects are considered.183

The tool was implemented using Python, and it aimed at performing Monte Carlo simulations to obtain184

probabilistic results on consistency and ability to discard double-spending attacks of BC protocols. In [42],185

the eVIBES simulation was presented, which is a configurable simulation framework for gaining empirical186

insights into the dynamic properties of PoW-based Ethereum BCs. However, the PoW computations were187

excluded in eVIBES, and the last updates on the code were committed in 2018.188

To highlight the comparison between the mentioned BC simulation tools and our proposed FoBSim189

4/33

tool, we gathered the differences in Table 1. PL, PoW, PoS, PoA, SC, DM, PM, IDM, and F are abbrevia-190

tions for Programming Language, Proof-of-Work, Proof-of-Stake, Proof-of-Authority, Smart Contracts,191

Data Management, Payment Management, Identity Management, and Fog-enhanced, respectively. As192

shown in the table, none of the previously proposed BC simulation tools made the PoA algorithm available193

for simulation scenarios, provided a suitable simulation environment for identity management applications,194

or, most importantly, facilitated the integration of FC in a BC application.195

Many other references can be found in the literature, in which a part of a BC system, or a specific196

mechanism is implemented. The simulated ’part’ is only used to analyze a specific property in strict197

conditions, or to validate a proposed technique or mechanism under named and biased circumstances,198

such as in [43] and [44]. It is also worth mentioning here that some open-source BC projects are available199

and can be used to simulate BC scenarios. For example, the HyperLedger [45] projects administered200

by the Linux Foundation are highly sophisticated and well implemented BC systems. One can locally201

clone any project that suits the application needs and construct a local network. However, those projects202

are not targeting the simulation purposes as much as providing realized BC services for the industrial203

projects. Further, most of these projects, such as Indy, are hard to re-configure and, if re-configured, very204

sensitive to small changes in their code. Indy, for example, uses specifically a modified version of PBFT205

CA, namely Plenum, while Fabric uses RAFT.206

3 FC ARCHITECTURAL ELEMENTS207

The FC layer can be studied in three levels, namely the node level, the system level, and the service level208

[46]. The fog consists of several nodes connected to each other and to the cloud. The main purpose209

of the fog layer is to provide cloud services, when possible, closer to end-users. Further, the fog layer,210

conceptually, provides enhanced security and latency measures. Hence, an FC system uses its components211

in the fog layer to provide the services that end-users request from the cloud.212

In a simple scenario, the fog receives a service request from end-users, perform the required tasks213

in the most efficient method available, and sends the results back to end-users. As the clouds mainly214

provide Infrastructure, Software, and Platform -as-a-Service models, those three models can be used for215

computational tasks, storage tasks, or communication tasks [47].216

In a Fog-enhanced Cloud system, a general overview of the workflow is presented in Figure 1. As217

presented in the figure, the service is requested from end-users and the fog layer provides this service if218

possible, otherwise, the request is forwarded to the cloud where complex and time consuming actions are219

performed. However, information of the complexity of the system, and the decision making process in220

the fog layer, should not be within the concern of end-users. That is, end-users require their tasks to be221

performed within a privacy-aware context and the QoS measures implications that were agreed on.222

In FoBSim, the fog layer can be configured according to the scenario that needs to be simulated. For223

example, the number of fog nodes, the communications within the fog layer and with other entities of the224

simulated system, and the services provided by the fog, can all be modified.225

4 BC ARCHITECTURAL ELEMENTS226

BC as a DLT consists of several elements that need to efficiently interact with each other, in order to227

achieve the goal of the system. A general view of BC systems suggests some fundamental components228

that need to be present in any BC system. A BC system implies end-users who request certain types of229

services from a BC network. The BC network consists of multiple nodes, who do not trust each other,230

that perform the requested services in a decentralized environment. Consequently, the service provided by231

a BC network can only be valid if the BC network deployed a trusted method, i.e. CAs, to validate the232

services provided by its untrusted entities.233

In FoBSim, the BC network can provide two models of services; namely data storage, and computa-234

tions. Meanwhile, the communications within the BC network and with the fog layer are configurable.235

Data storage service model implies that pieces of data are saved on the immutable distributed ledger.236

Such data may be of any type including data records, IDs, digital payment registration, or reputation237

measures of end-users or Fog components. It can also be noted that some applications require assets238

to be transferred between clients, such as cryptocurrency transfer applications or real estate ownership239

applications. Other applications do not require transferring assets rather than saving data on the chain only,240

such as voting applications and eHealth applications. However, the mentioned second type of applications241

5/33

Figure 1. Workflow of an automated Fog-enhanced Cloud system

Figure 2. Service models provided by Cloud/Fog systems, and their relevant service models provided by
BC systems

may also need, on some level, a digital payment method be embedded. In such cases, SCs on other242

payment platforms can be implemented and generated, such as Bitcoin or Ethereum.243

Performing computations for end-users is the second service model that the BC in FoBSim can be244

configured to provide. That is, computational tasks can be sent by end-users/fog entities to the BC in245

the form of SC, which are small chunks of code, run by BC nodes upon fulfillment of algorithmically246

verifiable conditions [48]. After running the SCs, the results can be saved in a centralized or decentralized247

form according to the pre-run configuration. Figure 2 presents how the services, classically provided by248

a Cloud/Fog system, can be interpreted into the form of services that can be provided by a BC system.249

We can notice in the figure that SCs can be considered relevant to cloud computational services, while250

different types of data saved on the decentralized BC can be considered a relevant option to the centralized251

storage model provided by a cloud system.252

4.1 Consensus Algorithms253

Several approaches were proposed as a solution for the aforementioned needs, among which are the254

most famous Proof-of-Work (PoW) CA. PoW was deployed in 2009 in the first BC system, i.e. Bitcoin255

[49], and is currently used in other robust BC systems; such as Ethereum [50]. Although PoW methods256

have proven strong security and support to BC systems, it has some drawbacks, such as high energy257

consumption and high latency, that encouraged the R&D communities to search for other trusted methods.258

6/33

The Proof-of-Stake (PoS) algorithm [51] was proposed couple a years later in order to solve the259

high energy consumption problem implied by PoW. PoS is currently being optimized to provide similar260

advantages as PoW. Ethereum, for example, is planning to substitute PoW with PoS in the very near261

future. However, some drawbacks of PoS need to be solved before its official deployment, such as The262

Monopoly Problem [52], The Bribe Attack [53, 54], and relatively low reliability [55].263

In PoW-based BCs, a BC node proves the validity of its generated block of data by coupling a puzzle264

solution within the block. The puzzle solution is generally characterized by hardship to be obtained while265

it can easily be validated once found. Generally, the puzzle is a mathematical problem that requires266

high computational power to be obtained. In PoS-based BCs, the BC node that is allowed to generate267

the next block is chosen randomly by the system. To encourage the system to pick a specific BC node,268

staking more digital coins in deposit shall increase the probability of being chosen. This provides high269

trust measures as faulty generated blocks are not tolerated by the system, and the staked coins of the270

malicious/faulty BC node would be burned as a penalty.271

Other approaches were proposed that provide trust in BCs. Examples include the Proof-of-Elapsed-272

Time (PoET) [56], and the Proof-of-Authority (PoA) [57]. PoET-based BCs generate randomly selected273

times for BC nodes. The one node whose randomly picked time elapses first, is the one who is granted274

the opportunity to generate the next block. PoA, on the other hand, implies that only blocks signed by275

authorized members are validated and confirmed by the BC network. Those authorized nodes must be276

known trusted participants that can be tracked and penalized in case of faulty behaviour. Both of these277

CAs share the property of being suitable for private and permissioned BCs, while PoW and PoS are278

known for being suitable for public and permissionless BCs.279

FoBSim allows to choose the suitable CA according to the simulated scenario. While there are many280

versions of each CA mentioned, we currently provide the simplest version of each so that modifications281

can be performed with no complexities. To obtain more information about them, however, more detailed282

information can be found at [58, 59, 60].283

4.2 Transactions284

In a very simple scenario, an end-user sends a request to the BC network, which consists of BC nodes,285

to perform a defined transaction. As stated in the beginning of this section, transactions may be data to286

be stored (i.e. payment data, reputation data, identity data, etc.), or can be SCs whose results can be287

either saved in a centralized (in the case of Cloud) or distributed manner (in the cases of fog or BC). Once288

the transaction is performed, it should be agreed on by the majority of BC nodes if to be saved on the289

distributed ledger and, sub-consequently, be added to the chain saved in all BC nodes.290

On the other hand, if the fog layer is controlling and automating the communications between the291

end-user layer and the BC network, as in [61], the transactions are sent from end-users to the fog. After292

that, some communications take place between the fog layer and the BC network in order to successfully293

perform the tasks requested by end-users. In such system model, we assume that the BC network lays in a294

different layer than the fog layer. The case where the BC network is placed in the fog layer is covered in295

Subsection 4.4. Nevertheless, a feedback with the appropriate result of each transaction should be easily296

achievable by end-users.297

4.3 Distributed Ledger298

In the case were data needs to be stored in a decentralized manner, no Trusted Third Party (TTP) needs to299

be included in the storing process. The entity considered as a TTP in regular Fog-enhanced Cloud systems300

is the cloud, where data is stored. However, computations can take place in the fog layer to enhance the301

QoS.302

Within DLT-enabled systems, such as BC, groups of data are accumulated in blocks, and coupled with303

a proof of validity, as explained in Subsection 4.1. Once a new block of transactions is generated, and304

the proof is coupled with them, the new block is broadcast among all BC nodes. Nodes who receive the305

new blocks verify the proof and the data within each transaction, and if everything is confirmed valid,306

the new block is added to the local chain. With each BC node behaving this way, the new block is added307

to the chain in a distributed manner. That is, a copy of the same chain, with the same exact order of308

blocks, exists in each BC node. Further, a hash of the previous block is added to the new block, so that309

any alteration attack of this block in the future will be impractical, and hence almost impossible.310

7/33

Figure 3. FC-BC integration system model, where the BC is deployed in the fog layer.

