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Abstract
Bug datasets have been created and used by many researchers to build and validate novel
bug prediction models. In this work, our aim is to collect existing public source code metric-
based bug datasets and unify their contents. Furthermore, we wish to assess the plethora of
collected metrics and the capabilities of the unified bug dataset in bug prediction. We con-
sidered 5 public datasets and we downloaded the corresponding source code for each system
in the datasets and performed source code analysis to obtain a common set of source code
metrics. This way, we produced a unified bug dataset at class and file level as well. We inves-
tigated the diversion of metric definitions and values of the different bug datasets. Finally,
we used a decision tree algorithm to show the capabilities of the dataset in bug predic-
tion. We found that there are statistically significant differences in the values of the original
and the newly calculated metrics; furthermore, notations and definitions can severely dif-
fer. We compared the bug prediction capabilities of the original and the extended metric
suites (within-project learning). Afterwards, we merged all classes (and files) into one large
dataset which consists of 47,618 elements (43,744 for files) and we evaluated the bug pre-
diction model build on this large dataset as well. Finally, we also investigated cross-project
capabilities of the bug prediction models and datasets. We made the unified dataset publicly
available for everyone. By using a public unified dataset as an input for different bug pre-
diction related investigations, researchers can make their studies reproducible, thus able to
be validated and verified.

Keywords Bug dataset · Code metrics · Static code analysis · Bug prediction

1 Introduction

Finding and eliminating bugs in software systems has always been one of the most important
issues in software engineering. Bug or defect prediction is a process by which we try to learn
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from mistakes committed in the past and build a prediction model to leverage the location
and amount of future bugs. Many research papers were published on bug prediction, which
introduced new approaches that aimed to achieve better precision values (Zimmermann et al.
2009; Xu et al. 2000; Hall et al. 2012; Weyuker et al. 2010). Unfortunately, a reported bug is
rarely associated with the source code lines that caused it or with the corresponding source
code elements (e.g., classes, methods). Therefore, to carry out such experiments, bugs have
to be associated with source code which in and of itself is a difficult task. It is necessary
to use a version control system and a bug tracking system properly during the development
process, and even in this case, it is still challenging to associate bugs with the problematic
source code locations.

Although several algorithms were published on how to associate a reported bug with the
relevant, corresponding defective source code (Dallmeier and Zimmermann 2007; Wong
et al. 2012; Cellier et al. 2011), only few such bug association experiments were carried out.
Furthermore, not all of these studies published the bug dataset or even if they did, closed
source systems were used which limits the verifiability and reusability of the bug dataset.
In spite of these facts, several bug datasets (containing information about open-source soft-
ware systems) were published and made publicly available for further investigations or
to replicate previous approaches (Weyuker et al. 2011; Robles 2010). These datasets are
very popular; for instance, the NASA and the Eclipse Bug Dataset (Zimmermann et al.
2007) were used in numerous experiments (Gray et al. 2012; Jureczko and Madeyski 2010;
Shepperd et al. 2013).

The main advantage of these bug datasets is that if someone wants to create a new
bug prediction model or validate an existing one, it is enough to use a previously created
bug dataset instead of building a new one, which would be very resource consuming. It is
common in these bug datasets that all of them store some specific information about the
bugs, such as the containing source code element(s) with their source code metrics or any
additional bug-related information. Since different bug prediction approaches use various
sources of information as predictors (independent variables), different bug datasets were
constructed. Defect prediction approaches and hereby bug datasets can be categorized into
larger groups based on the captured characteristics (D’Ambros et al. 2012):

– Datasets using process metrics (Moser et al. 2008; Nagappan and Ball 2005).
– Datasets using source code metrics (Basili et al. 1996; Briand et al. 1999; Subramanyam

and Krishnan 2003).
– Datasets using previous defects (Kim et al. 2007; Ostrand et al. 2005).

