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ABSTRACT: 

 Pneumatic actuators convert pneumatic energy into mechanical motion. This motion can be linear 

or rotary. Linear motion is feasible with pneumatic cylinders (e. g. single-acting cylinder, double-

acting cylinder, rodless cylinder) and pneumatic artificial muscles (PAMs). Pneumatic artificial 

muscle is the newest and most promising type of pneumatic actuators. PAM is a membrane that 

expands radially and contracts axially when inflated, while generating high pulling forces along the 

longitudinal axis. The force and motion produced by PAM are linear and unidirectional. Different 

designs of PAM have already been developed. Recently Fluidic Muscle manufactured by Festo 

Company and Shadow Air Muscle manufactured by Shadow Robot Company are the most popular 

and commercially available. This paper describes a five-parameter function for the force generated by 

Fluidic Muscles. For this study two Fluidic Muscles are used to compare the measured and theoretical 

results. The muscles have the same diameter, but one is twice as long as the other. 

 

1. INTRODUCTION: 

 

 Electric, hydraulic and pneumatic systems are commonly used in industrial environment, robotics 

and education [1], [2]. Pneumatic artificial muscles have a wide range of applications, too, e. g. for tab 

punching, vibratory hopper, lifting device and walking robot [3], [4]. Many important daily activities, 

such as eating, drinking, dressing and walking depend on two-handed or/and two-legged functions. 

Rehabilitation and prosthetic devices driven by PAMs can help such people who have difficulties in 

these areas [5], [6], [7]. 
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There are a lot of advantages of PAMs like the high strength, good power/weight ratio, good 

power/volume ratio, low price, little maintenance needed, great compliance, compactness, flexibility, 

inherent safety and usage under rough environments, but their dynamic behaviour is highly nonlinear, 

therefore a nonlinear robust control technique is needed for accurate positioning [8]. 

The pneumatic artificial muscle is a one-way acting device. Therefore, two ones are needed to 

generate bidirectional motion: one of them moves the load, the other one will act as a brake to stop the 

load at its wanted position and the muscles have to change function to move the load in the opposite 

direction. This specific connection of the muscles to the load is generally named as an antagonistic set-

up: the driving muscle is called the flexor or agonist, while the brake muscle is called the extensor or 

antagonist. The antagonistic configuration of the actuators causes the active muscle to pull against the 

stiffness of the passive muscle. Different investigations of PAMs in antagonistic connection are well 

described in [9] and [10]. Bharadwaj et al. in [11] presented the possibility of bidirectional motion 

with spring over muscle (SOM). 

The layout of this paper is as follows. Section 2 (Materials and Methods) is devoted to describe 

the geometry parameters of PAMs and a five-parameter function for the force generated by Fluidic 

Muscles. Section 3 (Experimental Results) compares the measured and calculated results. Finally, 

Section 4 (Conclusion) gives the experiences. 

For this study two Fluidic Muscles are selected: DMSP-20-200N-RM-RM (with inner diameter of 

20 mm and initial length of 200 mm) and DMSP-20-400N-RM-RM (with inner diameter of 20 mm 

and initial length of 400 mm). 

 

2. MATERIALS AND METHODS: 

 

The general behaviour of PAMs with regard to shape, contraction and tensile force when inflated 

depends on the geometry of the inner elastic part and of the braid (load carrying structure) at rest (Fig. 

1), and on the materials used [12]. Typical materials used for the membrane construction are latex and 

silicone rubber, while nylon is normally used in the fibres. 

 

 
Fig. 1 

Geometry parameters of PAMs 



 

Where: 

F [N]: pulling force, 

r0 [m]: the initial inner radius of PAM, 

l0 [m]: the initial length of PAM, 

α0 [°]: the initial angle between the thread and the muscle long axis, 

r [m]: inner radius of the PAM when the muscle is contracted, 

l [m]: length of the PAM when the muscle is contracted, 

α [°]: angle between the thread and the muscle long axis when the muscle is contracted, 

h [m]: the constant thread length, 

n: the number of turns of thread. 

 

The load carrying structure of Fluidic Muscles is embedded helically in its membrane. The membrane 

is made from chloroprene and the load carrying structure is made from aramid (Fig. 2). 

 

 
Fig. 2 

Scheme of Fluidic Muscles 

 

The basic static models of PAMs can be found in [9] and [13]. Significant differences between the 

theoretical and experimental results using these models have been proven in [14] and [15]. To 

eliminate the differences a new approximation algorithm with five unknown parameters has been 

developed and introduced for the force generated by Fluidic Muscles: 

 

epdκpcκbexpa)(p)F( +⋅+⋅⋅+⋅⋅+=κp,       (1) 

 

Where p is the applied pressure and κ is the contraction (relative displacement). The unknown 

parameters of equation 1 were found using least squares method with Microsoft Excel Solver. 

 

 



 

3. EXPERIMENTAL RESULTS: 

 

The muscle force as a function of contraction at constant values of pressure is the most frequently 

mentioned feature of PAMs. The force always drops from its highest value at full muscle length to 

zero at full inflation (Fig. 3). To approximate the measured force generated by Fluidic Muscles type 

DMSP-20-200N-RM-RM and type DMSP-20-400N-RM-RM equation 1 was used. Values of the 

unknown parameters of it are shown in Table 1. 

 

Table 1. Values of the unknown parameters of equation 1 

DMSP-20-200N-RM-RM DMSP-20-400N-RM-RM 
Parameters Values Parameters Values 

a 286.1714546 a 274.7944784 
b -0.327523456 b -0.32623809 
c -9.135794264 c -9.07369264 
d 288.4720479 d 296.3161465 
e -271.3462159 e -254.042387 

 

Fig. 3 presents the experimental and theoretical results on the same graphs for DMSP-20-200N-RM-

RM and DMSP-20-400N-RM-RM, respectively. To describe the nature and strength of the 

relationship between the experimental and calculated results, regression and correlation analysis were 

used. R2 = 0.9994 → R = 0.9997 and R2 = 0.9993 → R = 0.9996 correlation coefficients approach the 

maximum (strongest, R = 1) correlation (Fig. 4). Consequently, equation 1 is capable of making 

accurate and reliable predictions of static force. 

 

  
Fig. 3 

Comparison of measured and calculated force using equation 1 

 



  
Fig. 4 

Results of regression and correlation analysis 

 

4. CONCLUSION: 

 

According to Tondu and Lopez in [9], the static force is globally independent of initial length. On the 

basis of Table 1 and Fig. 3, differences can be noticed beetwen the force generated by Fluidic 

Muscles. The muscles had the same diameter (20 mm), but one is twice as long as the other (200 mm 

and 400 mm). Therefore, length has to be taken into account for high precision applications. 

The regression and correlation analysis were carried out in MS Excel environment. It was proven that 

the five-parameter function can be used for accurate predictions of static force. 
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