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Abstract: Due to the limited availability of healthy human ventricular tissues, the most suitable 
animal model has to be applied for electrophysiological and pharmacological studies. This can be 
best identified by studying the properties of ion currents shaping the action potential in the fre-
quently used laboratory animals, such as dogs, rabbits, guinea pigs, or rats, and comparing them to 
those of human cardiomyocytes. The authors of this article with the experience of three decades of 
electrophysiological studies, performed in mammalian and human ventricular tissues and isolated 
cardiomyocytes, summarize their results obtained regarding the major canine and human cardiac 
ion currents. Accordingly, L-type Ca2+ current (ICa), late Na+ current (INa-late), rapid and slow compo-
nents of the delayed rectifier K+ current (IKr and IKs, respectively), inward rectifier K+ current (IK1), 
transient outward K+ current (Ito1), and Na+/Ca2+ exchange current (INCX) were characterized and 
compared. Importantly, many of these measurements were performed using the action potential 
voltage clamp technique allowing for visualization of the actual current profiles flowing during the 
ventricular action potential. Densities and shapes of these ion currents, as well as the action poten-
tial configuration, were similar in human and canine ventricular cells, except for the density of IK1 
and the recovery kinetics of Ito. IK1 displayed a largely four-fold larger density in canine than human 
myocytes, and Ito recovery from inactivation displayed a somewhat different time course in the two 
species. On the basis of these results, it is concluded that canine ventricular cells represent a reason-
ably good model for human myocytes for electrophysiological studies, however, it must be borne 
in mind that due to their stronger IK1, the repolarization reserve is more pronounced in canine cells, 
and moderate differences in the frequency-dependent repolarization patterns can also be antici-
pated. 
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1. Introduction 
In order to better understand the electrophysiology and pathology of the human 

heart, as well as for the development of new cardioactive agents, reasonably good exper-
imental models of human ventricular cells are needed. In absence of such models, it is 
difficult to properly interpret the cellular cardiac electrophysiological effects of drugs. 
Moreover, due to the paucity of proper experimental results, the available in silico human 
ventricular action potential models [1–5] may still suffer from serious shortcomings. This 
is basically due to the very limited availability of undiseased human ventricular tissue. 
Since the early nineties, when the first results on successful isolation of adult human ven-
tricular myocytes were reported [6–8], the cells were digested from small tissue chunks 
excised from the explanted recipient diseased hearts. Accordingly, these studies were per-
formed using the chunk method for cell isolation, but this technique produced a low yield 
with many injured cells. Human cardiomyocytes can also be derived from pluripotent 
stem cells [9], but these myocytes carry several features of immature fetal cardiomyocytes, 
differing markedly from healthy adult ventricular cells in their electrophysiological prop-
erties [10–12]. 

An alternative approach is to find the best animal model—possibly among the widely 
available laboratory animals. However, due to the widespread interspecies differences in 
the electrophysiological properties of these hearts [13–18], a detailed and complex analysis 
is necessary in this case. Therefore, based dominantly on our earlier experimental results 
on undiseased human ventricular tissue (obtained by Varró et al. from unused donor 
hearts after removal of the cuspid valves) using the action potential voltage clamp tech-
nique, the profiles of the major human cardiac ion currents (ICa, INa-late, IKr, IKs, IK1, Ito1, INCX) 
are summarized in the present article. These results are compared to those obtained from 
similar cells of dogs since the electrophysiological properties of several ventricular ion 
currents in the two species seem to be similar regarding both their shape and size [17,19–
25]. In addition, the most important interspecies differences observed between ventricular 
cells of different origins (including human, canine, rabbit, guinea pig, or rat) are also re-
viewed. 