Different bug prediction approaches use various public or private bug datasets. Although
these datasets seem very similar, they are often very different in some aspects that is also
true within the categories mentioned above. In this study, we gather datasets that can be
found, but we will focus on datasets that use static source code metrics. Since this category
itself has grown so immense, it is worth studying it as a separate unit. This category has
also many dissimilarities between the existing datasets including the granularity of the data
(source code elements can be files, classes, or methods, depending on the purpose of the
given research or on the capabilities of the tool used to extract data) and the representation
of element names (different tools may use different notations). For the same reason, the
set of metrics can be different as well. Even if the names or the abbreviations of a metric
calculated by different tools are the same, it can have different meanings because it can be
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defined or calculated in a slightly different way. The bug-related information given for a
source code element can also be contrasting. An element can be labeled whether it contains
a bug, sometimes it shows how many bugs are related to that given source code element.
From the information content perspective, it is less important, but not negligible that the
format of the files containing the data can be CSV (Comma Separated Values), XML, or
ARFF (which is the input format of Weka (Hall et al. 2009)), and these datasets can be
found on different places on the Internet.

In this paper, we collected 5 publicly available datasets and we downloaded the corre-
sponding source code for each system in the datasets and performed source code analysis to
obtain a common set of source code metrics. This way, we produced a unified bug dataset at
class and file level as well. Appendix explains the structure of the unified bug dataset which
is available online.

To make it easier to imagine how a dataset looks like, Table 1 shows an excerpt of an
example table where each row contains a Java class with its basic properties like Name
or Path, which are followed by the source code metrics (e.g., WMC, CBO), and the most
important property, the number of bugs.

After constructing the unified bug dataset, we examined the diversity of the metric suites.
We calculated Pearson correlation and Cohen’s d effect size, and applied the Wilcoxon
signed-rank test to reveal these possible differences. Finally, we used a decision tree
algorithm to show the usefulness of the dataset in bug prediction.

We found that there are statistically significant differences in the values of the original
and the newly calculated metrics; furthermore, notations and definitions can severely dif-
fer. We compared the bug prediction capabilities of the original and the extended metric
suites (within-project learning). Afterwards, we merged all classes (and files) into one large
dataset which consists of 47,618 elements (43,744 for files) and we evaluated the bug pre-
diction model build on this large dataset as well. Finally, we also investigated cross-project
capabilities of the bug prediction models and datasets. We made the unified dataset pub-
licly available for everyone. By using a public unified dataset as an input for different bug
prediction-related investigations, researchers can make their studies reproducible, thus able
to be validated and verified.

Our contributions can be listed as follows:

– Collection of the public bug datasets and source code.
– Unification of the contents of the collected bug datasets.
– Calculation of a common set of source code metrics.
– Comparison of the metrics suites.
– Assessment of the meta data of the datasets.
– Assessment of bug prediction capabilities of the datasets.
– Making the results publicly available.

The first version of this work was published in our earlier conference paper (Ferenc et al.
2018). In this extended version, we collected recent systematic literature review papers in
the field and considered their references as well. Moreover, some further related work was
used in the paper. As another major extension, we investigated whether the differences in
metric values are statistically significant. Finally, we built and evaluated within-project,
merged, and cross-project bug prediction models on the unified dataset.
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The paper is organized as follows. First, in Section 2, we give a brief overview about
how we collected the datasets. We also introduce the collected public datasets and present
the characteristics they have. Next, Section 3 presents the steps needed to be done for the
sake of unification. We show the original metrics for each dataset and propose the extended
metrics suite in Section 4, where we also compare the original and extended metric suites
with a statistical method. In Section 5, we summarize the metadata of the datasets and
we empirically assess the constructed unified bug dataset by showing its bug prediction
capabilities. Afterwards, we list the threats to validity in Section 6. We conclude the paper
and discuss future work in Section 7. Finally, Appendix describes the structure of the unified
bug dataset and shows its download location.

