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Abstract – Pneumatic muscle actuator (PMA) or 
pneumatic artificial muscle (PAM) is the less well-known 
type of pneumatic actuators. It consists of a thin, flexible, 
tubular membrane with fibre reinforcement. When the 
membrane is pressurized the gas pushes against its inner 
surface and against the external fibre. Then the PAM 
expands radially and contracts axially with the result that 
the volume increases. The force and motion produced by 
PAM are linear and unidirectional. It differs from 
general pneumatic cylinder actuators as they have no 
inner moved parts and there is no sliding on the surfaces. 
Besides, they have small weight, simple construction and 
low cost. During action they reach high velocities, while 
the power/weight and the power/volume ratios reach high 
levels. 
Because of their highly nonlinear and time varying 
nature, PAMs are difficult to control thus robust control 
method is needed. In this paper a LabVIEW based sliding 
mode controller is developed to eliminate the effects of 
these drawbacks. The positioning error of a pneumatic 
muscle actuator at different temperatures is determined. 
The error of the experiments shows 0.01 mm. 
This paper is organized in four sections. After 
Introduction, Section II illustrates the steps to designing 
sliding mode controller. In this section the experimental 
rigs and LabVIEW programs are also shown. The 
internal and external temperatures of the PAM at 
different operating frequencies are compared and the 
effect of temperature on the accuracy of the positioning is 
given in Section III. Finally, conclusion and future work 
are summarized in Section IV. 
 
Keywords: Pneumatic muscle actuator, robust control, 

sliding mode controller, LabVIEW, 
temperature effect, accurate positioning. 

I. INTRODUCTION 

Fluidic Muscles produced by Festo Company and Shadow 
Air Muscle manufactured by Shadow Robot Company are 
two types of commercially available PAMs. Fluidic 
Muscles can be characterized such as powerful, dynamic 
(even 6000 N, 50 m·s-2), judder-free and resistant to dirt 

and dust, therefore these actuators are widely used in 
industrial environment besides electric motors or hydraulic 
actuators. 
 
Working principles of different types of pneumatic 
artificial muscles are well described in [1] and [2]. On the 
basis of these professional literatures, three types of PAMs 
can be distinguished: braided muscles (McKibben 
muscles), netted muscles and embedded muscles. Although 
the load carrying structure of Fluidic Muscles is embedded 
in its membrane some researches mention the Fluidic 
Muscles as McKibben type [3], [4]. 
 
The main disadvantage of PAMs is the highly nonlinear 
behaviour due to compressibility of air and the viscoelastic 
material [5], [6]. Choi et al. in [7] highlight to overcome 
the nonlinearity several easier models have been 
developed, but the most results are limited and valid only 
on simulation. 
 
Static and dynamic investigations and modelling of PAMs 
can be found in [8-14]. In these professional literatures the 
PAMs are analysed in single or antagonistic configuration. 
Various control methods have been applied to control 
PAMs such as classical linear control, adaptive control, 
fuzzy control, neural network control and sliding mode 
control. Generally, proportional directional control valves, 
proportional pressure valves or ON/OFF solenoid valves 
are used [15]. In this paper a proportional directional 
control valve and a LabVIEW based sliding mode 
controller is applied for accurate positioning. 
 
The service life (105-107 cycles for typical applications) of 
Fluidic Muscles depends on the operating pressure, the 
contraction (relative displacement) and the temperature. 
Festo in [16] emphasizes the high loads or the high 
operating frequencies of Fluidic Muscles lead to a 
temperature rise. The service life can be improved with 
reducing the contraction and the applied pressure. The 
thermal load can be reduced if the pressurisation on one 
side and the venting on the other side are enabled. 
 
For this study a Fluidic Muscle type DMSP-20-400N-RM-
RM is selected (Table 1) and [17] is extended. 
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TABLE 1. Technical data of Fluidic Muscle type DMSP-20-400N-
RM-RM. 