4.4 Functionality of the BC Deployment311

As a BC-assisted FC system can provide computational and storage services, the BC placement within312

the the FC architecture may differ. That is, BC can be placed in the fog layer, the end-user layer, or the313

cloud layer. In FoBSim, however, we consider only the first two mentioned placement cases.314

When the BC is deployed in the fog layer, storage and computational services are performed by the fog315

nodes them selves. In other words, fog nodes wear a second hat, which is a BC network hat. Thus, when316

storage to be provided by the fog while fog nodes are also BC nodes, data is stored in all fog nodes in the317

fog layer. A simple system model is demonstrated in Figure 3, where only one chain is constructed in the318

lower fog layer and one fog control point in the upper layer monitors the BC functionality. However, such319

a model is not practical and more complexities appear in a real-life scenario, including heterogeneous fog320

nodes, multiple BCs deployment, different CAs, and different service models. In such complex systems,321

FoBSim can be easily extended by adding the needed classes and modules and, hence, cover necessary322

proposed scenario entities. A note is worth underlining here is the importance of differentiating between323

the services provided by fog nodes who are BC nodes, and the services provided by fog nodes who are not324

BC nodes. The first type gets incentivized by end-users for providing both fog services and BC services,325

while the second type gets incentivized by end-users for providing only fog services. Such critical issues326

need to be taken care of, when simulating Fog-BC scenarios, to maximize the reliability of the obtained327

results.328

In a system model where the BC is deployed in the end-user layer, we can distinguish two types329

of end-users; namely task requester and BC node. In a Fog-enhanced BC system, the fog controls the330

communications between the two types of end-users. Specifically, BC nodes perform the tasks that331

were sent to the BC network by the fog, which originally were requested by task requester end-users.332

Further, the fog can control the privacy preserving of data and incentivize BC nodes in the form of digital333

currency, as in [62]. To be specific, BC nodes can be further sub-categorized according to the scenario to334

be simulated. Adding other types of BC nodes is up to the developers and the system model. For example,335

the Bitcoin system is modeled in a simpler way, were BC is directly connected to task requester end-users,336

and it only provides a payment ledger service. Ethereum, on the other hand, provides computational and337

8/33

Figure 4. FC-BC integration system model, where the BC is deployed in the end-user layer

data management services. This makes Ethereum surpass Bitcoin because it can provide more services to338

end-users. However, FoBSim improves such system model by adding the fog layer. The system model339

provided by FoBSim when the BC is deployed in the end-user layer is demonstrated in Figure 4.340

5 THE FOBSIM ENVIRONMENT341

To cover all architectural elements described in Sections 3 and 4, we implemented FoBSim according342

to the conceptual workflow demonstrated in Figure 5. The current version of FoBSim covers all the343

architectural elements of a BC system and an FC system. This means that FoBSim successfully inlines344

with the general architecture of a reliable BC simulation presented in [15]. In fact, many more services and345

scenarios can be simulated using FoBSim, covering the fog layer inclusion besides the BC. As presented346

in Figure 5, different CAs can be used, different services of the BC network can be declared, and different347

placement scenarios of the BC network can be chosen. When the BC network is located in the fog layer,348

the number of BC nodes does not need to be input because, as described earlier, each fog node is also a349

BC node. Nevertheless, number of task requester end-users connected to each fog node needs to be input,350

while some fog nodes in a PoA-based scenario might be not authorized to mint new blocks. Once the351

network is built, running and testing the system model can take place.352

The FoBSim environment is implemented using Python v3.8, with the inclusion of some common353

packages such as: random, randrange, multiprocessing, time, and hashlib. The current version of FoBSim354

can be cloned and directly run as all the variables, lists, dictionaries, and sets have been given initial355

values. However, these parameters can be modified before running the code in the Sim parameters.json356

file. FoBSim tool is open-source and freely available at [63].357

5.1 FoBSim Modules358

Next, we discuss the modules of our proposed FoBSim environment and the interaction between its359

functions. To facilitate the understanding of FoBSim, we demonstrate the methods within each FoBSim360

module in Figure 6. Further, we conclude the classes and methods of FoBSim modules in Tables 2, 3, 4,361

5, 6, and 7. Some notes to be taken care of need to be underlined as well:362

1. There is a big opportunity for developers to implement new methods in the fog layer. For example,363

the fog nodes can be extensible to provide privacy-preserving mechanisms (such as described364

in [64]), computational services (such as described in [65]), or reputation and trust management365

services (such as described in [66]).366

2. memPool.py: In this module, the mempool, where TXs are accumulated, is a python multiprocessing367

queue that allows different processes to synchronously add() and get() TXs.368

3. There are other minor methods from other modules are also called by FoBSim entities that mints369

a new Block, or receives a new TX/Block, in order to synchronously and smoothly apply each370

different CA’s policies, as declared in its simple version.371

9/33

Figure 5. Workflow of a simulation run using the FoBSim environment

4. After each simulation run, some temporary files can be found in the temporary folder of FoBSim.372

These files are originally initiated by the main module, the BC module, or the miner module. The373

temporary files are used synchronously by different FoBSim entities, mimicking the real-world374

interaction between BC entities. The current version of FoBSim generates some or all of the375

following files depending on the simulated scenario:376

• Miners’ local chains.377

• Miners’ local records of users’ wallets.378

• Log of blocks confirmed by the majority of miners.379

• Log of final amounts in miners’ wallets (initial values - staked values + awards).380

• Log of coin amounts which were staked by miners.381

• The longest confirmed chain.382

• Forking log383

10/33

Figure 6. The interaction among modules and methods of the FoBSim environment

11/33

Function Description
user input() The BC functionality and BC placement are input by the user. Then this

function initiates temporary files. Currently, there are four functionalities
available, namely Data management, Computational services, Payment, and
Identity management, and two placement options, namely Fog layer and end-
user layer.

initiate network() user inputs additional Id attributes (if applicable). Fogs/end-users are then
constructed, end-users are triggered to create new TXs and send them to fogs.
Fogs receive TXs and wait for trigger.

initiate miners() Miners are constructed and relevant temporary files to the BC construction are
initiated.

connect miners() Miners are connected in a P2P fashion and the network is confirmed to be one
giant component.

give miners
authorization()

Allows the authorization of some miner nodes to mint new blocks in case the
CA is PoA.

inform miners
of users wallets()

Informs miners about the initial values of end-user wallets.

initiate genesis
block()

A new block is built whose previous hash value = 0, block no = 0, and TXs are
the addresses of miners (Fig. 8). Then, Fogs are triggered to send TXs in their
buffers to mempool.

miners trigger() Triggers miners to get TXs from memPool and start minting new blocks. The
approach of calling miners sequentially (FOR loop) or in parallel is discussed
in Subsection 5.3.2

Table 2. Functions in the main.py module

Function Description
Class: User Initiated with the attributes: addressParent, addressSelf, tasks, iden-

tity added attributes, and wallet
create tasks() if the BC function was Data Management, a TX is a randomly generated number

coupled with the end-user address. if the BC function was Computational
Services, a TX is a randomly chosen Elementary arithmetic operation (i.e. +,
-, *, /) coupled with two randomly generated numbers. The produced random
computational tasks is coupled with the addresses of end-users. Once a miner
solves a computational task, result is appended to the TX, and saved on chain.
If BC function is Payment, a TX is a randomly generated amount of coins (up to
the amount in the end-user’s wallet), coupled with a randomly chosen end-user
and the end-user’s self address. Validation and confirmation is conducted by the
receiver miner. If BC functionality is Identity Management, a TX is the address
of the end-user, coupled with any added ID attributes by the user. Table 8
declares the four formats of TXs in FoBSim, while Figure 7 present screenshots
of TXs generated by FoBSim entities.

add attributes() A function that allows the user to add additional ID attributes to end-user
devices.

send tasks() each user simply sends its tasks to the fog node it is connected with. Note
that in FoBSim multiple end-users can connect to one fog node, while each
end-user is connected to only one fog node. However, this can be re-configured
according to the simulation scenario.

Table 3. The Class and Functions in the end user.py module

12/33

Function Description
Class: Fog initiated with the attributes: address, tasks, and list of connected users.
receive tasks() receives the TXs from end-users and saves them in its buffer ”self.tasks”
send tasks to BC() sends all TXs in its buffer to the memPool modul

Table 4. The Class and Functions in the Fog.py module

Function Description
generate new
block()

outputs a list of TXs, a block number, a nonce value, a generator-id, the hash of
the previous Block, the timestamp of the generation, and the self hash.

hashing function() uses the Secure Hash Algorithm (SHA256) to generate the hash of the encoded
nonce, TXs, generator-id, and previous hash.

report a
successful block
addition()

records the votes sent by miners to indicate a successful majority confirmation
of a named block.

fork analysis() A method that, when called, counts the number of different chain versions in
the BC network.

stake() used when the PoS algorithm is chosen, where random amounts of coins are
taken from each miner’s wallet, and staked in the BC. This contributes later to
the BC system choosing (randomly) the miner that will mint the next Block,
biased by a tendency to choose miners with higher staked coins.

award winning
miners()

reads the voting record of winning miners and adds the winning award to their
wallets.

Table 5. Functions in the Blockchain.py module

Function Description
Class: Miner Initiated with Address, Top block (for saving the last confirmed block), a

Boolean isAuthorized attribute (for declaring whether this miner is authorized
to mint new Blocks in a PoA scenario), a next pos block from variable to mem-
orize the address of the next block generator, a set of neighbors, transmission
delay, and a boolean gossiping variable.

build block() constructs valid blocks according to the chosen BC functionality and CA.
receive new block() receives new blocks from neighbours, and adds them to its local chain if it was

new and valid. When the new block is successfully added, it is forwarded to
neighbours, otherwise it is discarded.

