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Abstract — In industrial environment and robotics 
different types of pneumatic actuators - e. g. cylinders and 
pneumatic motors - can be found commonly to date. A 
less well-known type is that of the so-called pneumatic 
artificial muscles (PAMs). Pneumatic artificial muscle is 
a membrane that will expand radially and contract axially 
when inflated, while generating high pulling force along 
the longitudinal axis. Different designs have been 
developed, but the McKibben muscle is the most popular 
and is made commercially available by different 
companies, e. g. Fluidic Muscle manufactured by Festo 
Company. There are a lot of advantages of PAMs like the 
high strength, good power-weight ratio, low price, little 
maintenance needed, great compliance, compactness, 
inherent safety and usage in rough environments. The 
main disadvantage of these muscles is that their dynamic 
behaviour is highly nonlinear. The layout of this paper is 
as follows. Section I (Introduction) is a short review of 
the professional literatures. Section II (Experimental Set-
up for Analysis of Fluidic Muscles) is devoted to display 
our test bed and LabVIEW program. Section III (Static 
Modelling of Pneumatic Artificial Muscles) describes 
several force equations and our newest models for the 
force generated by Fluidic Muscles. Section IV 
(Experimental Results) compares the measured and 
theoretical data. Finally, Section V (Conclusion and 
Future Work) gives the investigations we plan. 
 
Keywords:  Fluidic Muscle,  Static Model,  Force 

Equation,  MS Excel Solver. 
 

I. INTRODUCTION 
 
The working principle of pneumatic artificial muscles is 
well described in literature ([1], [2], [3], [4], [5] and [6]). 
Many researchers have investigated the relationship of the 
force, length and pressure to find a good theoretical 
approach for the equation of force produced by pneumatic 
artificial muscles. Some of them report several 
mathematical models, but significant differences have been 
noticed between the theoretical and experimental results 
([2], [4], [7], [8], [9] and [10]). 
 
Length of artificial muscle depends on force under constant 
pressure. This force decreases with increasing position of 
the muscle and the muscle inflates. Our goal is to develop 
precise approximation algorithms with minimum numbers 
of parameters for the force of different Fluidic Muscles. 
 

Fluidic Muscles type DMSP-20-200N-RM-RM (with inner 
diameter of 20 mm and initial length of 200 mm) and type 
DMSP-20-400N-RM-RM (with inner diameter of 20 mm 
and initial length of 400 mm) produced by Festo Company 
are selected for this study. 
 

II. EXPERIMENTAL SET-UP FOR ANALYSIS OF FLUIDIC 

MUSCLES 
 

The experimental set-up (Fig. 1.) consists of a slider 
mechanism. One side of the muscle is fixed to a load cell, 
while the other side is attached to the movable frame. The 
load cell (7923 type from MOM) is a 4 bridge element of 
strain gauges. It is mounted to the PAM on the fixed 
surface. The load cell measures the force exerted by the 
PAM. To measure the air pressure inside the muscle, a 
Motorola MPX5999D pressure sensor is plumbed into the 
pneumatic circuit. The linear displacement of the actuator 
is measured using a LINIMIK MSA 320 type linear 
incremental encoder with 0.01 mm resolution. 
 
The air pressure applied to the actuator can be regulated 
with an adjustable regulator (proportional pressure 
regulator (PPR)) type Festo VPPM-6L-L-1-G1/8-0L6H-
V1N-S1C1. The PPR is controlled by voltage inputs. A 
National Instruments Multi-I/O card (NI 6251) reads the 
signal of force, pressure sensor and incremental encoder 
into the PC. 

 

 
Fig. 1. Experimental set-up for analysis of Fluidic Muscles. 

The tests are performed by changing the displacement of 
the slider. During each test, frame position, muscle force 
and applied gauge pressure are recorded. With the specially 
constructed testing machine, we are able to measure the 
static and dynamic characteristics of several versions of 
pneumatic actuators. 
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The software side of this experimental set-up is designed in 
LabVIEW environment (Fig. 2.). LabVIEW is a typical 
example for high level software, capable of connecting 
various kinds of DAQ boards with a PC. 

 

 
Fig. 2. Front panel of LabVIEW program. 