General technical data 

DMSP Pressed end caps and 
integrated air connectors 

RM Radial pneumatic connection 
Inside diameter [mm] 20 
Nominal length [mm] 400 
Lifting force [N] 0…1500 
Maximal permissible pretensioning 4% 
Maximal permissible contraction 25% 
Operating pressure [kPa] 0…600 
Ideal ambient temperature [°C] -5…+60 

II. LABVIEW BASED CONTROL AND 
MEASUREMENT SYSTEMS AND EXPERIMENTAL 

RIG 

The theory of sliding mode control is well documented in 
[18-22]. To understand it let us consider the next nonlinear 
system: 
 

u(t))XB()Xf(x (n) ⋅+= , (1) 
 
where 
x: state variable, 
X: state vector 
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u(t): control input, 
f(X) and B(X) are not exactly known, continuous functions. 
 
The tracking error can be written as 
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where 
xd(t): desired state 
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The design of a sliding mode controller consists of three 
main steps. First one is the design of the sliding surface 
(sliding mode), the second step is the design of the control 
which holds the system trajectory on the sliding surface, 
and the third step is the chattering-free implementation. 
The purpose of the switching control law is to force the 
nonlinear plant’s state trajectory to this surface and keep on 
it. 
 
The sliding mode can be defined as 
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where 
λ: constant and λ > 0. 
 
If n = 2, 
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On the surface S(t), the error dynamics can be written as 
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On this surface the error will converge to 0 exponentially. 
The tracking problem can be reduced to that of keeping the 
scalar s at zero. It can be achieved with the next sliding 
condition: 
 

sηs
dt
d

2
1 2 ⋅−≤⋅ , (9) 

 
where 
η: constant and η > 0. 
 
Using a relay (as a controller) is a simple way that can lead 
to sliding mode: 
 

sign(s)ku ⋅= , (10) 
 
where 
k: gain and k > 0. 
 
The discontinuity creates an unfavourable dynamic 
behaviour in the environment of the surface that is called 
chattering. It is the main problem of sliding mode control, 
therefore an important phase in the design of a sliding 
mode controller is the chattering free implementation. To 
avoid the chattering the signum function can be replaced by 
a saturation function (Fig. 1). Then inside a boundary layer 
(H) the control signal changes continuously: 
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Fig. 1. Signum and saturation functions. 

 
In this study a LabVIEW based sliding mode controller 
(Fig. 2) is designed to control the pneumatic system. The 
chattering-free implementation of the sliding mode 
controller is developed in Formula Node. Despite the 
graphical programming, the Formula Node is a text-based 
environment in LabVIEW using the C/C++ syntax 
structure that can be applied to execute mathematical 
operations or statements and loops (e.g. if, while, for) on 
the block diagram. To eliminate the chattering a barrier 
zone (precision zone) along the sliding surface is defined. 
LabVIEW is widely used for measurement and control 
applications [23], [24]. 
 
The controller responds to the error of the system that can 
be measured without knowing f(X) or B(X) in (1). The next 
input signals are used to control the 5/3 proportional 
directional control valve type MPYE-5-1/8 HF-010B made 
by Festo Company: 4 V (fast backward), 4.65 V (slow 
backward), 5 V (in position), 5.35 V (slow forward) and 
6 V (fast forward) (Fig. 3). 
 

 
Fig. 2. Front panel of the LabVIEW based sliding mode controller. 

 

 
Fig. 3. Input signals. 

Fig. 4 shows the Fluidic Muscle is built horizontally into 
the test bed. Another LabVIEW program is used for 
periodic movement of PAM and monitoring of internal and 
external temperatures (Fig. 5). The internal and external 
temperatures are measured using thermocouples type K. In 
all cases before the operation the PAM is cooled with a 
compressed air spray to -10 °C. The moved load m is 
20 kg. The position of slider is determined by an 
incremental encoder type LINIMIK MSA 320 with 
0.01 mm resolution. 
 

