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Environmental significance statement

Silver and gold nanoparticle-based products have been broadly utilized in both commercial 

and biomedical fields, and their potential ecotoxicological impacts should be further 

considered. In particular, harmful effects on the immune systems may result in an undesirable 

physiological consequence of the exposed organisms. Using macrophage-like cells 

(coelomocytes) separately harvested from two closely-related Eisenia species of earthworms, 

we compared their biological responses to silver/gold nanoparticles at molecular and cellular 

levels. Our in vitro findings reinforce the existence of species-specific responses towards 

nanoparticles, which may influence the organism's susceptibility. As nanoparticles behave 

differently from classical environmental contaminants, additional concerns should be given 

for species extrapolation from ecotoxicological models to higher or even closely-related 

organisms.
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Abstract

Two closely-related earthworm species (Eisenia spp.) have long been used as model 

organisms in ecotoxicology. The same nanoparticles (NPs) may affect the two species 

differently, not only because of the inherent differences in susceptibility but also due to how 

immune system could recognize NPs. In a comparative approach using E. andrei and E. 

fetida, we study various immune-related parameters of earthworm coelomocytes following in 

vitro exposure to 10 nm NPs (silver, Ag; and gold, Au) or dissolved Ag (AgNO3). In general, 

E. fetida coelomocytes were more susceptible to AgNPs and AgNO3 while AuNPs did not 

show cytotoxicity. At the sub-cellular level, AgNPs similarly affected cellular redox reactions 

in both species, however, E. fetida showed greater responses for apoptosis-related endpoints. 

At the molecular level, AgNPs (at 24 h LC20) induced a significantly high level of superoxide 

dismutase in E. andrei coelomocytes while E. fetida was additionally characterized by 

consistent induction of metallothionein and differential capacity for redox/metal regulation. 

Although AuNPs were not cytotoxic, both NP types (Ag and Au) seemed to alter the 

expression pattern of immune-related genes (toll-like receptor and lysenin) in both species, 

but more clearly in E. fetida. We further observed that lysenin proteins, while secreted 

differentially between the two species, bind only to AgNPs resulting in negative secretion 

feedback. Our findings support the general preference of E. fetida in ecotoxicology, and 

reveal the potential roles of protective and immune mechanisms optimized for each species in 

its own ecological niche.

Keywords: innate immunity, coelomocytes, AgNP, AuNP, apoptosis, gene expression pattern 
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1. Introduction

Eisenia andrei and E. fetida are two closely-related earthworm species widely used in 

standardized ecotoxicological testing and discerned as separate species by their minor 

morphological features. In fact, their natural living environment fundamentally indicates 

dissimilarities in the niche; more specifically, E. andrei can be present in manure and compost 

while E. fetida subsists in moist forest soil, however both Eisenia spp. frequently constitute 

mixed colonies1, 2. Historically either E. andrei or E. fetida were used for a given set of 

experiments3-5. This also holds true for the ecotoxicological research on emerging classes of 

nanomaterials such as silver nanoparticles (AgNPs)6-10 that could be released to the 

environment11. Even under a controlled experimental setup, however, species differences are 

indeed considered to be a confounding factor in nanotoxicology due to the formation of 

species-specific biomolecular coronas potentially in the external milieu (secreted proteins) but 

also following NP entry into the body (fluid) of an exposed organism12. Species differences in 

the later case have been experimentally proved for earthworms, although only in an artificial 

in vitro setting, where the same NPs with cognate protein corona were preferentially 

accumulated by immune cells as compared to those with entirely exotic corona formed of 

fetal bovine serum13. Interestingly, the Eisenia sp. specific gene lysenin has a differential 

basal expression level between E. andrei and E. fetida2, 14, and the encoded protein family was 

evidently a predominant component of the species-specific protein corona around AgNPs12. 

Despite this emerging paradigm in Eisenia earthworms, parallel toxicological and 

immunobiological studies barely exist to discover the fine differences at certain biological 

levels of these two closely-related species2, 15. 

Recently the exact genetic distinction between the two species has been solved by 

species-specific primers for mitochondrial gene cytochrome oxidase (COI) I subunit2, and this 
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has made a comparative study possible with a clear genotype. In this work we aimed at 

exploring species-specific aspects in the stress and immune responses of the two species to 10 

nm AgNPs with comparisons to another noble metal NPs (AuNPs) and to dissolved Ag 

(AgNO3) as a non-NP counterpart. We chose 10 nm AgNPs as model NPs because they are 

available as an OECD benchmark material for nanotoxicology testing, and we have 

previously studied several different types/sizes of AgNPs in vitro and in vivo in Eisenia 

earthworms10, 12, 16. In particular, the in vitro approach makes the comparison of the two 

species easier and allows us to focus on the immunologically-relevant mechanistic (rather 

than ecological) aspects.

Earthworm coelomocytes constitute the cellular arm of innate immunity and are 

classified into amoebocyte and eleocyte subpopulations, the former of which is considered to 

be ancestors of vertebrate macrophages14, 17. In addition, the coelomic fluid that 

accommodates coelomocytes possesses a wide range of bioactive molecules (fetidin/lysenin, 

lysozyme, and lumbricin) that comprise the humoral arm of earthworm immunity18-21 and are 

potential opsonins of NPs that could be recognized by the amoebocytes as previously 

demonstrated16. In fact, this would make the amoebocyte subpopulation more susceptible to 

AgNPs while the dissolved counterpart and heavy metals in general are known to affect both 

amoebocytes and eleocytes, the latter of which may actually be more vulnerable8, 9, 22. 

The endpoints selected are oxidative stress, DNA damages and apoptosis as well as 

expression of genes considered as biomarkers of stress and immune responses10, 12, 16. This is 

in line with our choice of NPs; it is generally accepted that oxidative dissolution of AgNPs 

and thus the release of bioactive Ag ions results in excess reactive oxygen species (ROS) 

generation leading to DNA damages and apoptotic responses11, 23, 24. In contrast, AuNPs may 

serve as a negative control for these processes since they are highly resistant to oxidative 

dissolution. They are nonetheless of interest in the context of sub-lethal endpoints as 
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somewhat inconsistent results have been reported, indicating the unpredictable nature of NP 

toxicity25. 

Here we ascertained marked contrast of the two earthworm species in the 

susceptibility of coelomocytes to AgNPs in vitro. To the contrary, AuNP exposure had no 

detectable effects on cell viability of coelomocytes from both species, but it clearly affected 

gene-, and protein expression of lysenin. To the best of our knowledge, this is the first report 

that describes a direct comparison of earthworm coelomocytes from the two closely-related 

species E. andrei and E. fetida on the molecular/cellular toxicity of AgNPs and AuNPs. We 

further aim to link the ex situ lysenin/protein-corona formation and protein secretion to the 

observed responses of coelomocytes.