Validate
transactions()

Accepts new Blocks coming from other miners, validates them according to the
BC functionality and the used CA, and adds valid Blocks to the local chain.

add() performs and reports a successful Block addition
gossip() investigates the longest chain in the BC network and, accordingly, updates the

local chain according to majority consensus

Table 6. The Class and Functions in the miner.py module

Function Description
choose consensus() allows the user to choose one of the available CAs in FoBSim.
PoW mining() provides miners with the method to search for the puzzle solution in PoW based

scenarios.
PoW block
is valid()

returns either True or False according to the correctness of puzzle solution. If
one of the TXs were invalid, the whole Block is rejected.

PoA block
is valid()

checks the validity of Blocks generated when the PoA CA is chosen. Addition-
ally to the checks performed in the PoW block is valid(), this method checks
if the miner who minted the block is authorized to do so. If False returned, all
TXs within the block are sent back to memPool.

Table 7. Functions in the consensus.py module

13/33

BC functionality TX Format
Data Management [random number]
Computational Services [end-user ID, random computational task, Result, Miner]
Payment [Amount to be paid, Sender address (parent), Sender address (self),

Receiver address (parent), Receiver address (self)]
Identity [end-user address(parent), end-user address(self), Any user added

ID attributes]

Table 8. Types and formats of TXs in FoBSim

(a) (b)

(c) (d)

Figure 7. Samples of TXs produced by FoBSim entities (a): BC functionality is Identity Management,
(b): BC functionality is Computational Service, (c): BC functionality is Payment, (d): BC functionality is
Data Management

14/33

Figure 8. The Genesis block, with all its attributes, generated to miner nodes

5.2 Genesis Block Generation384

The first block added to the chain in each simulation run is the most important block of the chain. Different385

scenarios imply different formats of this block, and different methods to broadcast it among, and be386

accepted by, miner nodes. In the current version of FoBSim, however, a genesis block is initiated with a387

list of TXs containing only the string ’genesis block’ and the labels of the miners available when this block388

was generated. The block number is 0, the nonce is 0, the generator id is ”The Network”, previous hash is389

0, and the hash is generated using the hashing function in the blockchain.py module. The timestamp390

of genesis block indicates when the chain was launched, hence all blocks shall have bigger timestamp391

values than the genesis’s timestamp. Figure 8 shows a standard FoBSim genesis block, generated in a BC392

network that consists of two miner nodes.393

5.3 FoBSim Consensus Algorithms394

Currently, there are three available CAs ready to be used in different simulation scenarios. Next, we395

describe each one individually as to facilitate any modifications by developers. However, we need to396

indicate that the three included CAs are in their simplest versions and may require some individual397

modification in case of the need of more complicated ones. Before delving into the CAs, however, we398

need to discuss the Gossip protocol in FoBSim, as it is deployed regardless of what CA is chosen.399

5.3.1 Gossip Protocol400

A Gossip Protocol [67] is usually deployed in peer-to-peer (P2P) systems for maintaining the consistency401

of distributed data saved in decentralized networks. Specifically in BC systems, miner nodes regularly, yet402

randomly, gossip to their neighbours about their current version of the chain, aiming to reach consensus403

finality as soon as possible. According to specific characteristics of the BC, the locally saved chains are404

updated so that all confirmed chains are equivalent at any given moment [68]. The equivalency that any405

BC system is seeking is defined by the contents similarity of the chains (i.e. TXs, hashes, etc.), and the406

order similarity of the confirmed blocks. That is, a chain [b1, b2, b3] is not equivalent to [b1, b3, b2]407

despite the fact that both have similar contents.408

Gossiping protocols are usually fault tolerant as many failing nodes do not affect the protocol.409

Furthermore, they can adapt to the dynamics of the network, so some solutions have been proposed in410

the literature for nodes joining and leaving the network. However, gossiping is an iterative method that411

never quits as long as the network is up, and it may take time to converge. Additionally, high level of412

communication costs is expected for gossiping, while randomly chosen neighbors are informed about413

updates. Thus, one cannot provide precise analysis about the time needed for the network agreement on a414

piece of data.415

Although the implementation of such protocol is relatively simple, it is differently implemented416

in different systems. Some famous examples of efficient gossiping protocols include the Push-Sum417

protocol [69], the Push-Flow algorithm [70], and different versions of the Push-Pull averaging protocol418

[71]. Furthermore, we found that its application in FoBSim was useful, when the PoW CA is used in419

a multiprocessing scenario, with a relatively low puzzle difficulty. Additionally, it can be easily noted420

that the number of simulated TXs/blocks and the initial TX per block configuration affects the speed421

15/33

of the system to reach consensus finality. That is, for low number of TXs, blocks, and low ratios of422

TX per block, miners might not have the required time to converge locally saved chains. Accordingly,423

final versions of local chains in some FoBSim simulations, under such circumstances, may not coincide,424

which is normal and expected as described in [72]. Nevertheless, we deployed a simple Push-Pull Gossip425

version in FoBSim that works perfectly fine, so that modifications can be easily conducted if needed. In426

the current version of FoBSim, a Time To Live (TTL) parameter was not added to the Pull requests when427

gossiping. This, as expected, floods the network with Pull and Push requests each time a node wants to428

gossip. Nevertheless, we faced no problem whatsoever when the network consisted up to 1500 miners. If429

more miners need to be deployed in the simulation scenario,where gossiping is activated, we recommend430

either configuring the gossiping requests to have a TTL (i.e. a number of hops the request perform before431

it is terminated), and/or decreasing the number of neighbors the gossiping node is sending the gossip432

request to. That is, instead of gossiping with all neighbors, a miner can randomly choose a neighbor433

to gossip with. Consequently, each neighbor will gossip with a randomly chosen neighbor of his, etc.434

More details on such implementation approach can be found in [73], while detailed analysis regarding the435

success rate of gossiping, with a given TTL in a given P2P network, can be found in [74].436

Algorithm 1 describes how the Pull-request in the default Gossip protocol of the current version of437

FoBSim works. If the gossiping property was set to true, Each miner runs this algorithm each time the438

Gossip() function is called for that miner (as a default, the Gossip function is called each time a miner439

is triggered to build a new block and when a new block is received). As demonstrated in the algorithm,440

a default FoBSim miner requests information about the longest chain, and adopts it if its contents were441

agreed on by the majority of the network, which is a condition tested using Algorithm 2. Additionally, if a442

miner receives a new valid block, and the resulting local chain was longer than the global chain, the miner443

updates the global chain instantly, which represent the Push request of the Gossip protocol in FoBSim.444

In big BC networks, the mentioned issues need to be carefully designed, so that the consistency of the445

distributed ledger by the end of the simulation run is guaranteed, while the efficiency of the algorithm is446

optimized.447

Algorithm 1: The default Gossip protocol in FoBSim
Result: Confirmed Local chain in µg
initialization: Self(miner µg);
confirmed chain = self.local chain;
temporary global chain = longest chain;
Condition 1 = len(temporary global chain) > len(confirmed chain);
Condition 2 =blocks in temporary global chain are confirmed by network majority;
if Condition 1 AND Condition 2 then

confirmed chain = temporary global chain;
self.local chain = confirmed chain;
self.top block = confirmed chain[str(len(confirmed chain)-1)];
if BC function is Payment then

self.log users wallets = confirmed chain from.log users wallets
end

end

5.3.2 The Proof of Work448

In a simplified scenario of a PoW-based BC, miners collect TXs from the mempool (which is a shared449

queue in FoBSim) and accumulate them in blocks that they mint. Specifically, all available miners compete450

to produce the next block that will be added to the chain. The fastest miner producing the next block is451

the miner whose block is accepted by all other miners of the BC. Synchronously, all blocks that are being452

minted by other miners are withdrawn, and all TXs within are sent back to the mempool. To mimic this453

scenario in FoBSim, we needed to deploy the multiprocessing package of Python and trigger all miners to454

work together on the next block.455

Each miner then works within an isolated core of the device on which the simulation is conducted.456

Using this approach is doable and explainable in simple scenarios, where each process needs to access457

one or few shared objects. However, we found it challenging to mimic complex scenarios, where huge458

16/33

Algorithm 2: The default chain confirmation function in FoBSim
Result: bool chain is confirmed
Passed parameters: Chain C, network size;
initialization: chain is confirmed = True;
block confirmation log = blockchain.confirmation log;
Condition 1 = not (C[block][’hash’] in block confirmation log);
Condition 2 = block confirmation log[chain[block][’hash’]][’votes’] <= (network size / 2);
for block in C do

if Condition 1 OR Condition 2 then
chain is confirmed = False;
break

end
end
return chain is confirmed

number of processes require accessing the same shared lists. For example, when BC functionality is459

payment, the BC deployed in the fog layer, and the CA is PoS the wallets of end-users, fog nodes, and460

mining nodes need to be all global for read and update by all processes. We also experimented the Python461

package: multiprocessing.shared memory, which partially solved the problem as multi processes can read462

and update values in a Shareable List object. However, as declared in the official Python documentation463

[75], the Shareable List object lacks the dynamicity required in terms of length and slicing. According464

to the mentioned insights, we implemented two approaches for PoW mining in FoBSim, the first starts465

all miners in parallel (using the multiprocessing package), while the second consequentially calls for466

miners to mint new blocks (using a FOR loop). Both approaches are available in the miners trigger()467

function in the main.py module, and developers are free to use either. We do encourage the developers,468

however, to be cautious and carefully test their results when using the parallel processing approach, as469

each different scenario may require different access management scheme to different FoBSim entities.470

Hence, a complex scenario simulation may require some modifications to some variables and lists so471

that they become shareable by all processes in different modules. Detailed instructions for implementing472

different memory-sharing scenarios can be found in the Python official documentation [76].473

