Supporting Information

Conventional or mechanochemically-aided intercalation of diclofenac and naproxen anions into the interlamellar space of CaFe-layered double hydroxides and their application as dermal drug delivery systems †

Márton Szabados,^{a,b} Attila Gácsi,^{b,c} Yvette Gulyás,^b Zoltán Kónya,^{d,e} Ákos Kukovecz,^d Erzsébet Csányi,^c István Pálinkó^{a,b} and Pál Sipos^{b,f*}

^aDepartment of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged, H-6720 Hungary

^bMaterial and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi vértanúk tere 1, Szeged, H-6720 Hungary

^cInstitute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös utca 6, Szeged, H-6720 Hungary

^dDepartment of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, Szeged, H-6720 Hungary

^eMTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich B. tér 1, Szeged, H-6720 Hungary

^fDepartment of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720 Hungary

Table S1

Comparative literature for drug release of Mg- and Zn-based LDH solids summarizing the applied kinetic models, n release exponents, and R^2 linear correlation coefficients.

Investigated	Intercolation mathed	Kinatia modela	11	\mathbf{P}^2	References	
nanocomposites	Intercatation method	Kinetic models	п	ĸ		
MgAl-LDH-naproxen	Co-precipitation	Korsmeyer–Peppas	0.9	0.997	Rojas et al., 2014	
MgAl-LDH-naproxen	Co-precipitation	Korsmeyer–Peppas	0.89	0.996	Carriazo et al., 2010	
MgAl-LDH-diclofenac /	Direct onion exchange	Hienehi	0.5	0.995	Ambrogi et al., 2008	
Eudragit	Direct amon exchange	nigueili				
MgAl-LDH-diclofenac	Direct anion exchange	Higuchi	0.5	0.989	Ambrogi et al., 2002	
ZnAl-LDH/diclofenac /	Direct onion exchange	Ditgor Donnog	0.37	0.933	Wang et al., 2019	
Polycaprolactone	Direct amon exchange	Kitger-reppas	0.57			
ZnAl-LDH-diclofenac	Direct anion exchange	Ritger-Peppas	0.21	0.991	Joy et al., 2017	
ZnAl-LDH-diclofenac	Direct anion exchange	Higuchi	0.5	0.986	Perioli et al., 2011	

sipos@chem.u-szeged.hu (Pál Sipos)

[†] This publication is dedicated to the memory of our mentor, friend and colleague, Prof. István Pálinkó, who passed away shortly after the submission of the current manuscript *corresponding author

Fig. S1 X-ray diffractometry patterns of diclofenac anion-intercalated LDH samples intercalated in ethanol-water mixtures of varying compositions (1:1 Fe(III):diclofenac anion molar ratio, 25°C) and the as-prepared LDH after calcination at 400°C.

Fig. S2 X-ray diffraction patterns of solids obtained at varying stirring temperature (1:1 Fe(III):diclofenac anion molar ratio, 25% v/v ethanol-water mixture).

Fig. S3 X-ray diffraction patterns of the LDH composites at different Fe(III):diclofenac anion molar ratios (25% v/v ethanol-water mixture, 25°C).

Table S2

Crystal, size, heterogeneity parameters and zeta potential of pristine and organic CaFe-LDH solids (average predominant solvodynamic diameter – $Z_{avg.}$, polydispersity index – PDI, average zeta potential – $\zeta_{avg.}$).

Samples	d-value	а	7 (nm)	PDI	$\zeta_{avg.}$ (mV)
Samples	(nm) ^x	(nm) ^y	Lavg. (IIII)		
CaFe–NO ₃ -LDH	0.854	0.586	255 ± 60	0.42	-12.9 ± 1.6
co-precipitation LDH-diclofenac	2.291	0.586	1220 ± 330	0.13	-9.5 ± 1.1
direct anion exchange LDH-diclofenac	2.304	0.582	1140 ± 330	0.17	-9.3 ± 2.7
dehydroxylation-rehydration LDH-diclofenac	2.271	0.586	675 ± 185	0.35	-11.5 ± 3.4
mechanochemically-aided intercalation LDH-diclofenac	2.276	0.584	540 ± 170	0.21	-12.4 ± 1.8
co-precipitation LDH-naproxen	1.943	0.586	760 ± 180	0.46	-4.7 ± 1.5
direct anion exchange LDH-naproxen	1.935	0.586	2280 ± 605	0.22	-5.4 ± 3.4
dehydroxylation-rehydration LDH-naproxen	1.926	0.584	2770 ± 760	0.22	-2.5 ± 1.3
mechanochemically-aided intercalation LDH-naproxen	1.902	0.584	3125 ± 585	0.45	-3.9 ± 1.4