 
Fig. 4. Experimental setup for investigation of Fluidic Muscle. 

 

 
Fig. 5. Front panel of the LabVIEW program for periodic movement and 

measuring temperature. 

III. RESULTS 

The air temperature entering the PAM is 24 °C, the air 
pressure is 600 kPa, the sampling time is 250 ms and the 
proportional directional control valve is operated by 
sinusoidal signals with different frequencies (0.1 Hz, 
0.25 Hz, 0.5 Hz, 0.75 Hz and 1 Hz) for periodic movement. 
The temperature changes as a result of the 0.5 Hz periodic 
movement can be seen in Fig. 6. 
 
The experimental results are summarized in Table 2. As 
shown in Table 2, inside the PAM the temperature varies 
with the airflow, but increasing the frequency causes higher 
steady-state internal temperatures. Outside the PAM the 
temperatures stabilise, furthermore higher external 
temperatures are measured away from the pneumatic jack. 
Thermocouple 1 determines the same temperatures (24 °C) 
at all frequencies, while thermocouple 3 measures the 
highest temperature values. The highest external 
temperature (70 °C) at a frequency of 0.5 Hz can be 
noticed. This temperature value can negatively affect the 
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service life of Fluidic Muscle. At 0.5 Hz the temperature 
trend changes: external temperatures show similar results at 
0.1 Hz and 1 Hz as well as 0.25 Hz and 0.75 Hz. 
 

 
Fig. 6. Internal and surface temperatures (f = 0.5 Hz). 

 
TABLE 2. Internal and external steady state temperature values of 

Fluidic Muscles driven at varying frequencies. 
Temperature [°C] Frequency 

[Hz] Internal External - 1. External - 2. External - 3. 

0.1 30-42 24 33 50 

0.25 35-43 24 37 63 

0.5 40-45 24 39 70 

0.75 45-50 24 38 61 

1 45-50 24 38 52 

 
The investigations of positioning error at several 
temperatures are carried out at a pressure of 600 kPa. The 
sliding surface gradient is 0.35 and the sampling time is 
10 ms. Thermocouple 2 is used as reference sensor and 
thus the slider is positioned at temperatures of -10 °C, 0 °C, 
10 °C, 20 °C, 30 °C and a maximum of 39 °C (Fig. 7-12). 
Fig. 7 depicts reaching the desired position of 40 mm the 
positioning lasts for 1.4 s at a temperature of -10 °C and an 
overshot of 0.02 mm and a steady-state error of 0.01 mm 
are experienced. Fig. 12 presents the positioning lasts for 
1.2 s at a temperature of 39 °C and the overshot and steady-
state error remains within 0.01 mm. It is important to note 
that at all temperatures the steady-state error is within 
0.01 mm and by increasing the temperature the positioning 
time decreases. 
 

 
Fig. 7. Positioning at a temperature of -10 °C. 

 

 
Fig. 8. Positioning at a temperature of 0 °C. 

 

 
Fig. 9. Positioning at a temperature of 10 °C. 
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Fig. 10. Positioning at a temperature of 20 °C. 
 

 
Fig. 11. Positioning at a temperature of 30 °C. 

 

 
Fig. 12. Positioning at a temperature of 39 °C. 

IV.  CONCLUSION AND FUTURE WORK 

In this paper accurate positioning of Fluidic Muscle using 
sliding mode controller is described and 0.01 mm steady-
state error is achieved. The error cannot be favourable 
because of the resolution of the applied incremental 
encoder. 
 
The controller is designed in LabVIEW that is capable of 

eliminating the influence of temperature. It is proved that 
the frequency of input signal influences the temperatures 
inside and outside the PAM and increased temperature can 
shorten the positioning time. 
 
In the future the position error will be investigated using 
Balluff incremental encoder with 0.001 mm resolution. 
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