2 Data collection

In this section, we give a detailed overview about how we collected and analyzed the
datasets. We applied a snowballing-like technique (Wohlin 2014) as our data collection
process. In the following, we will describe how our start set was defined, what were the
inclusion criteria, and how we iterated over the relevant papers.

2.1 Start set

Starting from the early 70’s (Randell 1975; Horning et al. 1974), a large number of studies
was introduced in connection with software faults. According to Yu et al. (2016), 729 studies
were published until 2005 and 1564 until 2015 on bug prediction (the number of studies
has doubled in 10 years). From time to time, the enormous number of new publications in
the topic of software faults made it unavoidable to collect the most important advances in
literature review papers (Hosseini et al. 2019; Herbold et al. 2017; Wahono 2015).

Since these survey or literature review papers could serve as strong start set can-
didates, we used Scopus and Google Scholar to look for these papers. We used these
two search sites to fulfill the diversity rule and cover as many different publishers,
years, and authors as possible. We considered only peer-reviewed papers. Our search
string was the following: ‘(defect OR fault OR bug) AND prediction AND
(literature OR review OR survey)’. Based on the title and the abstract, we
ended up with 32 candidates. We examined these papers and based on their content, we
narrowed the start set to 12 (Catal and Diri 2009; Hall et al. 2012; Radjenović et al. 2013;
Herbold et al. 2017; Strate and Laplante 2013; Catal 2011; Malhotra and Jain 2011; Jureczko
and Madeyski 2011b; Malhotra 2015; Wahono 2015; Adewumi et al. 2016; Li et al. 2018).
Other papers were excluded since they were out of scope, lacked peer review, or were not
literature reviews. The included literature papers cover a time interval from 1990 to 2017.

2.2 Collecting bug datasets

Now we have the starting set of literature review papers, next, we applied backward snow-
balling to gather all the possible candidates which refer to a bug dataset. In other words,
we considered all the references of the review papers to form the final set of candidates.
Only one iteration of backward snowballing was used, since the survey papers have already
included the most relevant studies in the field and sometimes they have also included
reviews about the used datasets.
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After having the final set of candidates (687), we filtered out irrelevant papers based
on keywords, title, and abstract and we also searched for the string ‘dataset’ or ‘data set’
or ‘used projects’. Investigating the remained set of papers, we took into consideration the
following properties:

– Basic information (authors, title, date, publisher).
– Accessibility of the bug dataset (public, non public, partially public).
– Availability of the source code.

The latter two are extremely important when investigating the datasets, since we cannot
construct a unified dataset without obtaining the appropriate underlying data.

From the final set of papers, we extracted all relevant datasets. We considered the
following list to check whether a dataset meets our requirements:

– the dataset is publicly available,
– source code is accessible for the included systems,
– bug information is provided,
– bugs are associated with the relevant source code elements,
– included projects were written in Java,
– the dataset provides bug information at file/class level, and
– the source code element names are provided and unambiguous (the referenced source

code is clearly identifiable).

If any condition is missing, then we had to exclude the subject system or the whole dataset
from the study, because they cannot be included in the unified bug dataset.

Initially, we did not insist on examining Java systems; however, relevant research papers
mostly focus on Java language projects (Sayyad Shirabad and Menzies 2005; Catal 2011;
Radjenović et al. 2013). Consequently, we narrowed our research topic to datasets capturing
information about systems written in Java. This way, we could use one static analysis tool to
extract the characteristics from all the systems; furthermore, including heterogeneous sys-
tems would have added a bias to the unified dataset, since the interpretation of the metrics,
even more the interpretable set of metrics themselves, can differ from language to language.