2. Materials and methods

2.1. Earthworm husbandry 

Adult (clitellated) E. andrei and E. fetida earthworms were maintained under standard 

laboratory conditions and collected from breeding stocks26. One day before coelomocyte 

isolations earthworms were placed onto moist tissue paper for depuration to minimize soil 

contaminations during coelomocyte harvesting. The genotypes of the two species were 

validated according to Dvořák et al., (2013)2.

2.2. Extrusion of coelomocytes and in vitro exposure conditions

Coelomocytes were separately harvested from E. andrei and E. fetida earthworm 

species in the same manner as we described earlier21 and detailed in the electronic 

supplementary information (ESI). Following the cell isolations and enumerations (5×105 

cells), coelomocytes were exposed to different concentrations of NPs (1.25-40 µg/mL) for 

several time points (1-24 h) in RPMI-1640 cell culture media (with HEPES 3.5 g/L, pH 7.4) 
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supplemented with 1% penicillin/streptomycin (100 U/mL penicillin and 100 µg/mL 

streptomycin, Lonza, Basel, Switzerland) and 1% heat-inactivated FBS (Euroclone, Milan, 

Italy) and placed onto 24-well plates16. Where interference is expected in colorimetric 

measurements, phenol red-free RPMI was used instead. Double-distilled-water (ddH2O) 

served as a negative control (in the same volume as the highest concentration of AgNP 

treatments) and AgNO3 as a positive control for dissolved Ag cytotoxicity16. During flow 

cytometry-based detections only amoebocytes were gated for the analysis as the eleocyte 

population has a high autofluorescence level.

2.3. Nanoparticles

Polyvinylpyrrolidone (PVP)-capped 10 nm AgNPs and AuNPs (1 mg/mL, BioPure) 

were purchased from NanoComposix (San Diego, CA, USA) and stored at 4 oC in the dark 

according to the manufacturer’s instructions. Dissolved AgNO3 was purchased from Sigma-

Aldrich (Budapest, Hungary).

2.4. Physico-chemical characterization of NPs

Highest applied concentrations of 10 nm AgNP and AuNP (40 µg/mL) was incubated 

for 24 h at room temperature (RT) in ddH2O, PBS, RPMI-1640, RPMI-1640 supplemented 

with 1% FBS. The light absorbance profile (characteristic to the localized surface plasmon 

resonance of those NPs) was studied by UV/VIS spectrophotometry to determine the 

aggregation states and particle morphology under exposure conditions. After desalting, 

particle sizes and morphology of NPs were also investigated at high resolution using a 

transmission electron microscope (TEM)16. The hydrodynamic size and polydispersity index 

(PdI) of NPs under exposure conditions were determined by a dynamic light scattering (DLS) 

device (Zetasizer Nano ZS, Malvern Panalytical, Worcestershire, UK). Likewise, zeta 
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potentials were measured but after three washing steps with ddH2O (3×20 min, 18 kRCF) to 

remove serum proteins and minimize electrolyte concentrations16, 27. For the quantification of 

dissolved ion concentrations, NPs were pelleted by ultracentrifugation (1 h, 164-192 kRCF, 4 

oC) and metal concentrations in the supernatant were analyzed by inductively-coupled plasma 

mass spectrometry (ICP-MS). More details of the particle characterization are provided in the 

ESI.

2.5. Concentration-response curve fitting, and the choice of test concentrations 

Concentration-response curves were fitted to the results obtained from live/dead cell 

assays in order to estimate LCx values for 24 h exposure (see ESI for details). To further study 

the cytotoxicity mechanisms, we chose a high concentration range for AgNPs (15, 30 and 40 

µg/mL) and the highest AgNO3 concentration at which >95% of cells were affected (1.35 

µg/mL) to ensure a high signal-to-noise ratio at earlier time points than 24 h. As AuNPs did 

not induce cytotoxicity at any of the concentrations tested, we chose 20 µg/mL as an 

intermediate concentration comparable to the AgNP treatments. Where possible, the same 

live/dead stain 7-AAD (Biotium, Fremont, CA, USA) was used in combination with 

functional stains in flow cytometry to exclude dead cells or cells with leaky membranes from 

analysis. For sub-lethal endpoints such as gene and protein expression profiles, we used 

average LC20 values referred to as "low-cytotoxic concentrations" (AgNP: E. andrei 2.71 

µg/mL and E. fetida 2 µg/mL; AgNO3: 0.20 µg/mL) as well as 20 µg/mL AuNP for a 

comparison. 

2.6. Flow cytometric analysis of oxidative, and mitochondrial stress

Following exposure to selected concentrations of AgNP, AuNP or AgNO3, the 

amoebocyte population of coelomocytes were evaluated for oxidative and mitochondrial 
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stress parameters (intracellular ROS level, nitric oxide production, caspase-3 activity and 

mitochondrial membrane potentials) applying cell permeable fluorescent dyes (Biotium) by 

flow cytometry. Stainings were performed following the manufacturer's instructions and 

described in details in ESI.

The measurements and data analyses were performed using a FACSCalibur (Beckton 

Dickinson, Frankin Lakes, NJ, USA) flow cytometer and a FCS Express (DeNovo Software, 

Glendale, CA, USA) software, respectively.

2.7. Apoptosis detection by TUNEL-assay

To verify apoptosis induction determined by the caspase-3 activity study above, Click-

it Plus TUNEL Assay (modified terminal deoxynucleotidyltransferase-dUTP nick end 

labelling) with Alexa Fluor 488 fluorescent dye (Life Technologies, Carlsbad, CA, USA) was 

applied to detect the double-stranded DNA-breakage at 24 h exposure. Coelomocytes (80 µL 

from 5×105/mL) were spread onto glass slides using Cytospin 3 (SHANDON, Thermo 

Scientific, Waltham, MA, USA) apparatus. Slides were dried at RT overnight, before the 

assay was performed according to the manufacturer’s instructions. Cell nuclei were 

counterstained with 4’,6-diamidino-2-phenylindole, dihydrochloride (DAPI, 10 µg/mL, Life 

Technologies) and then observed using an Olympus BX61 microscope and an AnalySIS 

software (Olympus Hungary, Budapest).

2.8. Comet assay

To study the DNA damage by Comet assays, coelomocytes (106 cells) were exposed 

for 24 h to AgNPs, AuNPs or AgNO3 or the positive control UV-C for 30 s. Following two 

washing steps with LBSS (5 min, 100 RCF) alkaline-based sandwich-agarose gel technique 

was applied on slides according to previous studies28. Briefly, Normal Melting Point agarose-
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gel (NMA, 0.5%) constituted the first layer and coelomocytes were mixed into the second 

layer with Low Melting Point agarose gel (LMA, 0.5%), that was covered by another LMA-

layer without cells to form the third layer. Thereafter slides were placed in a lysing-solution 

(1% sodium sarcosinate, 2.5 M NaCl, 100 mM Na2-EDTA, 1% Triton X-100, 10% DMSO, 

and 10 mM Tris) for overnight incubation in the dark at 4 oC. The next day, slides were kept 

in cold electrophoresis buffer (200 mM EDTA, 10 N NaOH, pH: 10) for 20 min. DNA-

strains electrophoresis was performed in the same buffer for 40 min at 0.46 mV/cm and 132 

mV in the dark. Slides were washed with a neutralizing solution (0.4 M Tris) three times for 

5 min and stained with ethidium bromide. At least 80 individual cells were scrutinized from 

each treatment under an Olympus BX50 fluorescent microscope with 400x magnification 

and evaluated by an image analysis software (Comet assay IV; Perceptive Instruments Ltd., 

Bury St Edmunds, UK). Tail Moment values (TM, the extent of the head and tail, size of the 

head and the strength of fluorescent intensity) were measured for the analysis.