When a Miner receives a new block, it checks whether the hash of the block (in which the nonce or474

the puzzle solution is included) is in line with the acceptance condition enforced by the blockchain.py475

module. Further, the receiver miner checks whether sender end-users have sufficient amount of digital476

coins to perform the TX (in the case of payment functionality). In the contrary to the case of PoS and PoA,477

all miners work at the same time for achieving the next block. Hence, any miner is authorized to produce478

a block and there is no miner verification required. Algorithm 3 presents how PoW is implemented in479

FoBSim.480

5.3.3 The Proof of Stake481

In a simplified version of PoS, miners stake different amounts of digital coins (which they can not claim)482

in the BC network. The network then randomly chooses a miner to mint the next block, with higher483

probability to be chosen for miners who stake more coins. Once a miner is chosen, it is the only one484

authorized to mint and broadcast the next block. In case of faulty TXs/blocks, the minter loses its staked485

coins as a penalty, while in case of correct blocks, the minter is awarded some digital coins.486

To mimic this in FoBSim, each miner is initiated with specific amount of coins in its wallet. After that,487

randomly generated number of coins (up to the amount of coins in its wallet) is staked by each miner. In488

this way, every miner has different probability to be chosen by the network. Next, the network randomly489

chooses, say 10% of the available, miners and picks the one with the highest stake. This chosen miner’s490

address is immediately broadcast to all miners so that any block received from any other miner is rejected.491

Once the new block is received, it is validated and added to the local chain. Algorithm 4 presents how492

PoS is implemented in FoBSim.493

Here, a very wide space is available for implementing reputation management schemes in FoBSim.494

Different scenarios and different applications require different parameters affecting entities’ reputation.495

Further, adding other types of miners, end-users, or even Fogs implies that different DBs can be suggested.496

17/33

Algorithm 3: The default PoW mining algorithm in FoBSim miner
Result: New block β confirmation
initialization Self(miner µg);
Collect TXs from memPool;
Gossip();
if BC function is Payment then

validate collected TXs
else

if BC function is Computational Services then
eval(TXs);
add the evaluation results to TXs

end
Accumulate TXs in a new BC block β ;
Find the puzzle solution of β (nonce);
Broadcast β to neighbors;

end
if New block β is received then

Gossip();
if β nonce is correct then

if BC function is Payment then
validate and confirm TXs in β

end
add block β to the local chain;
Broadcast β to neighbors;
report a successful block addition [β , µg]

end
end

It is also worth mentioning here that we found it unnecessary to use the multiprocessing package497

because only one miner is working on the next block. Hence, no competition is implied in the PoS498

scenario.499

5.3.4 The Proof of Authority500

In a simplified version of the PoA algorithm. only authorized network entities (by the network administra-501

tors) are illegible to mint new blocks. Regardless of the BC functionality, there is also no need to deploy502

the multiprocessing package for PoA-based scenarios as there is no competition as well.503

To mimic the PoA in FoBSim, we allow the user to declare which entities are authorized to mint504

new blocks. The declaration requested from the user appears in the case of BC deployment in the505

fog or end-user layer. That is, each fog node is administering a group of end-users, and providing506

communications (and probably computations) services to them. However, it is not necessary for each fog507

node in the fog layer to be a BC node as well, but it should be there as only a fog node. Authorized fog508

nodes then are wearing both hats, fog nodes and BC miners. When the BC is deployed in the end-user509

layer, authorized miners are responsible for minting new blocks and maintaining the distributed ledger.510

Meanwhile, unauthorized miners are only responsible for validating new blocks, received from their511

neighbors, and maintaining the distributed ledger.512

This approach allows for comfortably emulating a scenario where the BC in the fog layer and part of513

the fogs are included in the BC functionality. Notice that a fog node that is also a BC node performs all the514

required tasks in logical isolation. This means that a fog node that is administering a group of end-users515

has a buffer to save the end-users TXs, but it does not use these TXs to mint a new block. Rather, it516

sends these TXs to the mempool as required, and then, only if it was authorized, it collects TXs from the517

mempool. Notice also, that the mempool is a simple queue in FoBSim, yet it can be implemented for some518

scenarios to be a Priority Queue. Our implementation of isolating the services provided by a fog node that519

is also a BC miner facilitates the simulation of scenarios where TXs need to be processed according to520

their priority. For example, miner nodes in Ethereum usually choose the SCs with the highest Gas/award521

18/33

Algorithm 4: The default PoS mining algorithm in FoBSim
Result: Confirmed new block β

initialization miners µ[0,1,..n], miners.wallets, stake random no. of coins from each miner.;
The Network:;
while mempool.qsize() > 0 do

Randomly choose a predefined no. of miners;
Choose the miner with the highest Stake value;
Inform all miners of the ID of the next block generator µg;

end
The Miner:;
if a new ID µg is received from the Network then

if MyAddress == µg then
Collect TXs from memPool;
if BC function is Payment then

validate collected TXs
else

if BC function is Computational Services then
eval(TXs);
add the evaluation results to TXs

end
end
Accumulate TXs in a new BC block β ;
Broadcast β ;

else
Wait for a new block from µg;
if β is received then

if µg == β .generator then
if BC function is Payment then

validate and confirm TXs in β

end
add block β to the local chain;
Broadcast β to neighbors;
report a successful block addition [β , µg]

end
end

end
end

provided by end-users. This is a type of prioritizing that can be simulated in FoBSim. Similarly, in522

Bitcoin, a priority value is computed for each TX according to Equation (1), and TXs with higher fees523

and higher priority values are processed faster [77]. The default PoA algorithm implemented in FoBSim524

is clarified in Algorithm 5.525

Priority =
∑ inputAge∗ inputValue

T Xsize
(1)

5.4 Transaction/Block Validation in FoBSim526

Here, we need to underline some differences between the terms Verification, Validation and Confirmation,527

and we need to see how FoBSim differentiates between those terms in different scenarios. As we have528

touched on these differences in [61], we need to accurately define each of these terms in order to correctly529

describe how FoBSim works.530

Validation is the process when a miner (either a minter or receiver) checks the correctness of a claim.531

That is, in the case of a minter miner, the puzzle solution (or nonce) provided with the minted block needs532

19/33

Algorithm 5: The default PoA mining algorithm in FoBSim
Result: Confirmed new block β

initialization Fog nodes Ψ[0,1,..n];
if BC placement is Fog Layer then

User Input(”address of authorized fog nodes”)
else

Input(”address of authorized miners”)
end
Save authorized miners µ[0,1,..n] in Miners List;
The Miner:;
while mempool.qsize() > 0 do

if self.address ∈ µlist then
Collect TXs from memPool;
if BC function is Payment then

validate collected TXs
else

if BC function is Computational Services then
eval(TXs);
add the evaluation results to TXs

end
end
Accumulate TXs in a new BC block β ;
Broadcast β to neighbors;

end
end
if β is received then

if µg ∈ µlist then
if BC function is Payment then

validate and confirm TXs in β

end
add block β to the local chain;
Broadcast β to neighbors;
report a successful block addition [β , µg]

end
end

to be correct before the block is broadcast. If the nonce was valid, the block is broadcast, otherwise, a533

new solution is searched for. While in the case of a receiver miner, the nonce is checked once. If in this534

later case the solution was valid, the block is accepted, otherwise, the block is rejected.535

In the case of payment functionality, the validity of TXs fetched from the mempool is tested. This536

means that the amount of coins in the wallet of the sender of each TX, in the payment functionality, is537

compared to the amount to be transferred. If the wallet contains less than the transferred amount, the TX538

is withdrawn from the block. Later when the new block is received by a miner, the same hash validation539

and TXs validation take place, except if one of the TXs were invalid, the whole block is rejected. In the540

case of a block rejection, the minter miner is usually reported in a reputation-aware context. If all the541

contents of a newly received block are valid (i.e. the hash, the TXs, the wallets, the block number, and the542

nonce) the block is added to the locally saved chain. Here, we can say that TXs are confirmed, because543

the block is added to the chain (i.e. the block is confirmed).544

The verification, on the other hand, is the process of verifying the identity of an entity. For example, in545

the case of PoA, only authorized miners are allowed to mint new blocks. Similarly, in the case of PoS, the546

received block should be generated by a miner that all other miners expect to receive the new block from.547

Additionally, public information about end-users’ wallets need to be accessible by miners to validate their548

TXs. Thus, a received a block, with some TXs generated by end-users who do not have wallets or the549

wallets contents are not readable by miners, can not be validated and confirmed not necessarily because550

20/33

the end-users have no sufficient coins to transfer, but because the end-users can not be verified.551

All of these critical principles are, by default, taken care of in FoBSim. All miners are informed about552

the end-users public identities and wallets contents. After that, transferred coins are updated locally in553

each miner. Consequently, a new TX from the same end-user will be compared to the updated amount of554

coins in its wallet. Invalid TXs are withdrawn from the block being minted, while invalid TXs cause the555

rejection of the whole received block. Once a block contents are validated, and the TXs/block generators556

are verified, the TXs are confirmed, the locally saved wallets amounts are updated, the block is locally557

confirmed and added to the chain. The most interesting thing, is that the very small probability of a558

double spend attack [78], which can appear in PoW-based scenarios as it is globally known about Bitcoin559

and Ethereum, can be easily simulated in FoBSim. All processes are actually happening during each560

simulation run, rather than substituting them with a small delay as in most BC simulation tools we561

checked. Hence, validation, verification, and confirmation processes can be modified according to the562

scenario to be simulated. Nevertheless, Bitcoin lowered the double spend attack probability by raising the563

difficulty of the puzzle through time. A property that can be as well modified in FoBSim. To facilitate the564

simulation of such critical scenarios, we deployed two broadcasting approaches for newly minted blocks.565