^x *d*-value = d_{001} or the first reflections

^y Lattice parameter *a* is calculated by estimation: $a = 2d_{110}$

Fig. S4 Raman spectra of the diclofenac (A) and naproxen (B) anion-intercalated LDH samples and those of the as-prepared CaFe-LDH and starting drugs.

Fig. S5 X-ray diffractograms of the naproxen and diclofenac sodium salts. cps/e\ 10 8 6 AI Si CL Ca Fe O Fe Na 4 2 n 4 4 keV 2

Fig. S6 Energy dispersive X-ray analysis spectrum of diclofenac anion-CaFe-LDH composite (signals of silicon and aluminium are originated from the adhesive tape/sample holder).

5

3

1

Fig. S7 SEM (A) and elemental map (B and C) images from the diclofenac anion–CaFe-LDH.

Fig. S8 Thermal behaviour of the pristine CaFe-LDH and sodium salts of diclofenac and naproxen.

Fig. S9 Infrared spectra of diclofenac, naproxen sodium salts and drug-intercalated (by the dehydroxylation-rehydration technique) LDH solids after heat treatments at various temperatures.

Fig. S10 The number-weighed size distribution patterns of the as-prepared (nitrate-containing), the diclofenac and the naproxen anion-intercalated CaFe-LDH particles (the numbers show the predominant solvodynamic diameters).

Fig. S11 Particle size distribution histograms of the naproxen anion-intercalated CaFe-LDH solids dispersed in hydrogels.

- Ambrogi, V., Fardella, G., Grandolini, G., Perioli, L., Tiralti, M.C., 2002. Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents, II: Uptake of diclofenac for a controlled release formulation. AAPS PharmSciTech. 3, 26. https://doi.org/10.1208/pt030326
- Ambrogi, V., Perioli, L., Ricci, M., Pulcini, L., Nocchetti, M., Giovagnoli, S., Rossi, C., 2008.
 Eudragit and hydrotalcite-like anionic clay composite system for diclofenac colonic delivery. Micropor. Mat. 115, 405–415.
 https://doi.org/10.1016/j.micromeso.2008.02.014
- Carriazo, D., del Arco, M., Martín, C., Ramos, C., Rives, V., 2010. Influence of the inorganic matrix nature on the sustained release of naproxen. Micropor. Mesopor. Mat. 130, 229–238. https://doi.org/10.1016/j.micromeso.2009.11.014
- Joy, M., Iyengar, S.J., Chakraborty, J., Ghosh, S., 2017. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium. Front. Mater. Sci. 11, 395–408. https://doi.org/10.1007/s11706-017-0400-1
- Perioli, L., Posati, T., Nocchetti, M., Bellezza, F., Costantino, U., Cipiciani, A., 2011. Intercalation and release of antiinflammatory drug diclofenac into nanosized ZnAl hydrotalcite-like compound. Appl. Clay Sci. 53, 374–378. https://doi.org/10.1016/j.clay.2010.06.028
- Rojas, R, Jimenez-Kairuz, A.F., Manzo, R.H., Giacomelli, C.E., 2014. Release kinetics from LDH-drug hybrids: Effect of layers stacking and drug solubility and polarity. Colloid. Surface. A 463, 37–43. https://doi.org/10.1016/j.colsurfa.2014.09.031

Wang, H., Wu, J., Zheng, L., Cheng, X., 2019. Preparation and properties of ZnAl layered double hydroxide/polycaprolactone nanocomposites for use in drug delivery, Polym-Plast. Technol. 58, 1027–1035. https://doi.org/10.1080/03602559.2018.1493121