2. Significance of the Action Potential Voltage Clamp Technique 
The morphology of the cardiac action potential is determined by the finely tuned 

balance of sequentially activating inward and outward ion currents (for a recent review, 
see Varró et al. [26]). The amplitude of current at any time depends on the electrochemical 
gradient (a driving force acting on the ion) and the conductance of the ion channel, gov-
erned by its time- and voltage-dependent gating kinetics. Since the membrane potential is 
continuously changing during the time course of the action potential, the driving force 
also changes concomitantly. In addition, channel gating has also been shown to be influ-
enced by the dynamics of the membrane potential change (i.e., by the shape of the action 
potential plateau) [27]. 

To visualize the actual current profiles conducted during a cardiac action potential, 
the action potential voltage clamp technique (first applied by Fischmeister et al. in 1984 
[28]) was introduced. This technique is essentially based on pharmacological current dis-
section using the action potential waveform of the cell as a command signal [29]. To date, 
the action potential voltage clamp method has been successfully applied in a variety of 
mammalian cardiac cells, including rat [16], porcine [30,31], rabbit [16,30,32–34], guinea 
pig [35–41], canine [17,23,24,42,43], and human [18–22] myocytes. 

3. Interspecies Differences in Action Potential Morphology and the Underlying Ion 
Currents 

At first glance, there are no striking differences in the morphology of action potentials 
in recordings taken from multicellular mammalian ventricular preparations—except for 
small rodents, like mice or rats (Figure 1A). In these latter species, Ito1, IKur, and IK1 are very 
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pronounced, while ICa inactivates rapidly [44–47]. As a consequence, there is no room for 
plateau formation, therefore, action potential duration is extremely short. Furthermore, 
there is a reverse and slightly biphasic relationship between action potential duration and 
the pacing cycle length (Figure 1B), in addition to the negative force-frequency relation-
ship, a characteristic of these species. Both are the opposite of those observed in humans, 
dogs, or guinea pigs, reflecting robust differences in intracellular Ca2+ handling. Conse-
quently, electrophysiological results obtained in rat or murine myocytes are often difficult 
to extrapolate to humans. 

In rabbit myocytes, Ito1 is expressed in epicardial but not in endocardial myocytes 
[48–50]. This Ito1, mediated dominantly by Kv1.4α channel subunits, is markedly different 
from canine and human Ito1, which is largely mediated by the robustly expressed Kv4.3 
subunits [51–53] with only relatively minor Kv1.4 contribution [52,54]. Importantly, the 
recovery kinetics of the rabbit type Ito1 is much slower than the canine and human type, 
resulting in an inverse or biphasic cycle length–APD relationship, as shown in Figure 1B 
(see also [55–57]). Furthermore, in rabbits, both ICa and INa-late display a saddle-like profile 
under action potential voltage clamp conditions [16,17] in contrast to dogs and humans 
[17,22,24]. In summary, the ion currents in rabbit ventricular cells and the frequency-de-
pendent behavior of the rabbit ventricular action potential are markedly different from 
those observed in humans. 

 
Figure 1. Action potential configurations (A), steady-state rate-dependent action potential durations 
at 90% of repolarization (APD90, B), and APD90 restitution relations (C) measured in multicellular 
human, canine, guinea pig, rabbit, and rat ventricular preparations using sharp 3 M KCl-filled mi-
croelectrodes. The restitution curves were obtained by gradually increasing the diastolic interval 
following a train of action potential stimulated at a stable cycle length. Symbols and bars are mean 
± SEM values; (n) denotes the number of preparations studied [57]. 

