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New Model for the Force of Fluidic Muscles

JÓZSEF SÁROSI
University of Szeged, Faculty of Engineering, Technical Institute, Mars tér 7, Szeged, FI-

6724, HUNGARY 
sarosi@mk.u-szeged.hu

Abstract: The newest and most promising type of pneumatic actuators is the pneumatic artificial 
muscle (PAM). Different designs have been developed, but the McKibben muscle is the most popular 
and is made commercially available by different companies (e. g. Fluidic Muscle manufactured by 
Festo Company). The most often mentioned characteristic of PAMs is the force as a function of 
pressure and contraction. In this paper the newest function approximation for the force generated by 
Fluidic Muscles is shown that can be generally used for different muscles made by Festo Company.

Keywords: PAM, Fluidic Muscle, Force, Function Approximation, Matlab, MS Excel

1 Introduction
Pneumatic artificial muscle is a membrane that 
will expand radially and contract axially when 
inflated, while generating high pulling force along 
the longitudinal axis. PAMs have different names 
in literature: Pneumatic Muscle Actuator, Fluid 
Actuator, Fluid-Driven Tension Actuator, Axially 
Contractible Actuator, Tension Actuator, etc. ([1] 
and [2]).

The working principle of pneumatic muscles is 
well described in [1], [2], [3], [4] and [5].

There are a lot of advantages of PAMs like the 
high strength, good power-weight ratio, low price, 
little maintenance needed, great compliance, 
compactness, inherent safety and usage in rough 
environments ([4] and [6]). The main
disadvantage of these muscles is that their 
dynamic behaviour is highly nonlinear ([4], [7],
[8], [9] and [10]).

Many researchers have investigated the
relationship of the force, length and pressure to 
find a good theoretical approach for the equation 
of force produced by pneumatic artificial muscles. 
Some of them report several mathematical 
models, but significant differences have been 
noticed between the theoretical and experimental 
results ([4], [6], [ 11 ], [ 12], [ 13] and [ 14]).

The force depends on length (contraction) under 
constant pressure. This force decreases with 
increasing position of the muscle and the muscle 
inflates. The goal was to develop a precise 
approximation algorithm with minimum numbers 
of parameters for the force of different Fluidic

Muscles.

The layout of this paper is as follows. Section 2 
(Static Modelling of PAMs) describes several 
force equations. Section 3 (Experimental Results) 
compares the measured and theoretical data. 
Finally, Section 4 (Conclusion and Future Work) 
gives the investigations we plan.

Fluidic Muscles type DMSP-20-200N-RM-RM 
(with inner diameter of 20 mm and initial length 
of 200 mm) produced by Festo Company was 
selected for this study (Fig. 1).

Fig. 1 Festo Fluidic Muscle

2 Static Modelling of PAMs
The general behaviour of PAMs with regard to 
shape, contraction and tensile force when inflated 
depends on the geometry of the inner elastic part 
and of the braid at rest (Fig. 2), and on the 
materials used [1], Typical materials used for the 
membrane construction are latex and silicone 
rubber, while nylon is normally used in the fibres.
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Fig. 2 Geometry parameters of PAMs

With the help of [4] and [6], the input and output 
(virtual) work can be calculated:

dWin = p d V ( l )

dWj„ can be divided into a radial and an axial 
component:

dWin = 2 • r ■ n ■ p ■ I • (+dr) -  r2 • it • p • (-dl) (2)

The output work:

dW0111 = —F - dl (3)

Í 1 2

r = r 0 V l - c o s 2a ^
1- — cosa0 

( 'o (10)
r0‘sina0 sina0

dr r0 l cos2a 0 i
dl >0 -s'noo

i f 1 ]1 - 1 — cosa0
2

( i i )

1 1*0 J

By using (10) and (11) with (6) the force equation 
is found:

F(p,k )  = r02 - it-p-(a- (1- k)2 -  b) (12)

Where
3

tg2o0 ’
b = - K l n  - 1

^  ^  ^  m ax  » and V the muscle volume, F  the 
pulling force, p the applied pressure, r0, lo, a0 the 
initial inner radius and length of the PAM and the 
initial angle between the thread and the muscle 
long axis, r, l, a the inner radius and length of the 
PAM and angle between the thread and the 
muscle long axis when the muscle is contracted, h 
the constant thread length, n the number of turns 
of thread and k the contraction.