The first allows the broadcast process using a simple FOR loop, where miners sequentially validate and566

confirm new blocks. The second allows the broadcast process using the multiprocessing package, which567

allows all miners to receive and process new blocks at the same time. Relatively, developers need to be568

cautious when using the second approach, because of some critical challenges similar to those mentioned569

in Subsection 5.3.2.570

5.5 Awarding winning miners571

Generally speaking, BC miners get rewarded by two system entities for providing the BC service (i.e.572

BC functionality). The first is the end-user who generated the TX, who pays a small fee once the TX is573

confirmed (e.g. GAS in Ethereum). The second is the BC network itself (i.e. all miner nodes), who updates574

the winning miner’s wallet once a new block (minted by the winning miner) is confirmed. We can notice575

here how important it was to clarify the difference between validation, verification, and confirmation.576

That is, a miner is verified by its public label and public wallet key/address (ID). Then, a miner being577

authorized to mint a new block is validated (claim). Finally, a miner is awarded for minting a conformable578

block (miner’s wallet is updated).579

In FoBSim, we implemented the second, where miners get rewarded for their services by the network.580

We assume this part is hard because it, also, needs to be agreed on by the majority of BC miners (i.e.581

at least 51%), and it requires the condition that they confirm the block. The default implementation of582

FoBSim does that. For the first incentivization mechanism, we thought that it is not applicable in many583

different scenarios, hence we left it for the developers to add it if needed. For example, to allow end-users584

to provide fees for getting tasks in the BC, one field can be added to generated TXs, containing the amount585

of fees the end-user is willing to pay for the service. Once a miner picks a TX (mostly, TXs with higher586

fees are faster to be picked and processed by miners) and the block containing the TX is confirmed, all587

miners add the TX fees to the winning miner’s wallet. Figure 9-a presents a screenshot of FoBSim output,588

concluding that a new block was received from Miner 2 by Miner 3, and that the BC module just obtained589

the needed confirmations to consider the new block confirmed by the whole BC network. Thus, the minter590

is awarded. Later, the receiver miner presents its updated local chain according to the successful network591

confirmation. Figure 9-b presents a screenshot of the miner wallets log after a simulation run, where the592

PoA CA was used and all miners, except for Miner 5, were authorized to mint new blocks (initial wallet593

value was 1000).594

5.6 Strategies in FoBSim595

As had been discussed so far, there are some default strategies used by FoBSim entities throughout each596

simulation run. To mention some, TXs are picked by miners with no preference, e.g. the highest GAS or597

priority. Also, a default chain is a single linear chain and new blocks are added to the top of this chain.598

Some applications, however, have multiple chains or multi-dimentional chains, e.g. Directed Acyclic599

Graph (DAG) based chain. Additionally, if two blocks appear in the network, the block that was accepted600

by the majority of miners is confirmed rather than, in some BC systems, the older one is confirmed even if601

it was confirmed by the minority of minors. Further, a valid block is immediately announced, once found,602

into the FoBSim network, while in some applications, there might be a conditional delay. For instance, if603

21/33

(a) (b)

Figure 9. A sample of FoBSim output. (a) confirming a new block receipt, a new award for mining the
new block (as the required percentage of confirmations was reached), and the updated state of local chain
of the receiver miner (b) Final miner wallets values in a PoA scenario

Figure 10. Possible data flow schemes in an integrated Fog-BC system

a selfish mining attack scenario to be simulated, miners would prefer to keep their newly found blocks604

secret, hoping they will find the next block as well [79].605

The current version of FoBSim supposes that the data flows from end-users to Fogs, and from Fogs to606

the BC network. However, there are other possible data flow schemes that can be simulated, as depicted607

in Figure 10. For example, the BC in the current version provides DLT services to end-users, which are608

communicating with the BC through the fog layer, while services might be provided by the fog layer to609

the BC network or from the BC network to the fogs in some applications. Further, an application where610

end-users may need to request data directly from the BC might be possible, which implies different data611

flow scheme as well. FoBSim allows the modifications necessary for the simulated application to be easily612

done, and presents an extra Cloud module that can add more possibilities to the application.613

Network connectivity characteristics are a major and critical concern in any BC system. To facilitate614

network architects job, FoBSim allows to define the number of nodes in each layer, the number of615

neighbors of each BC node, and the general topology of the network. Additionally, all BC nodes are616

connected into one giant component by default, whether they were deployed in the fog layer or end-user617

layer. Accordingly, the effect of manipulating the topology of simulated networks can be easily captured.618

5.7 FoBSim Constraints619

Some properties have not been implemented in the current version of FoBSim, such as Merkle Trees,620

Digital Signatures and Mining Pools. Additionally, FoBSim source code can be run on a PC with621

Microsoft Windows or Linux OS, but it may need some modifications if to be run on a PC with a MAC622

OS (some functions require access to OS operations such as deleting or modifying on files located at the623

22/33

secondary memory). Finally, The default limit of recursion in python may restrict the number of miners624

to 1500, which may raise some error regarding the maximum allowed memory use by the interpreter. To625

solve this, one can modify the maximum limit using the sys.setrecursionlimit in the main function.626

5.7.1 Merkle Trees627

A Merkle Tree (MT), or Hash Tree, is a data structure, which is mostly a binary tree, whose leaves are628

chunks of data. Sub-consequently, each leaf is double hashed with its siblings to produce their new parent,629

which represents its two children. Hashes are recursively hashed together, in a binary manner, until630

obtaining one root that represents the whole tree. MTs are used in BCs such as BitCoin to decrease the631

probability of security attacks, along with other security measures, to reach the level where it is (a) easy632

for light weight nodes to validate new TXs and (b) computationally impractical to attack/alter a BC. That633

is, each TX in any given block is hashed with its next, and so on, so that one root hash of all TXs is saved634

in the block header. Using this root hash, and other components of the block, the hash of the block is635

generated. This means that not only a confirmed block is impossible to alter, but also a confirmed TX636

within a confirmed block.637

However, not all BC systems deploy an MT approach due to some probable conflicts with system638

requirements or objectives. Thus, we decided to leave this to be implemented by developers according639

to the systems that need to be simulated, and we decided that the default configuration of BC nodes640

in the current version of FoBSim is to make all miners full node miners. That is, every miner locally641

stores a complete copy of the chain so that any TX can be validated according to TXs recorded locally.642

Additionally, there are different deployment models of MT approaches in different BC systems. That is,643

some BCs may deploy MTs for hashing other chunks of data/tokens instead of TXs.644

To implement an MT approach in FoBSim, one can add a function that performs a loop through all645

TXs in a newly minted block, up to the last TX. After that, the root of the MT is added to the block before646

it is broadcast to the BC and the hash of the block is computed accordingly. Miners who receive a new647

block shall, accordingly, validate the added root. Hence, a validation step, to test the correctness of the648

MT root compared with TXs within the new block, needs to be added to the validation function in the649

miner module of FoBSim. To make use of such added property, one can define a light weight miner type650

which saves only the header of a newly confirmed block instead of the whole block. Accordingly, such651

type of miners validate new TXs according to this light chain of headers, hence consume less time, energy,652

and storage to maintain the work of the BC system.653

5.7.2 Digital Signatures654

As our main aim is to generally simulate TX generation, validation, and confirmation, in different BC-655

based, inter-operation, and consensus scenarios, we did not target security issues. This is because such656

issues are determined individually for each case to be simulated, leading to different mining economics.657

The discussion of security techniques and approaches in BC-based Fog and IoT systems had been658

discussed in many previous works, such as [80]. Specifically, digitally signed coins/tokens are primarily659

used in real-world applications of cryptocurrencies in order to prevent security attacks, such as the660

double spending attack. Different BC-based cryptocurrency systems used different mechanisms and661

protocols regarding signing and minting new coins, hence, different simulated scenario would require the662

implementation of the reference coins and digital signing techniques to be simulated. Examples might663

include a research work that aims at comparing different signing protocols in different CAs. Furthermore,664

FoBSim does not target a specific cryptocurrency system, such as BitCoin, yet it provides the generalized665

environment used in such systems, where problems and solutions can be implemented and emulated by666

researchers.667

What the default version of FoBSim provides, however, is a simplified protocol of coin transfer668

between users. That is, each miner holds a locally saved record of user wallets, which is used in TXs669

validation in case of Payment BC functionality. We found that this approach can output similar results to670

those output by systems with signed coins, except that this approach allows a double spending attack in671

case of malicious end-users. If a scenario to be simulated, where there are some faulty/malicious entities672

among system users (which is not implemented in the default version of FoBSim), then digitally signed673

coins need to be implemented as well. Additionally, miner nodes in FoBSim are assumed to be trusted to674

send reports of confirmed blocks. Thus, reports sent by miner nodes to the network aiming to participate675

in voting regarding winning miners are assumed always legitimate. To sum up, FoBSim miners can track676

who, paid whom, how much, and they are trusted to participate in voting without a crypto-graphic proof.677

23/33

While, in other implementation approaches, FoBSim miners may track who has transferred, what units, of678

which stocks (i.e. digitally signed coins/tokens), to whom, and their votes regarding winning miners must679

be verified by network entities (i.e. by also adding the new block to their local chains, and following this680

addition with other new blocks, each newly added block can be considered, in a sense, a confirmation).681

Similarly, end-users who generate new TXs do not need to sign their generated TXs as they are assumed682

trusted (i.e. the default implementation of FoBSim does not include malicious end-users).683