Electrophysiological properties of guinea pig ventricular myocytes are also distinctly 
different from those of canine and human cells. Guinea pig action potentials do not dis-
play phase-1 repolarization (Figure 1A). This is because of the lack of Ito1 in the guinea pig 
ventricle [13,58] and results in a ramp-like plateau phase. From this point of view, guinea 
pig cells are different from most mammalian species, including dogs and humans [42,59]. 
Instead of Ito1, there is a robust IKs in the guinea pig ventricle, which is more pronounced 
than the same current in human or dog [21,60]. Similar to rabbits, ICa and INa-late display a 
saddle-like profile in guinea pigs under action potential voltage clamp conditions [17,18] 
in sharp contrast to dogs and humans [17,22,24]. Considering these properties, guinea pig 
myocytes do not seem to be fairly good models of human ventricular cells. 
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Pigs are not considered conventionally “laboratory animals”, however, the swine 
heart is potentially suitable for cardiac transplantation following appropriate immunolog-
ical modification due to its favorable anatomical properties [61]. Therefore, our analysis 
would not be complete without discussing the electrophysiological properties of porcine 
ventricular myocytes. Studying the transmural heterogeneity of action potential morphol-
ogy, no regional differences were found [62]. Others have identified M cells in the deep 
regions [63], while others reported transmural inhomogeneity without the identification 
of M cells [64]. Although the spike-and-dome configuration of the porcine ventricular ac-
tion potential is similarly shaped to that observed in canine and human myocytes, the 
pronounced phase-1 repolarization of the porcine action potential is related to the high 
amplitude of Ito2, identified as a Ca2+-sensitive Cl- current [62]. In contrast to human [65] 
and canine [66] Ito, porcine myocytes do not express Kv4.3 channels, and consequently, Ito1 
is absent in these cells [62]. L-type Ca2+ current seems relatively weak in porcine myocytes, 
since the density of 3.6 A/F, measured in porcine myocytes at +10 mV [67], is significantly 
less than observed by us in humans or canine cells at the same test potential (see Figure 
2C). There are only two reports in the literature presenting action potential voltage clamp 
experiments in swine ventricular cells [30,31]. Comparing these to the respective canine 
and human data [21,65], it can be concluded that the intensity of IKs is similar, while den-
sities and integrals of IK1 and IKr are significantly higher in pigs than in dogs or humans. 
An additional difference between porcine and canine/human myocytes is in the shape of 
INa-late, since human and canine cells display INa-late with monotonically decreasing ampli-
tude (“decrescendo” profile), while the shape of porcine INa-late is saddle-like, showing a 
“crescendo” profile similar to rabbit and guinea pig INa-late [17]. These characteristic differ-
ences and similarities between human, canine, and porcine myocytes are summarized in 
the supplement. Although porcine myocytes share several electrophysiological properties 
with human ventricular cells, the similarity between human and canine cells is superior 
compared to the same relation between human and porcine myocytes.(Table S1, Supple-
mentary materials) 

Although it is not evident from Figure 1, it must be noted that there is a striking 
difference between the heart rate of all rodents used in the laboratory versus human, ca-
nine and porcine hearts. The baseline heart rate in each rodent is much higher than that 
of larger mammals including humans, pigs, and dogs, which in turn, do not markedly 
differ from one another in this regard. This is important considering the voltage-, time-, 
and consequently, rate-dependent gating kinetics of cardiac ion channels. 

4. Comparison of Human and Canine Ion Currents under Action Potential Voltage 
Clamp Conditions 

Due to the considerable interspecies differences discussed above, it seems reasonable 
to focus on canine myocytes and compare their ion currents to those recorded from un-
diseased human cells under identical experimental conditions, which is the action poten-
tial voltage clamp in the majority of experiments presented in this article. In contrast to 
the subendocardial myocytes, which are the usually impaled cell type in multicellular 
studies, the target cell can be freely chosen by its origin or action potential morphology 
when action potentials are recorded from isolated myocytes. This is demonstrated in Fig-
ure 3A by comparing the action potential configuration of canine left ventricular myocytes 
of subepicardial (EPI), subendocardial (ENDO), and midmyocardial (MID) origin. The 
asymmetrical transmural distribution of Ito1, which is manifested in the various magni-
tudes of phase-1 repolarizations, as shown in Figure 3A, is a common feature of canine 
and human ventricular myocytes [59,68–71]. The density of Ito1 was reported to be 2–5-fold 
greater in EPI than ENDO cells in canine [70,72] and 3–4-fold greater in human [69,73,74] 
ventricle depending on the experimental conditions, such as the temperature or test po-
tential. When using identical (EPI-like) command action potentials in midmyocardial hu-
man and canine myocytes, no significant differences can be observed in the profiles (Fig-
ure 3B) or densities of Ito1 (Figure 3C). This apparently contradicts previous results 