By equating the virtual work components: Consequently:

dW,„ =dW, (4) Fm„ = r02 • re • p • (a -  b), if k = 0 (13)

Using (1) and (3):

F =

Using (2) and (3):

F = -2 • r • jr ■ p -1------r2 u  p
dl H

On the basis of Fig. 2:

•o Icosa„ = — and cosa = —0 U U

sina0 2 • 7t • rn • n 2 -71-r n
-------- -—  andsina = -------------

h h

1 cosa r sina— = ------- and — = —------
l0 cosa0 r0 sina0

(5)

(6)

(7)

( 8) 

(9)

and

= l - ^ , i f F  = 0 (14)

Equation (12) is based on the admittance of a 
continuously cylindrical-shaped muscle. The fact 
is that the shape of the muscle is not cylindrical 
on the end, but rather is flattened, accordingly, the 
more the muscle contracts, the more its active part 
decreases, so the actual maximum contraction 
ration is smaller than expected [4],
Tondu and Lopez in [4] consider improving (12) 
with a correction factor e, because it predicts for 
various pressures the same maximal contraction. 
This new equation is relatively good for higher 
pressure (p > 200 kPa). Kerscher et al. in [12] 
suggest achieving similar approximation for 
smaller pressure another correction factor p is 
needed, so the modified equation is:

F(p.k) = |i • r02 • n • p • (a • (! - e■ k)2 - b) (15)
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Where s = a£ e p-be and n = aK e K'™ -bK.

The significant differences between the 
theoretical and experimental results were analysed 
and proved in [15] and [16]. Therefore a new 
approximation algorithm has been introduced:

F (p ,x ) = (ap + b )e^ CK+^  + (e p + f )x + g p + h  0 ^ )

The unknown parameters of (16) were found 
using genetic algorithm in Matlab. The accuracy 
of (16) was demonstrated in [16], [17] and [18].

With reduced number of parameters the force can 
be calculated:

F (p , k ) = (a - p + b)-eCK -t-dp-K + e p  + f 0 ? )

On the basis of our investigations and results, (17) 
can be simplified:

F(/j,k) = (p + a) - e*3'* + c • p - k + d • p + e ^  ̂

In this work the unknown parameters of (17) and 
(18) were found in MS Excel instead of Matlab.

3 Experimental Results
The newest analyses were carried out in MS 
Excel. Tensile force of Fluidic Muscle under 
different constant pressures is a function of 
muscle length (contraction). The force always 
drops from its highest value at full muscle length 
to zero at full inflation and position (Fig. 3).

0 5 10 15 20 25 30
Contraction [%]

-----0 kPa (measured) -----100 kPa (measured)------200 kPa (measured)
-----300 kPa (measured)----- 400 kPa (measured)----- 500 kPa (measured)

Fig. 3 Isobaric force-contraction diagram

First of all, the measured data and force model 
using (17) was compared. As it is shown in Fig. 4, 
(17) predicts the correct force for various 
pressures and contractions.

The unknown parameters of (17) can be found in 
MS Excel with the help of Solver (Table 1).

Parameters Values
a -4,52882184
b 299,3578643
c -0,32408548
d -9,31031059
e 295,035557
f -287,420111

Table 1 Values of unknown parameters of (17)

-5 0 5 10 15 20 25 30
Contraction [%)

-----0 kPa (measured) ----- 0 kPi icalculated) ----- 100 kPa (measured)
-----100 kPa (calculated)----- 200 kPa (measured)----- 200 kPa (calculated)
-----300 kPa (measured)-----300 kPa (calculated)----- 400 kPa (measured)
-----400 kPa (calculated)---- 500 kPa (measured)----- 500 kPa (calculated)

Fig. 4 Comparison of measured data and force 
model using (17)

Secondly, the investigation was repeated using 
(18). The results of (18) and measured data can be 
compared in Fig. 5.

Values of unknown parameters of (18) are listed 
in Table 2.