2.9. Gene expression profiling

Coelomocytes were exposed (5×105 cells/well) for 2, 12 and 24 h to low-cytotoxic 

concentrations (LC20) of AgNPs (E. andrei 2.71 µg/mL, E. fetida 2 µg/mL) or AgNO3 (0.20 

µg/mL), or 20 µg/mL AuNP for a comparison as above. Five independent experiments were 

performed for all conditions. At each time point, coelomocytes were collected and washed 

twice with LBSS (5 min, 100 RCF). Total RNA extraction and cDNA synthesis were 

performed following the manufacturer's instructions (High-Capacity cDNA reverse 

transcription kit, Thermo Scientific) and described in details in ESI, along with the 

temperature setting used for quantitative real-time PCR (qPCR).

For SYBR Green-based qPCR, the cDNA templates were mixed with gene-specific 

primer pairs designed using a Primer Express software (Thermo Scientific) and the primer 
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sequences are summarized in Table S1. The raw fluorescence qPCR data was used to 

calculate the amplification kinetics and thus the initial quantity of template cDNA (R0) using 

DART-PCR29. For normalization of the calculated R0 values, we tested both the conventional 

housekeeping gene approach (RPL17 as the internal reference gene) and using the data-driven 

algorithm NORMA-gene30. We opted for the latter approach as it proved more conservative 

(i.e. minimal influence on the inter-group variation) and effective normalization (i.e. reduction 

in the intra-group variation). The NORMA-gene normalized R0 values were then presented 

relative to the geometric means of the control values at each corresponding time point. 

Heatmaps were created on log2-transformed and scaled datasets using the gplots package (ver. 

3.0.1.1) in the R environment (ver. 3.5.1.).

For multivariate analyses of the gene expression datasets, principal component 

analysis (PCA) and correspondence analysis (CA) were performed using the FactoMineR 

(ver. 1.41)31 and factoextra (ver. 1.0.5) packages for R. For PCA, the gene expression values 

were log2-transformed and scaled. We performed PCA to reduce the dimensionality of the 

data so as to identify general variations among categories such as species, exposure duration 

and treatments as well as their combinations. CA was performed without standardization (i.e. 

scaling) to visualize the treatment-specific gene expression patterns over time.

2.10. Profiling of ex-situ protein coronas around nanoparticles 

To study the composition of protein coronas around AgNPs and AuNPs, we applied 

the same methods as described in Hayashi et al., (2013)12 with some modifications. Briefly, to 

obtain coelomic proteins (CP) from the coelomocyte culture, the cells (5×105 cells/mL) were 

incubated for 24 h at RT in RPMI cell culture media without serum supplement. The culture 

medium was then aspirated and centrifuged (5 min, 500 RCF) to remove cells. The 

supernatants were centrifuged again (10 min, 1700 RCF) and filter-sterilized (through 0.22 
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µm membrane filters), after which the CP was collected in Protein LoBind tubes (Eppendorf, 

Hamburg, Germany). According to the earthworm species from which the CP was derived, it 

was named EaCP or EfCP (E. andrei and E. fetida coelomic protein, respectively). Total 

protein concentrations of the CPs were quantified using a BCA-kit (Sigma-Aldrich) and were 

typically in the range of 250-300 µg/mL. As these concentrations were not high enough to 

serve as an alternative to 1% FBS (400-600 µg protein/mL), we decided to spike the CP in 

BSA protein background, achieving a total of 800 µg protein/mL of which 100 µg/mL was 

CP and 700 µg/mL was BSA. This represents a >5-fold higher protein concentration sufficient 

to cover the theoretical total surface area of 20 µg of 10 nm AgNPs (106 µg proteins to 11 

cm2 AgNP surface) and 10 nm AuNPs (58 µg proteins to 6 cm2 AuNP surface). In line with 

these calculations, we used 1 mL of 20 µg/mL AgNPs and AuNPs. As for the control, we 

used the same incubation condition without the CP spike. Samples were incubated on an end-

over-end rotator for 24 h at RT in the dark, and then were centrifuged for 30 min at 16 kRCF 

at 21 oC. Supernatants were removed and NPs washed three times with PBS (30 min, 16 

kRCF, 21 oC). After the final washing step 2×SDS sample loading buffer was added and 

samples were boiled for 5 minutes, followed by another centrifugation (30 min, 16 kRCF, 4 

oC) to pellet NPs. Supernatants were stored at -80 oC. SDS-PAGE and Coomassie-Brilliant 

Blue staining were performed as per standard protocols. Reference protein samples were 

prepared directly from CP (i.e. without incubation with NPs) for comparison with corona 

proteins on NPs. Images were analyzed with a VilberLourmat Bio-Profil Version 97 gel 

documentation system (Collégien, France) and a Biocapture Version 12.6 software. In 

addition, protein identification of excised bands by liquid chromatography combined tandem 

mass spectrometry (LC-MS/MS) and Western blots (WB) were performed to precisely 

identify the discrete bands. Specific details of LC-MS/MS measurements and WB are 

provided in the ESI. 
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2.11. Analysis of NP-induced protein secretion

Protein secretion profile was examined according to Hayashi et al., (2016)32. Initially, 

coelomocytes (5×105 cells/sample) were exposed for 4 h and 24 h at RT to the corresponding 

concentrations of NPs under the same exposure conditions as used in the gene expression 

study. Vehicle controls were prepared by adding ddH2O to cells instead of NPs. Following 

incubations, the culture supernatant (including NPs) was collected into a Protein LoBind tube 

(Eppendorf), spun down (5 min, 500 RCF) to remove cells and centrifuged again (10 min, 

1700 RCF). The total protein concentrations were quantified using a BCA-kit (Sigma-

Aldrich) and adjusted to 400-600 µg/mL. SDS sample buffer was added to a small aliquot of 

the cell-free supernatant and boiled for 5 min. To remove NPs, samples were centrifuged (30 

min, 16 kRCF, 4oC), then SDS-PAGE and Coomassie-Brilliant Blue staining was performed 

as per standard protocols. Image J (NIH) was employed for densitometry analysis. 

2.12. Statistical analyses

Each experiment (except qPCR) was repeated three independent times (n=3). 

