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Abstract4

This paper demonstrates that the sample allocation that takes the ex-5

pected response rates (ERRs) into account has certain advantages over6

other approaches in terms of reducing the variances of the estimates.7

The performance of the ERR allocation is assessed within the frame-8

work of stratified sampling by comparing the resulting variances with9

those obtained using the classical procedure of proportional to stratum10

size (PS) allocation and then applying post-stratification. The main11

theoretical tool is asymptotic calculations using the δ-method, which12

are complemented with extensive finite sample evaluations using vari-13

ous combinations of specific population parameters. The main finding14

was that within a stratified sample design, ERR allocation leads to15

lower variances than PS allocation, not only when the response rates16

are correctly specified but also under a wide range of conditions where17

the response rates can only be approximately specified in advance.18

Keywords— sample allocation, response rate, delta-method19
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1 Introduction20

To achieve an optimum balance between data collection costs and estimation effi-21

ciency (variance reduction), complex selection methods are typically required for22

the sampling design of household and individual surveys. Samples that are repre-23

sentative according to previously appointed variables may be obtained via a precise24

allocation of the sample sizes within different strata, if the relevant information is25

available both for the entire population, e.g., from a census, and also for every26

individual in a sampling frame, e.g., in a register. Generally, the proportional-to-27

stratum size (PS) allocation method (Larsen 2008) is used. However, the realised28

(observed) sample sizes within the strata tend to differ from the planned (allocated)29

ones. The larger the reluctance to participate within a stratum, the larger the dif-30

ference between the planned and realised sample sizes (Stoop 2004). Previous field31

experiences and the analysis of current survey meta-data indicate that the over-32

all increase in survey nonresponse does not equally apply to different population33

subgroups (Meyer et al. 2015, Osier 2016). The resulting distortion of sample com-34

position is usually dealt with using post-stratification (Groves et al. 2009). It has35

been found that single-person households, renters and individuals outside of the36

labour force are less likely to participate in surveys than members of other social37

groups (Abraham et al. 2006, Meyer et al. 2015). This suggests that giving a larger38

proportional allocation to these groups may improve the realised sample. To be39

able to determine the exact proportions during the allocation procedure, estimates40

from previous surveys are needed. In case of item-nonresponse the expected histor-41

ical response rates are easy to determine using publicly available survey data. In42

the case of unit-nonresponse, the contact data (or survey meta-data) are typically43

not available publicly, but survey organizations can use their own historical data.44

This paper demonstrates that if specific response rates are available for different45

strata, the sample allocation that takes these into account has certain advantages46

over the PS allocation methods, not only when the response rates are precisely47

known but also when they are approximated. In fact, an allocation that takes the48

expected response rates (ERRs) into account results in lower variance than when49

adopting PS allocation. The remainder of the paper is organised as follows. First,50

we briefly introduce the PS procedure with post-stratification (section 2.1) before51

section 2.2 formally presents the method of ERR allocation. The relative perfor-52

mance of ERR allocation is assessed by comparing the variances in the resulting53

estimates in section 3. The asymptotic variances are calculated using the δ-method54

in section 4.1 and are then initially compared by assuming correctly specified re-55

sponse rates in section 4.2. Here, the assumed response rates are subject to ran-56

dom fluctuations, which are then corrected using post-stratification. In section 4.3,57

variance comparison is performed in terms of misspecified response rates, and the58

results of an extensive assessment using various combinations of specific population59

parameters are presented.60
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2 Sample Allocation61

Let N denote the population size and let Nh (h = 1, 2, . . . , H), be the sizes of the62

strata relevant to the sampling procedure, with N = N1 + ...+NH . In a stratified63

random sample, a simple random sample of nh elements is taken from each stratum64

h (h = 1, 2, ..., H), with a total sample size of n elements.65

66

When the survey aims to collect m responses, the response rate which characterizes67

the population needs to be taken into account in deciding about the attempted68

sample size. Of course, such decisions should be made based on the true response69

rate, but it is rarely known. Thus, the ERR, say r, is used which is based on former70

experience. Then, a total of n = m/r observations are allocated.71

2.1 Allocation Proportional to Size72

In the case of PS allocation, let nPS
h (h = 1, 2, ..., H) denote the subsample size73

within stratum h. The sampling fraction nPS
h /Nh is specified to be the same for74

each stratum and thus75

nPS
h =

1

r

Nh

N
m h=1,...,H , (1)

which implies that the overall sampling fraction n/N is the same as the fraction76

taken from each stratum. The total allocated sample size is then as follows:77

nPS = m

H∑
h=1

Nh

N

1

r
=

m

r
(2)

2.2 Allocation Based on Different ERRs78

In the case of ERR allocation, let nERR
h (h = 1, 2, ..., H) denote the allocated79

subsample size within stratum h. Let rh (h = 1, 2, ..., H) denote the stratum-80

specific ERRs, which are also assumed to be population parameters. Clearly,81

r =

H∑
h=1

rhNh

N
.