5.7.3 Mining Pools684

Pool mining is the collaboration between miners to form mining pools and distribute the earned rewards685

in accordance with pool policies to earn a steady income per miner [81]. Examples of such mining pools686

include BTC.com, F2Pool, and Slush Pool. Mining pools provide the advantages of making mining687

profits more predictable to miners and allowing small miners to participate. However, the existence of688

pool mining increases the probability of system centralization and discourages full nodes. The necessity689

of adding a mining pool extension to FoBSim is dependant on the scenario to be simulated. As the690

general idea of mining pools is to allow miners to perform mining under the umbrella of named group,691

if one of the group miners finds a block, the award is divided among all group members according to692

the computational power each member provides. A mining pool is managed by a pool manager, whose693

protocol is defined according to the business model of the pool.694

In the current version of FoBSim, all miners are full nodes miners. That is, each miner tries to solve695

the puzzle using its own resources, it validates newly generated TXs and accumulate them into new blocks696

and when a block is received, it is validated and confirmed locally (all miners save the whole BC for697

validation, verification, and confirmation). Consequently, any profits and awards, obtained because of the698

full miner work, are directly added to the miner’s wallet. While in the pool mining concept, a miner is699

awarded as much computational power it provides even if it was the one that found the next block.700

6 CASE STUDIES701

Following the validation and verification methods of simulation models presented in [82], we have so far702

discussed the technologies and the paradigms lying within our proposed FoBSim environment. Further,703

we highlighted our proposal novelty compared to other related works, discussed the event validity in704

FoBSim, and presented the algorithms and modules lying within to facilitate a structured walk-through705

validation.706

Next, we follow an operational validity approach by presenting two case studies that we simulated707

using FoBSim. The setup and behaviour of FoBSim is discussed, and the results of the simulation runs708

are presented afterwards.709

Case 1: Comparing time consumption of PoW, PoS, and PoA710

When we compare PoW, PoS and PoA in terms of average time consumed for block confirmation, PoW is711

expected to present the highest time consumption. This is because of the mathematical puzzle that each712

minter needs to solve in order to prove its illegibility to mint the next block. In PoS, on the other hand, the713

network algorithm randomly chooses the next minter, while it slightly prefers a miner with higher amount714

of staked coins. Once a minter is chosen, all miners are informed about the generator of the next block715

and, thus, the minter needs to perform no tasks other than accumulating TXs in a new standard block.716

Other miners then accept the new block if it was generated by the minter they were informed about, hence717

the verification process takes nearly no time (assuming that the transmission delay between miners is set718

to 0). In simple versions of those two algorithms, all miners have the same source code, thus all miners719

may be minters, verifiers, and chain maintainers.720

The PoA algorithm is the tricky one though. This is because all authorized miners mint new blocks,721

verify newly minted blocks, and maintain the chain locally. Meanwhile, other BC nodes verify new722

blocks and maintain the chain, but do not mint new blocks [83]. Consequently, every BC node has a list723

of authorized entities, including the methods to verify their newly minted blocks. This implies that the724

more authorized entities, the more complex the verification can be on the receiver side. Accordingly, it is725

advised that small number of entities be given authorization for decreasing the complexity of verification726

[84]. Meanwhile, the more maintainers in a PoA-based BC, the higher the overall security level of the727

system.728

24/33

Figure 11. Average block confirmation time consumed by PoS-based BC vs. PoA-based BC, relatively
to the number of miner nodes

Simulation parameter\Consensus PoW PoS PoA
no. of miners 5–500 5–500 5–500
no. of neighbours per miner 4 4 4
puzzle difficulty 5–20 – –
Authorized miners All Random choice 2–25
Initial wallet – 1000 –
BC functionality Data Management Data Management Data Management
BC deployment end-user layer end-user layer end-user layer

Table 9. Simulation parameters configuration for Case 1

In this case study, we run FoBSim several times, with which we deploy different CAs under similar729

conditions. The simulation runs targeted specifically the measurement of the average time consumed by730

each CA, from the moment where a miner is triggered to mint a new block, until the minted block by this731

miner is confirmed by, at least, 51% of other BC miners. To accurately measure this average, we added732

some variables holding the starting time and the elapsed time, exactly before calling the build block()733

function and right after a block is confirmed by reaching the required number of confirmations.734

As described in Table 9, we changed the difficulty of the puzzle during the PoW-based BC simulation735

runs from an easy level (5), to a harder level (10), and finally to very hard levels (15) and (20). During the736

runs where PoA was used, we changed the number of authorized miners from 2/5 (2 authorized out of a737

total of 5 miners), 5/10, 10/20, and 25 authorized miners for the rest of runs.738

As we wanted to abstractly measure the average confirmation time, we avoided the Computational
Services and the Payment functionality, because both imply extra time consumption for performing the
computational tasks, and validating the payments, respectively. We also avoided the Identity management
functionality because the number of TXs per end-user is limited by the number of ID attributes required
to be saved on the chain. Hence, our best choice was the data management functionality. We kept the total
number of TXs delivered to the mempool unchanged, which gives equivalent input for all simulation runs.
However, we changed the number of TXs generated by each user as to be equal to the number of miners
in each run. More precisely, as the total number of TXs is determined using Equation 2, wherea, b and c
are the number of fog nodes, the number of end-users, and the number of TXs per end-user, respectively,

25/33

Figure 12. Average block confirmation time consumed by PoW-based BC (the cases of difficulty = 5,
10, 15, and 20), relatively to the number of miner nodes

M=5 M=10 M=20 M=50 M=100 M=500
PoS algorithm 0.018 0.06 0.18 0.046 0.09 0.19
PoA algorithm 0.002 0.008 0.03 0.2 0.41 2.94
PoW-5 algorithm 0.08 0.36 2.1 1.31 6.15 60.6
PoW-10 algorithm 0.07 0.44 2.1 2.03 5.21 58.9
PoW-15 algorithm 0.25 0.42 2.23 2.26 6.18 74.76
PoW-20 algorithm 6.02 9.5 24.2 59.62 – –

Table 10. Results of Case-1, where the PoW puzzle difficulty ranged from 5 to 20, and the number of
Miners (M) ranged from 5 to 500.

the values of those variables fluctuated in each run. Concerning the runs where a PoS is deployed, miner
nodes were initiated with a wallet that has 1000 coins, allowing miners to stake random amounts of coins.
Additionally, winning miners were awarded 5 coins for each confirmed block they had minted.

|T Xs|= a×b× c (2)

We deployed the FoBSim environment on Google Cloud Platform, using a C2-standard-16 (up to 3.8739

GHz, 16 vCPUs, 64 GB memory), with Debian OS. We have chosen to place the BC in the end-user layer740

for all runs, not for any reason other than testing the reliability and stability, of FoBSim components and741

results , in such complex inter-operable [85] Edge-Fog-BC scenarios. Table 10 presents the exact results742

we obtained, which are depicted in Figures 11 and 12.743

According to the results obtained from the simulation runs, one can notice that PoW-based BCs744

consume much more time, to confirm a block, than PoA and PoS -based BCs, which is inline with745

the theoretical and experimental results of most previous research. Additionally, the average block746

confirmation time, in PoW-based and PoA-based BCs, seems to be directly proportional to the BC747

network size, which complies with the results recently presented in [86]. Comparatively, an average block748

confirmation time in a PoS-based BC seems unaffected by the network size, which complies with the749

expectations recently presented in [87].750

26/33

Case 2: Capturing the effect using the Gossip protocol751

In this case, we compare the number of chain forks at the end of several simulation runs, where we752

interchangeably activate and deactivate the gossiping property in a PoW-based BC. Accordingly, one can753

notice the effect of gossiping on ledger finality under different conditions, namely the puzzle difficulty754

and the transmission delay between miners. As it was mentioned in Subsection 5.3.1, gossiping is a755

continuous process during the life time of the network, which implies that miners would mostly have756

different chain versions at any given moment. In this case, we detect the number of chain versions at757

the end of simulation runs, which can be decreased to one version under strictly designed parameters,758

such medium network size, high puzzle difficulty, low transmission delay, low number of neighbors759

per miner, etc. Nevertheless, our goal in this case is to demonstrate how the activation of the gossiping760

property during a simulation run on FoBSim can decrease the number of chain versions and, thus, it can761

positively contribute to the consistency of the distributed ledger. For this case, we also deployed the762

FoBSim environment on the Google Cloud Platform, using a C2-standard-16 VM (up to 3.8 GHz, 16763

vCPUs, 64 GB memory), with Ubuntu OS.764

Table 11 presents the initial configuration in each simulation scenario, while Tables 12 and 13 present765

the results we obtained by running the described scenarios, which are depicted in Figures 13 and 14.766

As can be noted from the results, the default gossip protocol in FoBSim could decrease the number of767

chain versions at the end of each simulation run. Although the number of chain versions did not reach the768

optimum value (i.e. one chain version), it is obvious that activating the gossiping property decreases the769

number of chain versions at each simulation run and, thus, enhances the distributed ledger consistency.770

Simulation parameter Puzzle difficulty effect Transmission delay effect
no. of Fog Nodes 5 5
no. of users per fog node 5 5
no. of TX per user 5 5
no. of miners 100 100
no. of neighbours per miner 2 2
no. of TX per Block 5 5
puzzle difficulty 5, 10, 15, 20 20
Max enduser payment 100 100
miners initial wallet value 100 100
mining award 5 5
delay between neighbors 0 0, 5, 10, 15, 20

Table 11. Simulation parameters configuration for Case-2, where the Gossiping property is
interchangeably activated and deactivated

Configuration diff.=5 diff.=10 diff.=15 diff.=20
Gossip activated 81 70 57 16

Gossip deactivated 92 98 100 67

Table 12. Results of Case-2, where the puzzle difficulty ranged from 5–20, and the Gossiping in
FoBSim was interchangeably activated and deactivated

Configuration T.D.=0 T.D.=5 T.D.=10 T.D.=15 T.D.=25
Gossip activated 12 18 14 26 33

Gossip deactivated 15 39 59 68 76

Table 13. Results of Case-2, where the transmission delay between neighbors ranged from 0–25 ms.,
and the Gossiping in FoBSim was interchangeably activated and deactivated

27/33

Figure 13. The effect of activating the gossiping protocol in FoBSim, on the number of chain versions
at the end of PoW-based BC simulation runs, where the puzzle difficulty fluctuates from 5 to 20

Figure 14. The effect of activating the gossiping protocol in FoBSim, on the number of chain versions
at the end of PoW-based BC simulation runs, where the transmission delay between neighboring miners
fluctuates from 0 to 25 ms.