Statistical analyses were carried out with Prism v5.0 (GraphPad Software, La Jolla, CA, 

USA). Distribution of normality was overseen prior to additional statistical tests (Shapiro-

Wilk Normality Test). All data are presented with the mean and standard error of the mean 

(SEM). Results were analysed by one-way ANOVA with Kruskal-Wallis test followed by 

Dunn’s post hoc test. The significance level of  = 0.05 was applied for all statistical tests. 

For qPCR datasets, the relative gene expression values were log-transformed to satisfy the 

assumption of normality. Student’s t-test (or Welch’s t-test where appropriate) was performed 

in R following Levene’s test on the homogeneity of variances. Significant differences 

between controls and treatments at each time point were determined as  = 0.05. 
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3. Results and discussion

3.1. Physico-chemical characterization of NPs under exposure conditions 

Characterization of NPs under the exposure conditions is essential since any biased 

physico-chemical factors could dramatically influence the cellular response33. Even in the 

high electrolyte and protein-rich milieu, AgNPs revealed a narrow absorbance peak 

characteristic of localized surface plasmon resonance, suggesting a monodispersed population 

(Fig. 1a). This was further supported by DLS and TEM (Table 1, Fig. 1c and d), where they 

also showed a narrow hydrodynamic size distribution, low PdI (Table 1) and no signs of 

particle aggregation, respectively. AuNPs, on the other hand showed a broader peak in the 

absorbance spectrum indicating heterogeneity in localized surface plasmon resonance due to 

the presence of multimeric clusters rather than singly dispersed particles (Fig. 1b). The mean 

hydrodynamic size and PdI were also a little larger than that of AgNPs (Table1 and Fig. 1c), 

although the inherent particle size as observed in TEM was smaller (Fig. 1e). These 

characterization results suggest that, while some degree of protein-induced agglomeration is 

apparent in AuNPs, the NPs were in general colloidally stable under the exposure conditions 

used in this study.

Oxidative dissolution of metal NPs, AgNPs in particular, is a critical process that can 

obscure the NP-specific effects on toxicity as the ionic counterpart is known to be highly 

bioactive24. To address this problem, the dissolved metal ion concentrations were determined 

by ICP-MS analysis after removal of NPs by ultracentrifugation. The results suggest that 

oxidative dissolution under the exposure conditions is not a major concern in both NP types, 

as dissolved fraction was only <0.4% of the total metal mass (Table 1). For the highest 

concentration of AgNPs used in this study, the dissolved Ag was 0.16 µg/mL, corresponding 

lower concentration regime used for the AgNO3 treatment.
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3.2. Concentration-dependent cytotoxicity is evoked by AgNPs but not AuNPs

We first determined the concentration-response relationship, based on which we 

selected test concentrations for further analysis on sub-lethal endpoints. Following 24 h 

exposure to a series of concentrations (1.25-40 µg/mL for AgNPs and AuNPs, 0.05-1.35 

µg/mL for AgNO3), the survival rate of coelomocytes was evaluated by 7-AAD, a cell 

membrane-impermeant nuclear stain. In the flow cytometry analysis, we referred to the 

amoebocyte population as the surrogates for total coelomocytes, because eleocytes (the other 

major population of coelomocytes) possess a high riboflavin content that results in strong 

autofluorescence1. On the other hand, a recent study8 claims that amoebocytes and eleocytes 

have dissimilar sensitivity towards AgNPs. It is plausible, however, the different cytotoxic 

response in AgNP-exposed coelomocytes can be explained by the fact that amoebocytes (and 

not eleocytes) rapidly internalize AgNPs as verified by TEM16, and thus eleocytes could be 

affected rather indirectly.

In both earthworm species, AgNP (and AgNO3 at lower concentrations) but not 

AuNPs exerted concentration-dependent cytotoxicity within the concentration range tested 

(Fig. S1). This also verifies that the dissolved fraction of AgNPs (<0.4% of total Ag) did not 

follow the concentration-response curve established for the AgNO3 treatment. As for the 

species differences, coelomocytes from E. fetida showed higher sensitivity towards AgNPs 

and AgNO3 than E. andrei coelomocytes based on the estimated lower LCx values and the 

steeper Hill-Slopes (Table S2). Based on the concentration-response curves established here 

we selected a high concentration series of AgNPs (15, 30 and 40 µg/mL) to study time points 

earlier than 24 h, and an intermediate AuNP concentration (20 µg/mL) with reference to 

AgNPs as no changes in the cell viability was observed. For gene and protein expression 

studies, we opted for low-cytotoxic concentrations (LC20) determined for AgNPs and AgNO3, 

while AuNPs were tested at the same concentration as above10.
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AgNPs, coincidingly with the literature, exhibited harmful effects on innate immune 

cells (e.g. earthworm coelomocytes) in low-concentration attributed to their small-size16, 34. 

Contrastingly similar responses were not observed after AuNP treatments (Fig. S1c and d). In 

this respect, their interactions with biological systems are rather contradictory35, 36; however 

several studies deal with the broad toxicity of AuNPs37, 38.

3.3. AgNPs induce immediate increase of intracellular ROS, delayed elevation of NO 

and mitochondrial membrane depolarization

As we hypothesize that oxidative stress is a key process that initiates a cascade of 

subcellular events upstream of apoptotic determination following exposure to AgNPs, we first 

evaluated the intracellular level of ROS at early time points (i.e. 1, 2 and 4 h). A 

concentration-dependent increase in the relative ROS-level was observed for the AgNP 

treatments (Fig. 2a and b). With regard to the temporal aspect, E. andrei coelomocytes 

showed a peak in the ROS level at 2 h, while E. fetida coelomocytes revealed gradual 

elevation of ROS toward 4 h. Indeed, in general similar trends were observed also for the 

AgNO3 treatment and positive control (H2O2), suggesting an inherent difference in the 

kinetics of ROS physiology between the two species (Fig. 2a and b).

It has been generally recognized that AgNP exposure results in oxidative stress a 

process extremely dependent on NP size, shape, dose and duration24, 39, 40. A variety of 

oxidative stress-related abnormalities have been reported for earthworms as well as other 

invertebrates upon AgNP treatments16, 41-47, however induction of NO derivates has not been 

studied in invertebrate immune cells. In the coelomocytes of both Eisenia species, the 

intracellular NO level was slightly higher at 4 h and then strongly increased at 24 h, showing 

significant differences between the AgNP treatments and the unexposed control (Fig. 2c and 
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d). Interestingly, AgNO3 did not induce NO production as high as observed for the AgNP 

treatments, indicating NP-specificity of this response.  

In the case of mitochondrial depolarization (Δψm) we did not find any remarkable 

changes at 4 h in any of the AgNP treatments (Fig. 2e and f). However, at 24 h a significant 

concentration dependent decrease of mitochondrial membrane potential was observed for E. 

fetida coelomocytes and to a lesser extent for E. andrei species. 