 
III. STATIC MODELLING OF PNEUMATIC ARTIFICIAL 

MUSCLES 
 
The general behaviour of PAMs with regard to shape, 
contraction and tensile force when inflated depends on the 
geometry of the inner elastic part and of the braid at rest 
(Fig. 3.), and on the materials used [3]. Typical materials 
used for the membrane construction are latex and silicone 
rubber, while nylon is normally used in the fibres. Fig. 4. 
shows the materials of Fluidic Muscles. 

 

 
Fig. 3. Geometry parameters of PAMs. 

 
Fig. 4. Materials of Fluidic Muscles. 

With the help of [2], [4] and [8], the input and output 
(virtual) work can be calculated: 

 

dVpdWin   (1) 

 
dWin can be divided into a radial and an axial component: 

 

(-dl)pπrdr)(lpπr2dW 2

in   (2) 

 
The output work: 

 
dlFdWout   (3) 

 
By equating the virtual work components:  

 

outin dWdW   (4) 

 
Using (1) and (3): 
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Using (2) and (3): 
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On the basis of Fig. 3.: 
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(11) 

 
By using (10) and (11) with (6) the force equation is found: 
 

b)κ)(1(apπr)F( 22

0 κ p,  (12) 

 

where 
0

2αtg

3
a  , 

0
2αsin

1
b  , 

0

0

l

ll
κ


 , maxκκ0  , 

and V the muscle volume, F the pulling force, p the applied 
pressure, r0, l0, α0 the initial inner radius and length of the 
PAM and the initial angle between the thread and the 
muscle long axis, r, l, α the inner radius and length of the 
PAM and angle between the thread and the muscle long 
axis when the muscle is contracted, h the constant thread 
length, n the number of turns of thread and κ the 
contraction. 
 
Consequently: 
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0 κ b),(apπrF if
2

0max   (13) 

 
and 
 

0 ,
a

b
1κ Fifmax   (14) 

 
Equation (12) is based on the admittance of a continuously 
cylindrical-shaped muscle. The fact is that the shape of the 
muscle is not cylindrical on the end, but rather is flattened, 
accordingly, the more the muscle contracts, the more its 
active part decreases, so the actual maximum contraction 
ration is smaller than expected [4]. 
 
Tondu and Lopez in [4] consider improving (12) with a 
correction factor ε, because it predicts for various pressures 
the same maximal contraction. This new equation is 
relatively good for higher pressure (p ≥ 200 kPa). Kerscher, 
Albiez, Zöllner and Dillmann in [8] suggest achieving 
similar approximation for smaller pressure another 
correction factor μ is needed, so the modified equation is: 

 

b)κ)ε(1(apπrμ)F( 22

0 κ p,  (15) 

 

where εb
p

eεaε 


  and κb
40κ

eκaμ 


 . 

 
Significant differences between the theoretical and 
experimental results using (12) and (15) have been shown 
in [11] and [12]. To eliminate the differences new 
approximation algorithms with six and five unknown 
parameters have been introduced for the force generated by 
Fluidic Muscles: 
 

fpeκpdκceb)p(a)F( κp,  (16) 

 

epdκpcκbea)(p)F( κp,  (17) 

 
Equation (16) can be generally used with high accuracy for 
different Fluidic Muscle independently from length and 
diameter under different values of pressure and (17) can be 
used with high accuracy for Fluidic Muscle with inner 
diameter of 20 mm, only. 
 
The unknown parameters of (16) (a, b, c, d, e and f) and 
(17) (a, b, c, d and e) can be found by Solver in MS Excel 
2010. 
 

IV. EXPERIMENTAL RESULTS 
 
Our analyses were carried out in MS Excel environment. 
Tensile force of Fluidic Muscles under different values of 
constant pressure is a function of muscle length 
(contraction) and air pressure. The force always drops from 
its highest value at full muscle length to zero at full 
inflation and position. (Fig. 5. and Fig. 6.). 
 
Firstly, the measured data and force model using (16) were 
compared. The unknown parameters of (16) were found 

using Solver in MS Excel. Values of these unknown 
parameters are shown in Table 1. and Table 2. 
 

 
Fig. 5. Isobaric force-contraction diagram of Fluidic Muscle (with DMSP-

20-200N-RM-RM). 

 
Fig. 6. Isobaric force-contraction diagram of Fluidic Muscle (with DMSP-

20-400N-RM-RM). 
 

TABLE 1. Values of unknown parameters (for DMSP-20-200N-
RM-RM). 

Parameters Values 

a -4.00180705 

b 292.4620246 

c -0.32930845 

d -9.33564098 

e 294.0538256 

f -280.498151 

 

TABLE 2. Values of unknown parameters (for DMSP-20-400N-
RM-RM). 