In ERR allocation, the allocated sample size in each stratum nERR
h is specified us-82

ing, instead of the population level ERR, the stratum-specific ERRs. The allocated83

sample size in each stratum is84

nERR
h =

1

rh

Nh

N
m h=1,...,H. (3)

Consequently, the total allocated sample size is85

nERR = m

H∑
h=1

Nh

N

1

rh
. (4)
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3 Estimation Procedures86

To assess the ERR and PS allocations, the variances of the estimates obtained will87

be compared in Section 4 using the δ-method. Here, we describe the estimating88

procedures.89

90

The main aim is to estimate the proportion of respondents within a given popula-91

tion who would choose a fixed category, e.g., ’yes’, of a given close-ended question92

based on observed samples in terms of both ERR and PS allocations. In both cases,93

post-stratification is applied prior to the estimation to appropriately reproduce the94

relative sizes of the strata in the population (Groves et al. 2009).95

96

It is assumed that responding to the survey is probabilistic and occurs in stratum97

h with probability ph and is independent from the true answer to the question of98

interest. It should be noted that the rh response rates represent the expectation of99

the researcher based on previous knowledge and that ph is the true probability of100

responding. The probability of nonresponse1 is therefore 1− ph in each stratum h.101

Thus, the data are missing completely at random (Rubin 1976). The probability102

of a ’yes’ response is assumed to be qh in each stratum h.103

Under the previous assumptions, the complete data for each stratum, would be the104

observation of a variable Zh with the following four components:105

1. Zh1 counts the number of cases when the selected respondent did answer and106

the answer was ’yes’.107

2. Zh2 counts the number of cases when the selected respondent did answer and108

the answer was ’no’;109

3. Zh3 counts the number of cases when the selected respondent did not answer110

and the answer would have been ’yes’;111

4. Zh4 counts the number of cases when the selected respondent did not answer112

and the answer would have been ’no’;113

Within stratum h, Zh has a multinomial distribution with parameters nh and qh,114

where nh is the allocated sample size for stratum h, which depends on the type of115

allocation, and under the assumed independence of the true response from whether116

or not the answer is received,117

qh = (phqh, ph(1− qh), (1− ph)qh, (1− ph)(1− qh)). (5)

The observed sample size is oh = Zh1+Zh2 in stratum h, and for each observation,
a post-stratification weight of

Nh

N

∑H
i=1 oi

oh
h=1,...,H.

1For the present argument, it is irrelevant whether nonresponse applies to the entire
survey because of no-contact or refusal or only to the current question.

4



is applied, which adjusts the fraction of the sample size in stratum h to be equal to
the population fraction of stratum h but does not change the total observed sample
size. After the weight is applied, Zhj is replaced by

Nh

N
·
∑H

i=1(Zi1 + Zi2)

Zh1 + Zh2
Zhj

, j=1,2,3,4 h=1,...,H.

As such, the natural estimator for the fraction of ’yes’ responses in stratum h is118

q̂h =

Nh

N ·
∑H

i=1(Zi1+Zi2)

Zh1+Zh2
Zh1

Nh

N ·
∑H

i=1(Zi1+Zi2)

Zh1+Zh2
Zh2 +

Nh

N ·
∑H

i=1(Zi1+Zi2)

Zh1+Zh2
Zh1

=
Zh1

Zh1 + Zh2
, (6)

which is the relative frequency of ’yes’ responses among all responses observed in119

stratum h. It should be noted that as q̂h refers to a single stratum, the post-120

stratification weights are cancelled out because they are identical within each stra-121

tum.122

For the entire sample, the Zh variables have a product multinomial distribution.123

The estimator for the fraction of ’yes’ responses in the total sample is124

q̂ =

∑H
h=1

Nh

N ·
∑H

i=1(Zi1+Zi2)

Zh1+Zh2
Zh1∑H

h=1(
Nh

N ·
∑H

i=1(Zi1+Zi2)

Zh1+Zh2
Zh2 +

Nh

N ·
∑H

i=1(Zi1+Zi2)