Taken together, although AgNP induced a similar degree of NO production in the two 

species, the relative ROS level was rapidly regulated in E. andrei coelomocytes resulting in a 

decreasing trend toward 4 h. On the other hand, the higher degree of mitochondrial stress in E. 

fetida coelomocytes may reflect the lower survival of cells compared to E. andrei species 

(Table S2). The positive correlation of mitochondrial depolarization and cell death was also 

evident for the AgNO3 treatments, underscoring that the former process is linked to 

subsequent cell death48. We do not know whether the intracellular ROS level could have been 

much higher in E. fetida coelomocytes at 24 h than the earlier time points tested here, as the 

measurement of ROS levels becomes more complicated when the cells are under stress. 

Interesting to note is that in the hemocytes of Mytilus galloprovincialis AgNPs did not cause 

elevated ROS levels but the mitochondrial membrane potential was significantly decreased48, 

as was the case for E. fetida coelomocytes in this study. It is nonetheless plausible that the 

cellular redox balance (indicated by the excess ROS level) was affected at initial stages of 

AgNP and AgNO3 exposure, as a consequence of which mitochondrial membrane 

depolarization persisted for long enough to trigger cell death in both treatments at 24 h. As 

AgNO3 did not significantly altered the intracellular NO level unlike AgNPs, this process 

deserves a further investigation that may provide insights into the NP-specific modes of 

cellular responses. In all cases, as predicted from the cytotoxicity assays, AuNPs did not 

induce any of the changes in coelomocytes of both species.
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 3.4. AgNPs induce caspase-3 activation and DNA damages

To further strengthen our hypothesis outlined above, we next focused on the 

parameters directly linked to apoptosis. As expected, a concentration-dependent caspase-3 

activity was noted in the AgNP treatment in both species, in particular in E. fetida 

coelomocytes that showed a significant difference at the highest concentration at 24 h (Fig. 3a 

and b). AgNO3 induced higher caspase-3 activity already at 4 h and then at 24 h in both 

species. The AuNP treatments again did not show any notable changes. Of particular interest 

is the general weaker response of E. andrei coelomocytes compared to E. fetida. The 

molecular signature of apoptosis was further indicated by TUNEL assays revealing double 

strand DNA breaks in AgNP and AgNO3 treatments (Fig. 3c and d). TUNEL assay controls 

and the concentration series of AgNPs validated the assay specificity (Fig S3a and b). These 

observations are all in line with the cytotoxicity and the mitochondrial depolarization results. 

By means of TUNEL assay a previous study49 has reported that AgNP treatments caused 

DNA damages in THP-1 monocytic cell line which could be linked to excess ROS 

production. Furthermore, in rat hippocampus AgNPs induced apoptosis in a dose-dependent 

manner observed by TUNEL staining50. Likewise Ribeiro et al., (2019)51 documented 

apoptosis of E. fetida coelomocytes upon copper oxide nanomaterial exposure in vitro.

As another method of choice for sensitive detection of single/double-stranded DNA 

breakage, Comet-assay is a widely applied method including the genotoxicity evaluation of 

NPs in individual cells52. Following 24 h exposure, at which we were able to detect significant 

caspase-3 activation (Fig. 3), AgNPs triggered concentration-dependent genotoxic effects in 

coelomocytes of both species (Fig. 4). Furthermore, we noted higher TM-values in E. fetida 

coelomocytes compared to E. andrei after exposure to AgNPs or AgNO3 (Fig. 4a). In support 

of our findings, another study42 on AgNP genotoxicity revealed concentration-dependent 

appearance of micronuclei and bi-nucleated coelomocytes of Aporrectodea caliginosa 
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earthworms. As a side note, while we did not find any changes in the AuNP-exposed 

coelomocytes, by Comet assays Lopez-Chaves et al., (2018)37 observed DNA-damage caused 

by AuNPs in a size-dependent manner (10, 20, 30, and 60 nm) in HepG2 hepatoma cells.

3.5. Identification of species-independent features in gene responses to AgNPs 

To further gain insights into the species differences in sensitivity towards noble metal 

NPs, we analyzed expression profiles of several target genes (stress-related: superoxide-

dismutase-SOD, metallothionein-MT, pattern-recognition receptor (PRR): toll-like receptor-

TLR, and antimicrobial peptide genes: lysenin, lumbricin, lumbricin-related peptide-LuRP) in 

a multiparametric manner: two different species, time kinetics (2, 12 and 24 h) and various 

treatments (AgNP, AuNP, and AgNO3). Low-cytotoxic concentrations (LC20 values) of 

AgNPs (E. andrei: 2.71 µg/mL and E. fetida: 2 µg/mL), and AgNO3 (0.20 µg/mL for both 

species) were selected for the experiments to standardize the concentration-response 

relationship between the two species. For AuNPs, the non-cytotoxic concentration (20 

µg/mL) was used as above.

To explore the general patterns, we first visualized the datasets in a heatmap for each 

species based on z-scores and thus treating all genes equally independent of the inherent 

expression levels. Relative expression profiles of E. fetida have a broader z-score distribution 

and the resulting heatmap features more extreme values than the heatmap for E. andrei in 

which expression values around the mean (z-score of zero) are found more frequently (Fig. 

5a). This suggests in general that E. fetida coelomocytes are more sensitive to the studied 

treatments. Using z-transformed datasets, PCA was performed to identify global patterns 

specific to species, treatments or time points, or the combinations of the latter two (treatment 

 time). In all cases, the first two PCs explained >50% of the total variations. Despite the 

global difference in the degree of transcriptional responses (Fig. 5a), the overall gene 
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expression patterns were not largely different between the two species (Fig. S3a). Expression 

patterns likely common to both species were observed with samples having negative PC1 

scores; they are weakly represented by the AgNP and AgNO3 treatments (Fig. S3b, mean 

points labelled in yellow and blue, respectively) and by 24 h (Fig. S3c, mean point labelled in 

orange), but clearly indicated when the treatments and the time point were combined (i.e. 24 h 

exposure to AgNPs or AgNO3) (Fig. 5b, mean points labelled in brownish yellow and dark 

blue, respectively). The gene contributing largely to PC1 (strongly related to AgNP and 

AgNO3 treatments at 24 h) is lysenin due to relatively low expression levels, while SOD and 

MT have influences over PCs 1 and 2 mainly as a result of relatively high expression levels 

(Fig. 5b). Overall with respect to the effect of treatments and time points, PCA identified the 

24 h time point for AgNP and AgNO3 treatments as characteristically different from the rest, 

and the difference stemmed from the expression patterns of lysenin and SOD common to both 

E. andrei and E. fetida possibly indicating a general stress response pattern in Eisena spp.

3.6. Exploration of time- and treatment-specific gene expression patterns

In contrast to PCA, CA is a more direct approach to visualize the multidimensional 

datasets in simpler plots without z-transformation. This makes the interpretation easier when 

the temporal aspects of two treatments are compared (Fig. 5). CA can thus identify common 

and uncommon characteristics among the two species focusing on the correspondence 

between time and gene response patterns. For a reference, results from the univariate statistics 

are presented in Fig. S4. In CA, we directly compared AgNP datasets to AuNP or AgNO3 to 

explore features specific to NPs or AgNO3, respectively. In general to both of E. andrei and 

E. fetida, the two genes lysenin and MT had the highest contributions in the opposite direction 

to the first axis (Dimension 1) that explains >50% of the variations of the data analyzed (Fig. 