28/33

7 CONCLUSIONS771

In this paper, we proposed a novel simulation tool called FobSim that mimics the interaction between772

the entities of an integrated Fog-Blockchain system. We briefly described the architectural elements of773

Fog Computing (FC) and Blockchain (BC) technologies, and designed FoBSim in order to cover all774

the elements we described. We deployed three different consensus algorithms, namely PoW, PoS and775

PoA, and different deployment options of the BC in an FC architecture, namely the end-user layer and776

the fog layer. Additionally, we fine tuned the FoBSim modules so that various services, provided by777

FC and BC, can be adopted for any proposed integration scenario. The services that can be simulated778

are distributed Payment services, distributed Identity services, distributed Data storage and distributed779

Computational services (through Smart Contracts). In our paper, we described the modules of FoBSim, the780

transaction modelling, the Genesis block generation, the gossiping in FoBSim, the Consensus Algorithms,781

transaction and block validation, incentive mechanisms, and other FoBSim strategies. We validated782

FoBSim with two case studies: the first compares the average time consumption for block confirmation in783

different consensus algorithms, while the second analyzes the effect of gossiping on the consistency of784

the distributed ledger, in fluctuated puzzle difficulty and transmission delay configurations.785

In the future releases of FoBSim, we are willing to make more CAs available, as well as enhancing the786

identity management scheme in FoBSim. We will further investigate adding the Reputation management787

service in a generalized and simple manner so that analysis can be provided, while proposed reputation788

management ideas, conditions, or properties can be easily implemented/modified.789

ACKNOWLEDGEMENT790

This research was supported by the Hungarian Scientific Research Fund under the grant number OTKA791

FK 131793, and by the Hungarian Government under the grant number EFOP-3.6.1-16-2016-00008.792

REFERENCES793

[1] Smart Dubai Department. BLOCKCHAIN. 2020 (accessed October, 27, 2020). URL: https:794

//www.smartdubai.ae/initiatives/blockchain.795

[2] Global Times. China launches blockchain-based smart city identification system. 2019 (accessed796

October, 27, 2020). URL: https://www.globaltimes.cn/content/1168878.797

shtml.798

[3] Smartcity Press. China Taking A Big Leap With Blockchain. 2019 (accessed October, 27, 2020).799

URL: https://www.smartcity.press/blockchain-technology-china/.800

[4] Roman Beck et al. Blockchain technology in business and information systems research. 2017.801

[5] Bitcoin.org. Bitcoin is an innovative payment network and a new kind of money. 2009 (accessed802

October, 27, 2020). URL: https://bitcoin.org/en/.803

[6] Evangelos K Markakis et al. “EXEGESIS: Extreme edge resource harvesting for a virtualized fog804

environment”. In: IEEE Communications Magazine 55.7 (2017), pp. 173–179.805

[7] Pooyan Habibi et al. “Fog Computing: A Comprehensive Architectural Survey”. In: IEEE Access 8806

(2020), pp. 69105–69133.807

[8] Amir Vahid Dastjerdi et al. “Fog computing: Principles, architectures, and applications”. In: Internet808

of things. Elsevier, 2016, pp. 61–75.809

[9] OpenFog Consortium et al. “OpenFog reference architecture for fog computing”. In: Architecture810

Working Group (2017), pp. 1–162.811

[10] Flavio Bonomi et al. “Fog computing: A platform for internet of things and analytics”. In: Big data812

and internet of things: A roadmap for smart environments. Springer, 2014, pp. 169–186.813

[11] Hamza Baniata and Attila Kertesz. “A Survey on Blockchain-Fog Integration Approaches”. In:814

IEEE Access 8 (2020), pp. 102657–102668.815

[12] Alberto Montresor and Márk Jelasity. “PeerSim: A scalable P2P simulator”. In: 2009 IEEE Ninth816

International Conference on Peer-to-Peer Computing. IEEE. 2009, pp. 99–100.817

29/33

[13] Ioan Petri et al. “Blockchain for energy sharing and trading in distributed prosumer communities”.818

In: Computers in Industry 123 (2020), p. 103282.819

[14] Jari Kreku et al. “Evaluating the Efficiency of Blockchains in IoT with Simulations.” In: IoTBDS.820

2017, pp. 216–223.821

[15] Sotirios Liaskos, Tarun Anand, and Nahid Alimohammadi. “Architecting blockchain network822

simulators: a model-driven perspective”. In: 2020 IEEE International Conference on Blockchain823

and Cryptocurrency (ICBC). IEEE. 2020, pp. 1–3.824

[16] Andras Markus and Attila Kertesz. “A survey and taxonomy of simulation environments modelling825

fog computing”. In: Simulation Modelling Practice and Theory 101 (2020), p. 102042.826

[17] Zahra Nikdel, Bing Gao, and Stephen W Neville. “DockerSim: Full-stack simulation of container-827

based Software-as-a-Service (SaaS) cloud deployments and environments”. In: 2017 IEEE Pacific828

Rim Conference on Communications, Computers and Signal Processing (PACRIM). IEEE. 2017,829

pp. 1–6.830

[18] Tariq Qayyum et al. “FogNetSim++: A toolkit for modeling and simulation of distributed fog831

environment”. In: IEEE Access 6 (2018), pp. 63570–63583.832

[19] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. “Edgecloudsim: An environment for perfor-833

mance evaluation of edge computing systems”. In: Transactions on Emerging Telecommunications834

Technologies 29.11 (2018), e3493.835

[20] Ubaid Ur Rahman et al. “Nutshell—Simulation Toolkit for Modeling Data Center Networks and836

Cloud Computing”. In: IEEE Access 7 (2019), pp. 19922–19942.837

[21] Rodrigo N Calheiros et al. “CloudSim: a toolkit for modeling and simulation of cloud computing838

environments and evaluation of resource provisioning algorithms”. In: Software: Practice and839

experience 41.1 (2011), pp. 23–50.840

[22] Ashkan Yousefpour et al. “All one needs to know about fog computing and related edge computing841

paradigms: A complete survey”. In: Journal of Systems Architecture 98 (2019), pp. 289–330.842

[23] Harshit Gupta et al. “iFogSim: A toolkit for modeling and simulation of resource management843

techniques in the Internet of Things, Edge and Fog computing environments”. In: Software: Practice844

and Experience 47.9 (2017), pp. 1275–1296.845

[24] Mohammed Islam Naas et al. “An extension to ifogsim to enable the design of data placement846

strategies”. In: 2018 IEEE 2nd International Conference on Fog and Edge Computing (ICFEC).847

IEEE. 2018, pp. 1–8.848

[25] Ruben Mayer et al. “Emufog: Extensible and scalable emulation of large-scale fog computing849

infrastructures”. In: 2017 IEEE Fog World Congress (FWC). IEEE. 2017, pp. 1–6.850

[26] Antonio Coutinho et al. “Fogbed: A rapid-prototyping emulation environment for fog computing”.851

In: 2018 IEEE International Conference on Communications (ICC). IEEE. 2018, pp. 1–7.852

[27] Márcio Moraes Lopes et al. “Myifogsim: A simulator for virtual machine migration in fog com-853

puting”. In: Companion Proceedings of the10th International Conference on Utility and Cloud854

Computing. 2017, pp. 47–52.855

[28] Tanesh Kumar et al. “BlockEdge: Blockchain-Edge Framework for Industrial IoT Networks”. In:856

IEEE Access (2020).857

[29] Hamza Baniata. “Fog-enhanced Blockchain Simulation”. In: The 12th Conference of PhD Students858

in Computer Science (CS2). University of Szeged. 2020, pp. 83–87.859

[30] Vysakh Anilkumar et al. “Blockchain Simulation and Development platforms: Survey, Issues and860

Challenges”. In: 2019 International Conference on Intelligent Computing and Control Systems861

(ICCS). IEEE. 2019, pp. 935–939.862

[31] Ethereum. Remix Platform. 2020 (accessed October, 27, 2020). URL: https : / / remix .863

ethereum.org/.864

[32] Truffle Blockchain Group. TRUFFLE OVERVIEW. 2020 (accessed October, 27, 2020). URL:865

https://www.trufflesuite.com/docs/truffle/overview.866

30/33

[33] Arshdeep Bahga and Vijay Madisetti. Blockchain applications: a hands-on approach. Vpt, 2017.867

[34] Bruno. Explaining Ethereum Tools: What Are Geth and Mist? 2018 (accessed October, 27, 2020).868

URL: https://bitfalls.com/2018/02/12/explaining-ethereum-tools-869

geth-mist/.870

[35] Maher Alharby and Aad van Moorsel. “Blocksim: a simulation framework for blockchain systems”.871

In: ACM SIGMETRICS Performance Evaluation Review 46.3 (2019), pp. 135–138.872

[36] Carlos Faria and Miguel Correia. “BlockSim: Blockchain Simulator”. In: 2019 IEEE International873

Conference on Blockchain (Blockchain). IEEE. 2019, pp. 439–446.874

[37] Bozhi Wang et al. “A simulation approach for studying behavior and quality of blockchain net-875

works”. In: International Conference on Blockchain. Springer. 2018, pp. 18–31.876

[38] Arthur Gervais et al. “On the security and performance of proof of work blockchains”. In: Pro-877

ceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016,878

pp. 3–16.879

[39] Raheel Ahmed Memon et al. “Modeling of blockchain based systems using queuing theory880

simulation”. In: 2018 15th International Computer Conference on Wavelet Active Media Technology881

and Information Processing (ICCWAMTIP). IEEE. 2018, pp. 107–111.882

[40] Fangyuan Zhao, Xin Guo, and Wai Kin Victor Chan. “Individual Green Certificates on Blockchain:883