Zh1+Zh2
Zh1)

=
1

N

H∑
h=1

Nh
Zh1

Zh1 + Zh2
(7)

which is the weighted fraction of ’yes’ responses among all responses observed in125

the total sample. Here, post-stratification has the effect of weighting the stratum-126

specific estimates in terms of their population weights.127

4 Variance Comparison128

In this section we compare the variances of the estimates derived from the ERR129

and PS allocations using the δ-method.130

4.1 The δ-Method131

Theorem 4.1 (Multidimensional δ-method). Let Xn, n = 1, 2, ... be a sequence of132

k-dimensional vector-valued random variables such that,133

√
n(Xn − a)

d−→ Y, (8)
where a ∈ Rk and Y ∼ N(0,Σ). If a function f : Rk −→ Rl is differentiable at134

a ∈ Rk, and D is its l × k matrix of partial derivatives with dij =
∂fi(a)
∂xj

, then135

√
n(f(Xn)− f(a))

d−→ Z,Z ∼ N(0, DΣDT ). (9)
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136

The proof of the Theorem can be found in Bishop et al. (2007) or Lehmann &137

Romano (2005).138

As condition (8) holds for the multinomial distribution, theorem 4.1 may be applied139

within each stratum. The estimator for the proportion of ’yes’ responses in the total140

population (7) in section 3, is the weighted fraction of ’yes’ responses among all141

responses observed across all strata.142

In one strata, when omitting the index h, the estimation function is f(Z) = Z1

Z1+Z2
143

and the partial derivatives are as follows:144

df

dZ1
=

Z2

(Z1 + Z2)2
df

dZ2
= − Z1

(Z1 + Z2)2

df

dZ3
= 0

df

dZ4
= 0

The partial derivative vector D with the components evaluated above at the expec-145

tations E(Z1) = np1 and E(Z2) = np2, is146

D =



− np1

(np1+np2)2

np2

(np1+np2)2

0

0


(10)

As Z has a multinomial distribution with the probability vector given in (5), its147

covariance matrix is148

Σ =


np1(1− p1) −np1p2 −np1p3 −np1p4
−np2p1 np2(1− p2) −np2p3 −np2p4
−np3p1 −np3p2 np3(1− p3) −np3p4
−np4p1 −np4p2 −np4p3 np4(1− p4)

 (11)

Then, one has the following results for the asymptotic variances.149

Theorem 4.2 (Variance of the estimates). Let the population size be N , and let150

the population be divided into H strata of respective sizes of Nh, (h = 1, .., H). Let151

m be the intended total sample size, r the ERR in the entire population and rh the152

respective ERRs in the strata. The true population proportion of those possessing the153

characteristics of interest is denoted by qh, which is the parameter to be estimated154

in each stratum h. Finally, let ph be the true response rate in stratum h. Then,155

the asymptotic variances of the estimates obtained from samples based on PS and156

ERR allocations, with post-stratification applied, are as follows.157
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V PS(q̂) =
1

Nm

H∑
h=1

Nhqh(1− qh)
r

ph
(12)

V ERR(q̂) =
1

Nm

H∑
h=1

Nhqh(1− qh)
rh
ph

(13)

Proof. As stratified sampling leads to a product multinomial distribution (see, e.g.,
Rudas, 2018), theorem 4.1 is applied for each stratum. Then, the asymptotic
variance is obtained as follows:

DTΣD =
(phqh)(ph(1− qh))

2 + (phqh)
2(ph(1− qh))

nh((ph(1− qh) + phqh)4

=
p3hqh − p3hq

2
h

nhp4h
=

p3hqh(1− qh)

nhp4h
=

qh(1− qh)

nhph

As the allocated stratum-specific sample sizes nh are different in the PS and ERR158

allocations, different asymptotic variances will be obtained.159

In the case of PS allocation, using (1),160

V PS
h (q̂) =

qh(1− qh)

nPS
h ph

=
qh(1− qh)(
1
r
Nh

N m
)
ph

,

whereas for the total sample, the following is obtained:

V PS(q̂) =
1

N2

H∑
h=1

N2
h V̂h(q̂) =

1

N2

H∑
h=1

N2
h

qh(1− qh)(
1
r
Nh

N m
)
ph

=
1

Nm

H∑
h=1

Nhqh(1− qh)
r

ph
.