6). This reflects the tendency common to both species, as identified in PCA, that lysenin is 
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induced when MT is down-regulated and that the relative expression levels of these two genes 

are more pronounced than other genes tested. Intriguingly, the second axis (Dimension 2) 

appears to characterize the temporal aspects. In E. andrei lysenin is on the opposite side of 

SOD and TLR, with MT localized in the middle, where lysenin is positively correlated with the 

2 h profiles, and MT with the 12 h profiles (Fig. 6a and 6c). Of particular note is that the 

AgNP treatment and to a lesser extent the AuNP treatment were also negatively correlated 

with lysenin and positively with SOD/TLR at the 24 h time point. What this tells us is that, 

irrespectively of the treatment types, lysenin was induced at 2 h and down-regulated towards 

24 h, while MT was induced when lysenin expression was at the baseline level at 12 h. In the 

AgNP/AuNP treatments, concurrent with the suppression of lysenin at 24 h (AgNP, p = 0.002; 

AuNP, p = 0.039), induction of SOD (AgNP, p = 0.006) and TLR became apparent (Fig. S4a). 

In E. fetida, on the second axis MT is now closer to lysenin, being opposite to SOD and TLR 

(Fig. 6b and 6d). Unlike E. andrei, the induction of TLR by AgNP and AuNP was observed at 

2 h (AgNP, p = 0.022; AuNP, p = 0.020), while it was not affected by AgNO3 (Fig. S4b). The 

comparison between the AgNP and AgNO3 treatments revealed some similarity in the 

expression profiles, except that there was a fair contribution of LuRP to the second axis in 

general pushing the AgNO3 profiles to negative scores (Fig. 6d). Apart from LuRP, both 

treatments were mainly characterized by suppression of lysenin at 2 h (AgNO3, p = 0.005) and 

24 h (AgNP, p ≤ 0.001; AgNO3, p = 0.003), and gradual induction of MT towards 24 h 

(AgNP, p = 0.006; AgNO3, p ≤ 0.001) (Fig. S4b). As identified in PCA, common to both 

species is that AgNPs down-regulated lysenin at 24 h concurrent with induction of SOD and 

additionally MT in the case of E. fetida. Gene responses to AgNPs and AgNO3 showed similar 

patterns in both species with some exceptions possibly due to large biological variations in the 

genes such as MT and LuRP (see the controls in Fig. S4). 
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As another factor that differentiated between the two species, basal expression levels 

of the genes lumbricin, lysenin and SOD were higher in E. andrei, whereas TLR, LuRP and 

MT in E. fetida were highly inducible under stress conditions (Table S3). Temporal 

expression profiles shed further light on that E. fetida coelomocytes are undoubtedly more 

sensitive to the examined treatments (Fig. 5a), but between the two species the complete gene 

expression patterns were not entirely distinguished (Fig. S4a). As previously observed in E. 

fetida, MT and lysenin regulation changed rapidly by environmental stressors, therefore it is 

considered to be an early biomarker of stress53. Consistent with our results, Hayashi et al., 

(2016)32 observed MT induction and opposing down-regulation of lysenin over time following 

2-24 h exposure of E. fetida coelomocytes to AgNPs (NM-300K, 15 nm) and AgNO3 that 

bear out the use of these genes as biomarkers upon metal burdens53. Not only MT but also the 

increasing expression of SOD in both species also suggests the onset of oxidative stress 

response, characterized by activation of the anti-oxidative defense system in cooperation with 

quenching of thiol-reactive metals. In particular, SOD is responsible for the attenuation of free 

superoxide radicals, and its up-regulation was documented for mice lung tissues exposed to 

AgNPs54. Similar phenomena were observed after exposure of human hepatoma cells to 

AgNPs55.

 Furthermore, early induction (at 2 h) of the TLR in E. fetida is possibly a result of the 

macrophage-like cells interacting with NPs32, 56. Upon PRR engagement by NPs, it is 

plausible that antimicrobial peptides expression is increased, however, our findings revealed 

that lumbricin and LuRP mRNA expression had a rather constitutive pattern following 

pathogen treatment in E. andrei coelomocytes18, 32. 

Although we did not observe cytotoxicity of AuNPs at the concentration used, 

significantly differential expression patterns were evidenced for TLR, lysenin and MT (Fig. 

S4), possibly indicating mechanisms that are not directly related to cell death but rather the 
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interactions with NPs. For instance, in Sparus aurata fish AuNPs altered expression of genes 

involved in antioxidant and innate immune responses while not affecting expression of sod57. 

The potential impact of AuNPs on innate immunity is therefore a topic that may deserve 

further attention upon establishment of dose-response relationship on an immune-related 

parameter, not cytotoxicity.

3.7. AgNPs preferentially interact with lysenins and regulate their secretion under 

exposure conditions

We have previously documented the species-specific formation of protein coronas 

using E. fetida coelomic proteins (EfCP), where the family of lysenin proteins showed 

characteristic enrichment at both 15 and 75 nm AgNPs12. On the other hand, the properties of 

neither E. andrei coelomic proteins (EaCP) nor the combination with AuNPs’ have been 

investigated yet. Since basal gene expression level of lysenin is different in Eisenia spp.2, 58, 

with a particular focus of lysenins we hereby analyzed the compositions of protein coronas to 

identify proteins that have high affinity for AgNP but also for AuNPs. As previously 

performed, EaCP and EfCP were harvested after incubating coelomocytes in culture media 

without serum supplement. In this study, however, we used BSA as a background protein 

source to ensure a high protein concentration enough to prevent protein-induced 

agglomeration of NPs. This approach also emphasizes the specificity of NP-protein 

interactions in the same way as immunostaining where BSA or milk proteins are commonly 

used for blocking non-specific binding. Indeed, despite the high abundance of BSA (66 kDa 

bands) in the incubation mix ("Reference"), enrichment of CP-specific proteins (38, 40 and 45 

kDa bands) were observed for protein coronas formed around AgNPs or AuNPs (Fig. 7a). The 

minor interactions of both AgNPs and AuNPs with BSA were also evident as there were only 
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little differences in the band intensities for BSA between the CP-spiked samples and “No-

spike” controls (Fig. 7a).  

Previously, we have shown the specificity of lysenin, a major protein component of 

EfCP, in the interaction with AgNPs and not with silica NPs12. In this study, we used AuNPs 

for a comparison as they have a similar chemical property with AgNPs in terms of the surface 

reactivity with thiols. To our surprise, the Western blot analysis rather proved that binding of 

lysenins (38 kDa and 40 kDa bands) is restricted to AgNPs, excluding the possibility for thiol-

driven interactions (Fig. 7a). Surface hydrophobicity could contribute to the preferential 

binding of lysenins, as discussed earlier12. As for the species differences, we have noted a 

clear difference in lysenin proteins (38 kDa and 40 kDa bands) between EaCP and EfCP, and 

thus the resulting protein coronas around AgNPs (Fig. 7a, Western blot, also marked with red 

arrows in the SDS-PAGE gel).