Pharmaceuticals 2021, 14, 748 5 of 13 
 

obtained under conventional voltage clamp conditions by Akar et al. [52], who pointed 
out kinetic differences between human and canine Ito1. Although both human and canine 
Ito is conducted mainly by Kv4.3 channels, the contribution of the Kv1.4 channel was also 
verified in both canine and human ventricular myocardium [75]. In human ventricular 
muscle, the majority of the myocytes showed biphasic recovery from inactivation with 
faster (12.1–13.2 ms) and slower (1197–1283 ms) time constants. These values correspond 
to the recovery kinetics of Kv4.3 and Kv1.4 channels, respectively [54]. In addition, the Kv 
channel protein distribution patterns showed transmural heterogeneity reflected also in 
Ito1 current densities and action potential configurations [75]. In canine ventricular myo-
cytes, Ito also exhibits biphasic recovery from inactivation but with distinctly different 
faster (28.4–56.6 ms) and slower (177.5–546.6 ms) time constants [76] than those measured 
in humans. This slight but significant difference in the recovery kinetics is associated with 
the different degrees of Kv4.3 and Kv1.4 channel protein expression in the two species 
[77]. In both humans and dogs, the amplitude of Ito strongly depends on the level of 
KChIP2 subunit channel protein expression [77]. 

 
Figure 2. L-type Ca2+ currents in human (A) and canine (B) ventricular myocytes of epicardial (EPI) 
and endocardial (ENDO) origin. Command action potentials above and ICa recordings below. ICa 
was excised by 1 µM nifedipine. Note the double-peaked ICa records in EPI and the single-peaked 
ones in ENDO preparations in both species. (C): Comparison of peak current densities between 
pooled human and canine ICa obtained under conventional voltage clamp conditions. At test poten-
tials of +5 mV or more negative, significant differences were observed (human ICa was greater), while 
no significant differences were found at +10 mV or more positive voltages. Columns and bars are 
mean ± SEM values, (n) denotes the number of myocytes studied, the asterisk indicates significant 
differences between human and canine ICa data. (Data from references [21,22,24]). 
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Figure 3. Transient outward K+ currents in human and canine left ventricular myocytes. A: Differ-
ences in action potential morphology in canine ventricular cells derived from the subepicardial 
(EPI), midmyocardial (MID), and subendocardial (ENDO) layers. B: Command action potentials 
(top) and transient outward K+ current (Ito1) records (bottom) taken from midmyocardial human and 
canine myocytes under action potential voltage clamp conditions. The cycle length of stimulation 
was 700 ms in the canine and 1000 ms in the human cells. C: Average Ito1 densities. Ito1 was defined 
as a 100 µM chromanol 293B-sensitive current. Columns and bars are mean ± SEM values, (n) de-
notes the number of myocytes studied. Unpublished data from Varró et al. 

It is important to recognize that both in human [54] and dog [78] ventricular muscle, 
Ito “window current” was observed, i.e., there is an overlap between the steady-state acti-
vation and inactivation curves in the voltage range between −30 and 0 mV. Therefore, Ito 
can carry small but measurable current during the plateau and early phase 3 repolariza-
tion supporting repolarization as part of the repolarization reserve. 

Another implication of the EPI–ENDO differences observed in action potential con-
figuration is the differently shaped ICa profiles in myocytes of EPI and ENDO origin rec-
orded under action potential voltage clamp conditions. As demonstrated in Figure 2, in 
both species (i.e., in humans and dogs), ICa displays a double peak profile in EPI, but not 
in ENDO cells [20,24]. This is the consequence of the different action potential contours 
since the application of an EPI action potential to an ENDO cell resulted in a double peak-
shaped ICa signal [24]. The density of ICa was not significantly different in canine and hu-
man myocytes when measured at test potentials more positive to +5 mV using conven-
tional voltage clamp protocols, however, the density of ICa was moderately but signifi-
cantly greater in humans than in canine cells at membrane potentials of +5 mV or more 
negative values [21]. 