A Simulation Approach”. In: Sustainability 12.9 (2020), p. 3942.884

[41] Pierre-Yves Piriou and Jean-Francois Dumas. “Simulation of stochastic blockchain models”. In:885

2018 14th European Dependable Computing Conference (EDCC). IEEE. 2018, pp. 150–157.886

[42] Aditya Deshpande, Pezhman Nasirifard, and Hans-Arno Jacobsen. “eVIBES: Configurable and887

Interactive Ethereum Blockchain Simulation Framework”. In: Proceedings of the 19th International888

Middleware Conference (Posters). 2018, pp. 11–12.889

[43] Bozhi Wang et al. “Security analysis on tangle-based blockchain through simulation”. In: Aus-890

tralasian Conference on Information Security and Privacy. Springer. 2020, pp. 653–663.891

[44] Ravi Kiran Raman et al. “A Scalable Blockchain Approach for Trusted Computation and Verifiable892

Simulation in Multi-Party Collaborations”. In: 2019 IEEE International Conference on Blockchain893

and Cryptocurrency (ICBC). IEEE. 2019, pp. 277–284.894

[45] The Linux Foundation. What is Hyperledger? 2020 (accessed October, 27, 2020). URL: https:895

//www.hyperledger.org/.896

[46] Mozhdeh Farhadi et al. “A systematic approach toward security in Fog computing: Assets, vulnera-897

bilities, possible countermeasures”. In: Software: Practice and Experience 50.6 (2020), pp. 973–898

997.899

[47] Stephane Herman Maes et al. Orchestrating hybrid cloud services. US Patent 9,882,829. Jan. 2018.900

[48] Andrea Coladangelo and Or Sattath. “A Quantum Money Solution to the Blockchain Scalability901

Problem”. In: arXiv preprint arXiv:2002.11998 (2020).902

[49] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Tech. rep. Manubot, 2019.903

[50] Dejan Vujičić, Dijana Jagodić, and Siniša Randić. “Blockchain technology, bitcoin, and Ethereum:904

A brief overview”. In: 2018 17th international symposium infoteh-jahorina (infoteh). IEEE. 2018,905

pp. 1–6.906

[51] Sunny King and Scott Nadal. “Ppcoin: Peer-to-peer crypto-currency with proof-of-stake”. In:907

self-published paper, August 19 (2012), p. 1.908

[52] Daniel Larimer. “Transactions as proof-of-stake”. In: Nov-2013 (2013).909

[53] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. “Cryptocurrencies without proof of work”. In:910

International conference on financial cryptography and data security. Springer. 2016, pp. 142–157.911

[54] Evangelos Deirmentzoglou, Georgios Papakyriakopoulos, and Constantinos Patsakis. “A survey on912

long-range attacks for proof of stake protocols”. In: IEEE Access 7 (2019), pp. 28712–28725.913

31/33

[55] Rong Zhang and Wai Kin Victor Chan. “Evaluation of Energy Consumption in Block-Chains with914

Proof of Work and Proof of Stake”. In: Journal of Physics: Conference Series. Vol. 1584. 1. IOP915

Publishing. 2020, p. 012023.916

[56] JP Buntinx. “What is Proof of Elapsed Time”. In: The Merkle Hash. Available online: https://themerkle.917

com/what-is-proof-of-elapsed-time/(accessed on 8 August 2020) (2017).918

[57] Anushree A Avasthi and Ankur Saxena. “Two Hop Blockchain Model: Resonating between Proof919

of Work (PoW) and Proof of Authority (PoA)”. In: International Journal of Information Systems &920

Management Science 1.1 (2018).921

[58] J Manning. “Proof-of-work vs. proof-of-stake explained”. In: ETHNews, November. Available at:922

https://www. ethnews. com/proof-of-work-vs-proofof-stake-explained (Accessed: 6 January 2018)923

(2016).924

[59] Pranav Kumar Singh et al. “Managing smart home appliances with proof of authority and925

blockchain”. In: International Conference on Innovations for Community Services. Springer.926

2019, pp. 221–232.927

[60] Lin Chen et al. “On security analysis of proof-of-elapsed-time (poet)”. In: International Symposium928

on Stabilization, Safety, and Security of Distributed Systems. Springer. 2017, pp. 282–297.929

[61] Hamza Baniata and Attila Kertész. “PF-BVM: A Privacy-aware Fog-enhanced Blockchain Valida-930

tion Mechanism.” In: CLOSER. 2020, pp. 430–439.931

[62] Hamza Baniata, Ahmad Anaqreh, and Attila Kertesz. “PF-BTS: A Privacy-aware Fog-enhanced932

Blockchain-assisted Task Scheduling”. In: Information Processing and Management 58 (2021).933

[63] Hamza Baniata and Attila Kertesz. FoBSim. 2020 (accessed October, 27, 2020). URL: https:934

//github.com/sed-szeged/FobSim.935

[64] Hamza Baniata, Wesam Almobaideen, and Attila Kertesz. “A Privacy Preserving Model for Fog-936

enabled MCC systems using 5G Connection”. In: 2020 Fifth International Conference on Fog and937

Mobile Edge Computing (FMEC). IEEE. 2020, pp. 223–230.938

[65] Piotr Fröhlich, Erol Gelenbe, and Mateusz P Nowak. “Smart SDN management of fog services”.939

In: 2020 Global Internet of Things Summit (GIoTS). IEEE. 2020, pp. 1–6.940

[66] Mazin Debe et al. “IoT public fog nodes reputation system: A decentralized solution using Ethereum941

blockchain”. In: IEEE Access 7 (2019), pp. 178082–178093.942

[67] Bastian Blywis et al. A survey of flooding, gossip routing, and related schemes for wireless multi-hop943

networks. Tech. rep. Berlin, Germany: Freie Universitat, 2011. URL: https://refubium.fu-944

berlin.de/bitstream/handle/fub188/18401/2010-Gossip-Routing.pdf?945

sequence=1.946

[68] Xiaowei He, Yiju Cui, and Yunchao Jiang. “An Improved Gossip Algorithm Based on Semi-947

Distributed Blockchain Network”. In: 2019 International Conference on Cyber-Enabled Distributed948

Computing and Knowledge Discovery (CyberC). IEEE. 2019, pp. 24–27.949

[69] David Kempe, Alin Dobra, and Johannes Gehrke. “Gossip-based computation of aggregate informa-950

tion”. In: 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings.951

IEEE. 2003, pp. 482–491.952

[70] Wilfried N Gansterer et al. “Scalable and fault tolerant orthogonalization based on randomized953

distributed data aggregation”. In: Journal of Computational Science 4.6 (2013), pp. 480–488.954

[71] Gábor Danner and Márk Jelasity. “Robust decentralized mean estimation with limited communica-955

tion”. In: European Conference on Parallel Processing. Springer. 2018, pp. 447–461.956

[72] Caixiang Fan et al. “Performance Evaluation of Blockchain Systems: A Systematic Survey”. In:957

IEEE Access 8 (2020), pp. 126927–126950.958

[73] Jiang Lan et al. “Consistency maintenance in peer-to-peer file sharing networks”. In: Proceedings959

the Third IEEE Workshop on Internet Applications. WIAPP 2003. IEEE. 2003, pp. 90–94.960

[74] Nabhendra Bisnik and Alhussein A Abouzeid. “Optimizing random walk search algorithms in P2P961

networks”. In: Computer networks 51.6 (2007), pp. 1499–1514.962

32/33

[75] The Python Software Foundation. The Python Standard Library. https://docs.python.963

org/3/library/multiprocessing.shared_memory.html. 2020 (Last accessed964

September 14, 2020).965

[76] The Python Software Foundation. The Python Standard Library. https://docs.python.966

org/2/library/multiprocessing.html. 2020 (Last accessed September 14, 2020).967

[77] Arvind Narayanan et al. Bitcoin and cryptocurrency technologies: a comprehensive introduction.968

Princeton University Press, 2016.969

[78] Ghassan O Karame, Elli Androulaki, and Srdjan Capkun. “Double-spending fast payments in970

bitcoin”. In: Proceedings of the 2012 ACM conference on Computer and communications security.971

2012, pp. 906–917.972

[79] Kevin Alarcón Negy, Peter R Rizun, and Emin Gün Sirer. “Selfish Mining Re-Examined”. In:973

International Conference on Financial Cryptography and Data Security. Springer. 2020, pp. 61–78.974

[80] Ali Hassan Sodhro et al. “Towards Blockchain-Enabled Security Technique for Industrial Internet975

of Things Based Decentralized Applications”. In: Journal of Grid Computing (2020), pp. 1–14.976

[81] Umer Majeed, Kitae Kim, and Choong Seon Hong. “Mining Pool Selection Strategy in Blockchain977

Networks: A Probabilistic Approach”. In: KIISE Transactions on Computing Practices 26.6 (2020),978

pp. 280–285.979

[82] Robert G Sargent. “Verification and validation of simulation models”. In: Journal of simulation 7.1980

(2013), pp. 12–24.981

[83] Stefano De Angelis et al. “PBFT vs Proof-of-Authority: Applying the CAP Theorem to Permis-982

sioned Blockchain”. In: ().983

[84] Binance Academy. Proof of Authority Explained. 2020 (accessed October, 27, 2020). URL: https:984

//academy.binance.com/en/articles/proof-of-authority-explained.985

[85] Rafael Belchior et al. “A Survey on Blockchain Interoperability: Past, Present, and Future Trends”.986

In: arXiv preprint arXiv:2005.14282 (2020).987

[86] Jelena Misic, Vojislav B Misic, and Xiaolin Chang. “Performance of Bitcoin network with syn-988

chronizing nodes and a mix of regular and compact blocks”. In: IEEE Transactions on Network989

Science and Engineering (2020).990

[87] Bin Cao et al. “Performance analysis and comparison of PoW, PoS and DAG based blockchains”.991

In: Digital Communications and Networks (2020).992

33/33