To identify these proteins as well as the 45 kDa proteins that were enriched both by 

AgNPs and AuNPs, we performed LC-MS/MS following excision of those bands (from both 

species but only the bands representing corona proteins associated with AgNPs). This verified 

the identity of the proteins from the lysenin family (lysenin and lysenin-related protein 2; 

LRP2), whereas the 45 kDa bands were likely represented by actin (Table S4). As we detected 

both lysenin and LRP2 to the same extent in the 38 and 40 kDa bands from both species, it 

could be that the 40 kDa band corresponds to LRP2 (also named as fetidin), a slightly larger 

variant of lysenin. Unfortunately, it was not possible to confirm this because the two lysenin 

proteins share a high similarity in amino acid sequence (89% identity) and thus no distinction 

was made for the 40 kDa band observed in E. andrei, where only single band was visible for 

the lysenin proteins. 

In addition to the lysenin protein family, actin is also a constituent of protein coronas 

formed around AgNPs12. Although actin is considered as cytosolic proteins, its putative role 
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as a secreted, extracellular protein is also emerging for invertebrate organisms. For example, 

extracellular actin from cell-free hemolymph is able to attach to the surface of diverse 

bacterial strains59. Alijagic et al., (2019)60 have also identified actin in the complex protein 

corona on titanium-dioxide NPs after in vitro exposure of sea urchin immunocytes. It is thus 

plausible that earthworm extracellular actin may possess an analogous role with actin of 

insects, gastropods and echinoderms (e.g. mediating phagocytosis and killing bacteria)60, 61. 

As the binding of actin was likely the case for both AgNPs and AuNPs, future studies may 

benefit from characterization of extracellular actin in the context of innate immunity in 

particular in relation to pattern recognition mechanisms. Nevertheless, this study has provided 

an experimental evidence that species differences at NPs can manifest even for a pair of 

closely-related species due to the inherent difference in the protein repertoire. The specific 

enrichment of lysenins at AgNPs despite the high BSA background also signifies that a 

similar result can be assumed for the exposure conditions used here in other cell assays (i.e. 

culture media supplemented with 1% FBS), as we previously demonstrated using a larger size 

of AgNPs12. As this assumption is largely influenced by the secretion level of lysenins in situ, 

we next tested the effects of AgNPs and AuNPs on the lysenin secretion profile.

 We have previously investigated the protein secretion profile of E. fetida 

coelomocytes treated with a low-cytotoxic concentration of 15 nm AgNPs and observed an 

apparently higher level of lysenin secretion at 2 h that consistently decreased towards 24 h32. 

In the present study, we applied the same methodology but with additional confirmation by 

Western blotting in an attempt to compare with the differential expression profile of the 

lysenin gene. We first confirmed that the lysenin secretion in the controls was in the same 

range as the concentration of lysenins in the CP-spiked "Reference protein" controls (Fig. 7b 

and c), validating the relevance of the ex situ protein corona profiling study (Fig. 7a). Notably 

for both earthworm species, exposure to AgNPs or AuNPs initially resulted in higher 
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secretion of lysenins at 4 h compared to the controls (Fig. 7b and c). Subsequently, the 

amount of lysenins diminished at 24 h (Fig. 7b and c) concurrently with down-regulation of 

the gene (except for the 24 h exposure of E. fetida coelomocytes to AuNPs) (Fig. S4). This 

indicates that the secretion profile of lysenins generally follows the pattern of the 

differentially expressed lysenin gene, and that even without the CP-spikes the formation of 

lysenin-rich protein coronas on AgNPs may take place in the presence of coelomocytes. As 

the regulation of the gene and secretion of the protein were in general common to both AgNPs 

and AuNPs, in addition to the significant impact of AgNO3 on the gene expression, lysenins 

are likely stress-regulated proteins that have immunological functions. 

Given its putative role for AgNP uptake in coelomocytes12, the family of lysenin 

proteins may represent a non-mammalian translation of acute-phase reactions that could affect 

the kinetics of NP uptake via a negative feedback loop in vitro and in vivo in Eisenia 

earthworms.

Conclusions

The interaction of NPs and immune systems is poorly understood, in particular in 

invertebrate models as NPs may acquire a rather species-specific biological identity that is 

largely different from the well-studied mammalian models12. This emerging aspect of NPs 

adds another dimension to the susceptibility of the exposed organisms in the environment that 

is primarily represented by chemical tolerance. Demonstrated in the present study is the 

differential sensitivity to noble metal NPs in coelomocytes of two closely-related earthworm 

species that have been historically used in ecotoxicological studies. In general, E. fetida 

coelomocytes showed greater sensitivity to AgNPs compared to E. andrei, whereas we could 

not determine species sensitivity to AuNPs for the concentration range tested. The higher cell 

death at 24 h in E. fetida was also supported by the higher degree of apoptosis-related sub-
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cellular events such as mitochondrial membrane depolarization, caspase-3 activation and 

DNA damages at 24 h. Exception was the intracellular redox balance represented by ROS and 

NO levels, where both Eisenia spp. showed responses to a similar extent or possibly even 

more prominent in E. andrei revealing rapid quenching of excess ROS by 4 h. The gene 

expression profiles indeed suggest involvement of antioxidant mechanisms such as SOD in 

both species, and persistent up-regulation of MT in E. fetida underscoring the thiol-mediated 

detoxification process towards 24 h. Furthermore, rapid regulation of an immune-related gene 

(TLR) was evident in E. fetida coelomocytes as an NP-specific response common to AgNPs 

and AuNPs, which may not be related to redox/cytotoxicity but rather to cellular interactions 

at the initial phase of exposure. In both species, expression/secretion of lysenins seems to be 

stress-regulated and this implies a complex feedback mechanism for AgNPs because lysenins 

are specifically enriched by AgNPs and known to enhance uptake by earthworm 

coelomocytes. 

One possible explanation for the higher responsiveness of E. fetida is that its natural 

living environment is considerably different from that of E. andrei. Specifically, E. andrei 

flourishes in microbe-rich compost while E. fetida subsists in moist forest soil, underlining 

genetic alterations in sensibility, susceptibility, as well as tolerance of their immune system 

evolved through natural selection2. Our findings reveal the preference of E. fetida in contrast 

to E. andrei in immuno-toxicological studies on nanomaterials not only because of the species 

sensitivity identified in this study but also it better represents the soil ecosystem as a keystone 

species.
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Table 1. Characterization of AgNPs and AuNPs under exposure conditions.