Parameters Values
a 293,3294011
b -0,32140227
c -9,07686721
d 289,0857019
e -278,4611

Table 2 Values of unknown parameters of (18)
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-5 0 5 IO 15 20 25 30
Contraction [% \

-----0 kPa (measured) ----- 0 kPa (calculated) ----- 100 kPa (measured)
-----100 kPa (calculated)-----200 kPa (measured)----- 200 kPa (calculated)
-----300 kPa (measured)-----300 kPa (calculated)----- 400 kPa (measured)
-----400 kPa (calculated)-----500 kPa (measured)----- 500 kPa (calculated)

Fig. 5 Comparison of measured data and force 
model using (18)

The precise positioning of PAMs requires 
accurate determination of the dynamic model of 
pneumatic actuators. Therefore the hysteresis in 
the tension-length (contraction) cycle of PAMs 
was analysed.
Chou and Hannaford in [6] report hysteresis to be 
substantially due to the friction, which is caused 
by the contact between the bladder and the shell, 
between the braided threads and each other, and 
the shape changing of the bladder. Some 
experiments were made to illustrate the hysteresis 
(Fig. 6).

DMSP-20-200N Festo Fluidic Muscle

Contraction [%]

-----0 kPa (measured, lower)  0 kPa (measured, upper)
-----100 kPa (measured, lower) 100 kPa (measured, upper)
-----200 kPa (measured, lower) 200 kPa (measured, upper)
-----300 kPa (measured, lower) 300 kPa (measured, upper)
-----400 kPa (measured, lower) 400 kPa (measured, upper)
-----500 kPa (measured, lower) 500 kPa (measured, upper)

Fig. 6 Hysteresis in the tension-length 
(contraction) cycle

To approximate the hysteresis loop using (17) and 
(18), besides the parameters in Table 1 and Table 
2, new parameters had to be specified (Table 3

and Table 4).

Parameters Values
a 2,28453547
b 252,526449
c -0,3704415
d -9,0783217
e 283,544241
f -291,48088

Table 3 Values of unknown parameters of (17)

Parameters Values
a 253,938042
b -0,3712419
c -9,1342021
d 285,066068
e -293,91895

Table 4 Values of unknown parameters of (18)

The accurate fittings are demonstrated in Fig. 7 
and Fig. 8.

-5 0 5 10 15 20 25 30
Contraction [%]

-----0 kPa (measured, lower) 0 kPa (calculated, lower)
-----0 kPa (measured, upper) ----- 0 kPa (calculated, upper)
-----100 kPa (measured, lower)------100 kPa (calculated, lower)
-----100 kPa (measured, upper)------100 kPa (calculated, upper)
----- 200 kPa (measured, lower)----- 200 kPa (calculated, lower)

-----200 kPa (measured, upper)----- 200 kPa (calculated, upper)
-----300 kPa (measured, lower)----- 300 kPa (calculated, lower)
— 300 kPa (measured, upper)-----300 kPa (calculated, upper)

-----400 kPa (measured, lower)----- 400 kPa (calculated, lower)
-----400 kPa (measured, upper)----- 400 kPa (calculated, upper)
-----500 kPa (measured, lower)----- 500 kPa (calculated, lower)
-----500 kPa (measured, upper)----- 500 kPa (calculated, upper)

Fig. 7 Approximation of hysteresis loop using 
(17)
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-5 0 5 10 15 20 25 30
Cunt rat tion [%]

-----0 kPa (measured, lower) ----- 0 kPa (calculated, lower)
-----0 kTa (measured, upper) 0 kPa (calculated, upper)
-----100 kPa (measured, low er)----- 100 kPa (calculated, lower)
-----100 kPa (measured, upper)----- 100 kPa (calculated upper)
-----200 kPa (measured, lower) 200 kPa (calculated lower)
-----200 kPa (measured, upper)----- 200 kPa (calculated, upper)
-----100 kPa (measured, lower)----- 100 kPa (calculated lower)
-----300 kPa (measured, upper)----- 300 kPa (calculated upper)

-----400 kPa (measured, low er)-----400 kPa (calculated, lower)
-----400 kPa (measured, upper)----- 400 kPa (calculated upper)
-----500 kPa (measured, low er)----- 500 kPa (calculated lower)
-----500 kPa (measured, uppei)-----500 kPa (calculated upper)

Fig. 8 Approximation of hysteresis loop using 
(18)

4 Conclusion and Future Work
In this work new functions for the force produced 
by Festo Fluidic Muscle have been introduced. 
The accuracy of fittings has been proved with 
comparisons of the measured and calculated data. 
These investigations were carried out in MS Excel 
instead of Matlab. This environment and solution 
is more favourable, because programming is not 
required. The main aim is to develop a new 
general mathematical model for pneumatic 
artificial muscles on the basis of these new 
models and results.
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