The asymptotic variance in stratum h in case of the ERR allocation with (3) is

V ERR
h (q̂) =

qh(1− qh)

nERR
h ph

=
qh(1− qh)(
1
rh

Nh

N m
)
ph

whereas for the total sample, the following is obtained:161

V ERR(q̂) =
1

N2

H∑
h=1

N2
h V̂h(q̂) =

1

N2

H∑
h=1

N2
h

qh(1− qh)(
1
rh

Nh

N m
)
ph

=
1

Nm

H∑
h=1

Nhqh(1− qh)
rh
ph

162
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In terms of a general comparison of the variances obtained above, the difference163

of the variances for the ERR and PS allocations, disregarding a positive constant164

multiplier, may be written as a weighted sum of the quantities165

rh − r

ph
, (14)

with weights equal to166

Nhqh(1− qh). (15)

Large negative values and small positive values of (14) point to a better performance167

of the ERR allocation than of the PS allocation. The value of (14) is sometimes168

negative and sometimes positive, as r is a weighted average of the rh values. Neg-169

ative values of (14) are obtained when rh is smaller than average and they will be170

made larger if ph is small. Positive values of (14) are obtained when rh is greater171

than average and will be made smaller if ph is large. Thus, (14) may be viewed as172

a measure of how well the ERRs rh approximate the true response rates ph, with173

large negative and small positive values meaning better approximation.174

Consequently, V ERR(q̂)−V PS(q̂) may be seen as a weighted average of how well rh175

approximates ph, as measured by (14), where the weights are the total variances of176

the strata, given in (15). The better the approximation, in particular in the strata177

with large total variances, the better the ERR allocation performs relative to the178

PS allocation.179

In the next two subsections, more detailed comparisons are given.180

4.2 Comparison Under Correctly Specified Response Rates181

In this section, we prove that in the case of correctly specified response rates (rh =182

ph), the variance of the estimate based on the ERR allocation is less than or equal183

to that derived from the PS allocation:184
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Theorem 4.3 (Relationships among the variances). Let V̂ PS(q̂) be the total vari-185

ance of the estimates based on a sample drawn via the PS allocation given in (12),186

and let V̂ ERR(q̂) be the total variance of the estimates based on a sample drawn by187

the allocation based on different ERRs, as given in (13). If the observed response188

rates are equal to the ERRs, then,189

VhERR
(q̂) ≤ VhPS

(q̂) (16)

Proof. If rh = ph, the response rates are correctly specified, and then r is also the
average ERR among all strata. Because N , Nh and qh are population parameters,
and m is a fixed constant, it is enough to see that

H∑
h=1

Nhqh(1− qh) ≤
H∑

h=1

Nhqh(1− qh)
1
H

∑H
j=1 pj

ph

or
1∑H

h=1 wh

H∑
h=1

wh
1

1
H

∑H
j=1 pj

≤ 1∑H
h=1 wh

H∑
h=1

wh
1

ph
.

As the left hand side is the weighted harmonic mean of the values 1
p1
, . . . , 1

pH
,190

and the right-hand side is the weighted arithmetic mean of the same numbers, by191

inequality between these means (Bullen 2003) demonstrates that the claim of the192

theorem is true.193

194

4.3 Comparison Under Misspecified Response Rates195

In this section, we compare the ERR and PS allocation methods under misspecifica-196

tion that is, when the true response rates differ from the ERRs used in the sample al-197

location (ph ̸= rh). The variances were compared for all combinations of parameter198

values with a fixed number of strata, H = 3. Specifically, all possible combinations199

of the following parameter values were considered: all possible combinations of the200

values
{
0.1, 0.3, 0.5, 0.7, 0.9

}
for the true response rates

{
p1, p2, p3

}
and for the201

ERRs
{
r1, r2, r3

}
. The parameter to be estimated in every stratum h (h = 1, 2, 3)202

was given values between 0 and 1, with an increment of 0.05. The size of the popu-203

lation N = 107,the sizes of the strata N1 = 2 ∗ 106, N2 = 3 ∗ 106, N3 = 5 ∗ 106, and204

the desired total sample size m = 1000 were fixed. With the different choices, a205

total of 15.625.000 different sets of parameters were defined. The calculations were206

conducted using the R statistical environment.207

Figure 1 shows the comparison of the variances of the estimates obtained using208

ERR and PS allocations. The comparison is given in terms of the total absolute209

misspecification of the response rates,
∑H

h=1 |rh − ph| (x-axis) and of the total210

absolute distance of the ERRs
{
r1, r2, r3

}
from their weighted average,

∑H
h=1 |rh−r|211

(y-axis).212

The magnitude of the misspecification of the response rates appeared to have a213

greater impact on the relative performances of the two allocation procedures. When214
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the total absolute misspecfication was less than 0.3, the ERR allocation almost215

always performed better. Meanwhile, the total absolute distance of the ERRs from216

their weighted average appears to have had a small and non-systematic effect.217

Figure 1: Comparison of the variances in the estimates obtained using ERR and PS
allocations, in terms of the total absolute misspecification of the response rates (x-axis:∑H

h=1 |rh − ph|) and the total absolute distance of the ERRs from one weighted average
(y-axis:

∑H
h=1 |rh − r|).