Parameters Values 

a -4.35572689 

b 281.2237983 

c -0.32866293 

d -9.27034945 

e 302.2010663 

f -263.691854 

 

The accurate fitting of (16) can be seen in Fig. 7. and Fig. 
8. 
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Fig. 7. Comparison of measured data and force model using (16) (with 

DMSP-20-200N-RM-RM). 

 
Fig. 8. Comparison of measured data and force model using (16) (with 

DMSP-20-400N-RM-RM). 

Fig. 9. and Fig. 10. illustrate the relationship between the 

measured force and calculated force. The R
2
 = 0.9995  

R = 0.9997 correlation index proves the tight relationship 
between them. 

 

 
Fig. 9. Relationship between the measured force and calculated force 

using (16) (with DMSP-20-200N-RM-RM). 

 
Fig. 10. Relationship between the measured force and calculated force 

using (16) (with DMSP-20-400N-RM-RM). 
 

Secondly, the investigations using (17) were repeated. 
Values of unknown parameters of (17) are listed in Table 3. 
and Table 4. 
 

TABLE 3. Values of unknown parameters (for DMSP-20-200N-
RM-RM). 

Parameters Values 

a 286.1714546 

b -0.327523456 

c -9.135794264 
d 288.4720479 

e -271.3462159 

TABLE 4. Values of unknown parameters (for DMSP-20-400N-
RM-RM). 

Parameters Values 
a 274.7944784 

b -0.32623809 

c -9.07369264 

d 296.3161465 

e -254.042387 

 

The results of (17) and measured data can be compared in 
Fig. 11. and Fig. 12. In Fig. 13. and Fig. 14. are shown the 
accurate approximation of the measured force (R

2
 = 0.9994 

 R = 0.9997 correlation index and R
2
 = 0.9993  

R = 0.9996 correlation index). 
 

 
Fig. 11. Comparison of measured data and force model using (17) (with 

DMSP-20-200N-RM-RM). 
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Fig. 12. Comparison of measured data and force model using (17) (with 

DMSP-20-400N-RM-RM). 

 
Fig. 13. Relationship between the measured force and calculated force 

using (17) (with DMSP-20-200N-RM-RM). 

 
Fig. 14. Relationship between the measured force and calcula.ted force 

using (17) (with DMSP-20-400N-RM-RM). 
 

The precise positioning of PAMs requires accurate 
determination of the dynamic model of pneumatic 
actuators. Therefore the hysteresis in the tension-length 
(contraction) cycle of PAMs was analysed. 
 
Chou and Hannaford in [2] report hysteresis to be 
substantially due to the friction, which is caused by the 
contact between the bladder and the shell, between the 
braided threads and each other, and the shape changing of 
the bladder. Some experiments were made to illustrate the 
hysteresis (Fig. 15. and Fig. 16.). 

 

 
Fig. 15. Hysteresis in the tension-length (contraction) cycle (with DMSP-

20-200N-RM-RM). 

 
Fig. 16. Hysteresis in the tension-length (contraction) cycle (with DMSP-

20-400N-RM-RM). 

To approximate the hysteresis loop using (17), besides the 
parameters in Table 3. and Table 4., new parameters had to 
be specified (Table 5. and Table 6.). 

TABLE 5. Values of unknown parameters (for DMSP-20-200N-
RM-RM). 

Parameters Values 

a 253.938042 

b -0.3712419 

c -9.1342021 

d 285.066068 

e -293.91895 

TABLE 6. Values of unknown parameters (for DMSP-20-400N-
RM-RM). 

Parameters Values 

a 235.183308 

b -0.3803548 

c -9.0612216 

d 293.793153 

e -282.57012 
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Approximation of hysteresis loop using (17) can be seen in 
Fig. 17. and Fig. 18. 
 

 
Fig. 17. Approximation of hysteresis loop using (17) (with DMSP-20-

200N-RM-RM). 

 
Fig. 18. Approximation of hysteresis loop using (17) (with DMSP-20-

400N-RM-RM). 

V. CONCLUSIONS 
 
In this work new accurate functions for the force produced 
by different Festo Fluidic Muscles have been introduced. 
The accuracy of fittings has been proved with comparisons 
of the measured and theoretical data. Our aim is to develop 
a new general mathematical model for pneumatic artificial 
muscles on the basis of our new models. 
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