INa-late, identified in human ventricular cells as a slowly inactivating component of INa 
[79], is also very similar in human and canine myocytes compared under either conven-
tional or action potential voltage clamp conditions (Figure 4A,B). INa-late current densities 
(determined as currents excised by application of 20 µM tetrodotoxin) are not significantly 
different in the two species (Figure 4C). More importantly, the decay time constants ob-
tained for INa-late were also similar: 67 ± 5 and 60 ± 3 ms, respectively, in contrast to the 
three-fold longer value of 155 ± 16 ms in guinea pig cells [17]. This may explain why INa-

late displays a “decrescendo” profile during the action potential in humans and canines, 
while a “crescendo” profile in guinea pig myocytes [17]. 
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Figure 4. A–C: Late Na+ current (INa-late) in human and canine ventricular myocytes. INa-late was rec-
orded under conventional voltage clamp (A) and action potential voltage clamp conditions (B). The 
current in this latter case was excised by 10 µM TTX. Pulse protocols are shown above. (C): Peak 
densities of INa-late measured with action potential voltage clamp in human and canine myocytes. 
F,G: Na+/Ca2+ exchange current (INCX) in human and canine myocytes. (D) Representative INCX, de-
fined as a 10 mM Ni2+-sensitive current, recorded using a voltage ramp (−40 mV-> + 60mV-> −100 
mV-> −40 mV). (E) Peak inward (measured at −80 mV) and outward (measured at +50 mV) NCX 
current densities. Columns and bars are mean ± SEM values, (n) denotes the number of myocytes 
studied. (Data from references [17,21]). 

The current generated by the Na+/Ca2+ exchanger is difficult to study under action 
potential voltage clamp conditions. Therefore, it is usually defined as a Ni2+-sensitive cur-
rent measured using voltage ramps of outward or inward directions, representing the re-
verse and forward mode activities of the exchanger, respectively. The profiles (Figure 4D) 
and densities (Figure 4E) of INCX are not significantly different in human and canine myo-
cytes comparing either their inward or outward components [21]. 

As displayed in Figure 5, the shape and density of IKr, defined as an E-4031-sensitive 
current, as well as the expression of the respective main channel protein, ERG is identical 
in canine and human ventricular cells. The situation is somewhat different in the case of 
IKs, defined as an L-735,821-sensitive current since its density was lower in humans than 
in canine cells when measured using conventional voltage clamp, but no difference was 
observed in the two species under action potential voltage clamp conditions (Figure 5B, 
see also [21]). Interpretation of IKs is further complicated by the asymmetrical expression 
of the IKs specific channel proteins since KvLQT1 expression is lower while the expression 
of minK is higher in canine than in human myocytes (Figure 5C, [21]). Importantly, the 
amplitude of IKs is similarly small in both canine and human ventricular myocytes under 
baseline conditions according to the action potential voltage clamp records shown in Fig-
ure 5A,B, therefore its contribution to repolarization is negligible under baseline condi-
tions [80,81]. However, its importance is significant following sympathetic stimulation, 
when the density of IKs robustly increases [82–84]. Similarly, the relative contribution of 
IKs to repolarization increases in both species in case of malfunction of other repolarizing 
currents (typically IKr) resulting in a longer plateau phase allowing more time for addi-
tional IKs to develop, thus the compensatory contribution of IKs to the repolarizing reserve 
can be augmented. 
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Figure 5. Comparison of peak IKr, IKs, and IK1 current densities in human and canine ventricular 
myocytes under action potential voltage clamp conditions (A,B). IKr, IKs, and IK1 were excised by 5 
µM E-4031, 0.1 µM L-735,821, and 500 µM BaCl2, respectively. C: Expression of the main channel 
proteins in human and canine ventricular myocardium. Columns and bars are mean ± SEM values, 
(n) denotes the number of myocytes in B, and myocardial samples in C, the asterisks indicate sig-
nificant differences between human and canine data. (Data from reference [21]). 