Figure 2 shows the comparison of the variances of the estimates obtained using ERR218

and PS allocations in terms of the total absolute misspecification of the response219

rates,
∑H

h=1 |rh − ph| (x-axis) and the difference in the absolute deviances of the220

response rates from their respective weighted averages,
∑H

h=1(|rh − r| − |ph − p|)221

(y-axis).222
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When the total absolute misspecification of the response rates was lower than 0.3,223

the ERR allocation yielded mostly smaller variances. Meanwhile, in the range224

of 0.3 − 0.4, the two allocations performed equally well. Most notably, an equal225

precision can be expected in the extreme areas of the plot.226

Figure 2: Comparison of the varianc in the estimates obtained using ERR and PS al-
locations, in terms of the total absolute misspecification of the response rates (x-axis:∑H

h=1 |rh − ph|) and the difference in the absolute deviations of the response rates from
their respective weighted averages (y-axis:

∑H
h=1(|rh − r| − |ph − p|)).
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Figure 3 shows the comparison of the variances of the estimates obtained using227

the ERR and PS allocations in terms of the total absolute distance of the response228

rates from their weighted average
∑H

h=1 |rh − r| (x-axis) and the difference in the229

absolute deviations of the response rates from their respective weighted averages230 ∑H
h=1(|rh − r| − |ph − p|) (y-axis).231

Here, the total absolute misspecification shown on the x-axes of Figures 1 and 2 was232

disregarded but was clearly more influential than the characteristics shown in Figure233

3. When the difference between the total absolute deviations of the expected rates234

and the ERRs was less than approximately half of the latter, the ERR allocation235

always performed better, irrespective of whether or not the individual response236

rates were correctly predicted.237

Figure 3: Comparison of the variances of the estimates obtained using the ERR and the
PS allocations in terms of the total absolute distance of the response rates from their
weighted average (x-axis:

∑H
h=1 |rh − r|) and the difference in the absolute deviations of

the response rates from their respective weighted averages (y-axis:
∑H

h=1(|rh−r|−|ph−p|).
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5 Conclusion238

In this paper, we demonstrated how ERRs can be utilised in the sample allocation239

procedure. In the process, we introduced an ERR allocation procedure where the240

stratum-specific ERRs were used to determine the allocated sample sizes within241

each stratum. We assessed the method by comparing it with a standard propor-242

tional allocation method (PS) where stratum-specific response rates are not used.243

The assessment of the sample allocation procedures used a comparison of the re-244

sulting asymptotic variances based on the δ-method when assuming the expected245

responses were equal to the true responses. In the case of misspecified response246

rates, extensive enumeration was used. The first finding of the paper is that if247

the stratum-specific response rates are correctly specified, ERR allocation performs248

better than PS allocation in terms of the variances of the estimates. In practice,249

however, it may be difficult to precisely estimate the stratum-specific response rates250

prior to sampling. In such cases, approximate response rates based on experience251

need to be used. On the basis of the numerical results obtained:252

(a) ERR allocation outperforms PS allocation if the total absolute distance of253

the ERRs from the true response rates is moderate,254

(b) The total absolute distance of the ERRs from their weighted average and the255

total absolute distance of the true response rates from their weighted average256

do not appear to affect the aforementioned finding,257

(c) When the difference between the total absolute deviations of the expected258

and of the true response rates is less than approximately half of the latter,259

ERR allocation always performs better, irrespective of whether or not the260

individual response rates were correctly predicted.261

In this paper, statistics other than proportions were not investigated, because of262

the problematic nature of the distributional assumptions including the homogeneity263

of variances which would have to be made. However, given that the proportions264

were obtained as averages of specific indicators, we expect similar results to hold in265

more general cases. The allocation method described in this paper may be applied266

to other sampling designs which include separate allocation steps for subsamples.267

These designs include multistage sampling where sample allocations taking into268

consideration the different ERRs in the different primary sampling units may be269

applied.270
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