Characterization data

Nominal 
size

Particle 
type Medium FBS

TEM 
sizea 
(nm)

z-averageb

(nm[PdI])
Hydrodynamic 

size (nm)c
ζ 

potentiald

(mV)

ICP-MS
Ion content
c (mg/L)

(%)

10 nm Ag RPMI-
1640

1% 15. 6 nm 
± 7.6

31.4 ± 6.8 
[0.186] 37.8 ± 16.5 −9.9 ± 1.1 0.16

(0.4%)

10 nm Au RPMI-
1640

1% 11. 1 nm 
± 4.1

33.8 ± 8.7 
[0.265] 45.8 ± 19.8 −13.3 ± 

0.8
0.094

(0.24%)

Table 1. Characterization of AgNPs and AuNPs under exposure conditions. 
aTransmission electron microscopy (TEM); values are mean ± SD, n=300.
bDynamic light scattering; values are z-avarage ± SD; polydispersity index (PdI).
cDynamic light scattering; values are mean ± SD of the particle size distribution obtained by 
the CONTIN algorithm (shown is the value for the most representative peak).
dζ potential; values are mean ± SD, n=3
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Figure 1. Colloidal stability of 10 nm AgNP and AuNP under exposure conditions. Light 

absorbance characteristics of localized surface plasmon resonance of 10 nm AgNPs (a) and 

AuNPs (b) were monitored by spectrophotometry. Representative DLS results showing the 

scattering intensity-based distribution of hydrodynamic sizes (nm) fitted by the CONTIN 

algorhitm (c). Primary particle sizes of AgNPs (d) and AuNPs (e) were analyzed by TEM 

after desalting. Two representative images are presented from three individual experiments, 

scale bars: 50 nm.
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Figure 2. Evaluation of oxidative and mitochondrial stress following exposure to AgNP, 

AuNP or AgNO3 (1.35 µg/mL). Numbers shown after "AgNP" and "AuNP" refer to the test 

concentration in µg/mL. Relative ROS levels in the coelomocytes of E. andrei (a) and E. 

fetida (b) earthworms over time (1, 2 and 4 h). H2O2 served as positive control (100 µM). 

Dotted lines indicate the basal ROS levels (measured in the control at corresponding time 

points). Assessment of NO production (% of gated cells) in the coelomocytes of E. andrei (c) 

and E. fetida (d) earthworms over time (4 and 24 h). Decrease of mitochondrial membrane 
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potential (% of gated cells) in E. andrei (e) and E. fetida (f) coelomocytes over time (4 and 24 

h). Three independent measurements (n=3, mean ± SEM) were performed on flow cytometry 

(FL1 and FL4 filters).
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Figure 3. Apoptosis assessment following exposure to AgNP, AuNP or AgNO3 (1.35 

µg/mL). Numbers shown after "AgNP" and "AuNP" refer to the test concentration in µg/mL. 

Flow cytometry-based caspase-3 activity (% of gated cells) in coelomocytes of E. andrei (a) 

and E. fetida (b) over time (4 h and 24 h). Representative TUNEL-assay images of control 

(ddH2O), AgNO3 (1.35 µg/mL), AgNP (40 µg/mL) and AuNP (20 µg/mL) exposed 

coelomocytes of E. andrei (c) and E. fetida (d) earthworms are shown, scale bars: 50 µm. 

Each measurements were conducted three times (n=3), results are represented as mean ± 

SEM.
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Figure 4. Degree of DNA-damage following 24 h exposure to AgNP, AuNP or AgNO3 (1.35 

µg/mL). Numbers shown after "AgNP" and "AuNP" refer to the test concentration in µg/mL. 

Comet-assay was performed in coelomocytes of E. andrei (a) and E. fetida (b). UV-C 

treatment served as a positive control. Representative images from one Comet-assay are 

shown in the top panel. Blue lines show the “front of the head”, green lines the “middle of the 

cells” and purple lines the “end of the tail”. Each treatment was independently performed 

three times (n=3), and in one experiment at least 80 cells were evaluated. Graphs in the 

bottom panels demonstrate “Tail-moment” values with standard error of the mean (±SEM).
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Figure 5. Heatmap and principal component analysis (PCA).  The relative gene expression 

values are shown as a heatmap for each species along with the z-score density and a color 

key. Sample features are color-coded and each treatment is split into three groups (2, 12 and 

24 h) consisting of 5 biological replicates (a). PCA biplot is shown for the species-pooled 

dataset. Individual samples (small dots) and mean points (large dots) are plotted according to 

the coordinates in the first two PCs, overlaid with variable coefficients (arrows). 

Contributions of the 6 variables (genes) to the two PCs are color-scaled from grey to red. 

Confidence ellipses are drawn for sample features that on average have greater PC scores than 

the rest of the samples (b).  
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Figure 6. Correspondence analysis (CA). CA biplots for the temporal gene expression 

profiles are shown in a combination of AgNP and AuNP (a, b) or AgNP and AgNO3 (c, d) for 

the two species, respectively. Individual samples (small dots or circles) and genes (crosses) 

are plotted according to the coordinates in the first two dimensions. Contributions of the 6 

variables (genes) to the two dimensions are color-scaled from gray to red. Dots/circles 

(expression profiles at the specified time point) in the proximity of a cross (gene) signify an 

association between the exposure time and the transcriptional response, and its relative 

importance is determined by the contribution of the gene to each dimension. Three outlier 

samples were excluded from the AgNP dataset for E. fetida (2 replicates for the 12 h time 

point and 1 replicate for the 24 h time point), as they had predominant levels of LuRP 

expression affecting the analysis overall (b, d).
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Figure 7. Ex-situ protein corona formation (a) and protein secretion profile of coelomocytes 

from E. andrei (b) and E. fetida (c) earthworms studied by SDS-PAGE and Coomasssie 

Brilliant Blue staining or Western blotting of lysenins. Representative gels from three 

independent experiments are shown. Red arrows indicate the members of the lysenin-protein 

family, supposedly lysenin (lower arrow) and lysenin-related protein 2 (top arrow) identified 

by LC-MS/MS. Blue arrows indicate lysenin (~37-38 kDa), lysenin-related protein 2 (~40 

kDa), other corona proteins (~45 kDa, >200 kDa) and BSA (~66 kDa). The associated graphs 

show the enrichment of these bands calculated as the band intensity normalized to the 

corresponding protein band in the reference protein lanes (a) or in the control lanes (b, c). The 

values are mean ± SEM. Protein corona profiles for AgNPs and AuNPs following 24 h 

incubation in CP-spiked cell culture media supplemented with BSA as a background protein 

source (a). Protein secretion profiles of E. andrei (b) and E. fetida coelomocytes (c) exposed 

to low-cytotoxic concentration of AgNP (E. andrei: 2.71 µg/mL, E. fetida: 2 µg/mL) and 

AuNP (20 µg/mL). A blank (RPMI+1% FBS) is included showing serum proteins without 

coelomocytes. Western-blot analysis verified the dynamic changes of lysenin and lysenin-

related peptide (LRP) secretion upon NP exposure.
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ToC Entry

This study is focused on the remarkable sensitivity differences of immune cells from two 
closely-related earthworm species (Eisenia andrei and E. fetida) towards noble metal 
nanomaterials at cellular and molecular levels.
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