In contrast to IKr and IKs, the density of IK1 is sharply different in human and canine 
cells because it is four-fold greater in dogs than in humans (Figure 5A,B, Figure 6B). This 
is due to the stronger expression of the dominant channel proteins Kir2.1 and Kir2.3 in 
canine cells (Figure 5C). As a consequence, canine myocytes display a greater repolariza-
tion reserve than human cells [21]. This implies that the repolarization lengthening effect 
of K+ channel inhibitor class 3 antiarrhythmic agents is more pronounced in humans than 
in canine myocytes. This has to be borne in mind when using canine ventricular myocytes 
to test the repolarization prolonging (side) effect of a new investigational compound for 
safety pharmacological purposes. As demonstrated in Figure 6, the voltage dependence 
of the two main K+ currents (IKr and IK1) governing terminal repolarization is identical and 
independent of the pacing cycle length in both species [23]. Accordingly, apart from the 
higher density of the canine than the human IK1, the kinetic properties of the two currents 
are quite similar in dogs and humans. 
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Figure 6. Phase-plane analysis of IKr (excised by 1 µM E-4031, A) and IK1 (excised by 10 µM BaCl2, 
B) obtained under action potential voltage clamp conditions in human and canine ventricular my-
ocytes. Representative current–voltage relationships were compared at two different pacing cycle 
lengths (0.4 and 5 s). The currents showed no rate-dependent properties and displayed similar cur-
rent–voltage relationships in the two species. Note that the peak amplitude of IKr was identical in 
the canine and human myocytes, while the peak amplitude of IK1 was three-fold greater in dogs than 
in humans. (Data from reference [23]). 

Finally, it is worthwhile to compare human and canine ventricular cells in terms of 
regional differences in the expression of ion channel proteins. In Figure 7, the two cell 
types are compared in terms of EPI versus MID and also APEX versus BASIS origin. Dif-
ferences in the expression patterns of Na+ (Nav1.5), Ca2+ (α1C), and several K+ channel-
forming proteins (Kir2.1, Kv4.3, Kv1.4, KChiP2, ERG, MiRP1, KvLQT1, and minK) dis-
played very similar regional differences in human and canine myocytes [19,20]. 

 
Figure 7. Regional inhomogeneity of the channel protein expression pattern in human and canine 
ventricular myocardium. A,B: Epicardial versus midmyocardial distribution. C,D: Apical versus 
basal distribution. Columns and bars are mean ± SEM values, (n) denotes the number of myocardial 
samples studied, the asterisks indicate significant differences from the ratio of 1. (Data from refer-
ences [19,20]). 
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5. Concluding Remarks 
It can be concluded that there is still a severe lack of proper cellular electrophysio-

logical data from undiseased human ventricular tissue. Therefore, further studies are 
needed in this area to fill this gap, in order to better understand and interpret the transla-
tional value of the electrophysiological data obtained in small rodents, guinea pigs, rab-
bits, and dogs. The available data, however, suggest that—in spite of the modest differ-
ences between canine and human ventricular electrophysiology regarding recovery kinet-
ics of Ito1 and differences in density of IK1—it is evident that dog ventricular preparations 
offer a translational advantage over those of small rodents, guinea pigs, and rabbits. The 
significant differences in the translational value of data obtained from different animal 
models should be kept in mind during physiological, pathophysiological, and pharmaco-
logical investigations. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/ph14080748/s1, Table S1: Comparison of most important electrophysiological properties 
of human, canine and porcine ventricular cardiomyocytes. 
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