The list of found public datasets we could use for our purposes is the following
(references are pointing to the original studies in which the datasets were first presented):

– PROMISE – Jureczko and Madeyski (2010)
– Eclipse Bug Dataset (Zimmermann et al. 2007)
– Bug Prediction Dataset (D’Ambros et al. 2010)
– Bugcatchers Bug Dataset (Hall et al. 2014)
– GitHub Bug Dataset (Tóth et al. 2016)

It is important to note that we will refer the Jureczko dataset as the PROMISE dataset
throughout the study; however, the PROMISE repository itself contains more datasets such
as the NASA MDP (Sayyad Shirabad and Menzies 2005) dataset (had to be excluded, since
the source code is not accessible).

2.3 Public Datasets

In the following subsections, we will describe the chosen datasets in more details and inves-
tigate each dataset’s peculiarities and we will also look for common characteristics. Before
introducing each dataset, we show some basic size statistics about the chosen datasets,
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which is presented in Table 2. We used the cloc (https://www.npmjs.com/package/cloc) pro-
gram to measure the Lines of Code. We only took Java source files into consideration and
we neglected blank lines.

2.3.1 PROMISE

PROMISE (Sayyad Shirabad and Menzies 2005) is one of the largest research data repos-
itories in software engineering. It is a collection of many different datasets, including
the NASA MDP (Metric Data Program) dataset, which was used by numerous studies
in the past. However, one should always mistrust the data that comes from an external
source (Petrić et al. 2016; Gray et al. 2011, 2012; Shepperd et al. 2013). The repository is
created to encourage repeatable, verifiable, refutable, and improvable predictive models of
software engineering. This is essential for maturation of any research discipline. One main
goal is to extend the repository to other research areas as well. The repository is commu-
nity based; thus, anybody can donate a new dataset or public tools, which can help other
researchers in building state-of-the-art predictive models. PROMISE provides the datasets
under categories like code analysis, testing, software maintenance, and it also has a category
for defects.

One main dataset in the repository is the one from Jureczko and Madeyski (2010)
which we use in our study. The dataset uses the classic Chidamber and Kemerer (C&K)
metrics (Chidamber and Kemerer 1994) to characterize the bugs in the systems.

2.3.2 Eclipse Bug Dataset

Zimmermann et al. (2007) mapped defects from the bug database of Eclipse 2.0, 2.1, and
3.0. The resulting dataset lists the number of pre- and post-release defects on the granularity
of files and packages that were collected from the BUGZILLA bug tracking system. They
collected static code features using the built-in Java parser of Eclipse. They calculated some
features at a finer granularity; these were aggregated by taking the average, total, and max-
imum values of the metrics. Data is publicly available and was used in many studies since
then. Last modification on the dataset was submitted on March 25, 2010.

2.3.3 Bug Prediction Dataset

The Bug prediction dataset (D’Ambros et al. 2010) contains data extracted from 5 Java
projects by using inFusion and Moose to calculate the classic C&K metrics for class level.
The source of information was mainly CVS, SVN, Bugzilla and Jira from which the number
of pre- and post-release defects were calculated. D’Ambros et al. also extended the source

Table 2 Basic properties of the public bug datasets

Dataset Systems Versions Lines of code

PROMISE 14 45 2,805,253

Eclipse Bug Dataset 1 3 3,087,826

Bug Prediction Dataset 5 5 1,171,220

Bugcatchers Bug Dataset 3 3 1,833,876

GitHub Bug Dataset 15 105 1,707,446
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code metrics with change metrics, which, according to their findings, could improve the
performance of the fault prediction methods.

2.3.4 Bugcatchers Bug Dataset

Hall et al. presented the Bugcatchers (Hall et al. 2014) Bug Dataset, which solely operates
with bad smells, and found that coding rule violations have a small but significant effect
on the occurrence of faults at file level. The Bugcatchers Bug Dataset contains bad smell
information about Eclipse, ArgoUML, and some Apache software systems for which the
authors used Bugzilla and Jira as the sources of the data.

2.3.5 GitHub Bug Dataset

Tóth et al. selected 15 Java systems from GitHub and constructed a bug dataset at class
and file level (Tóth et al. 2016). This dataset was employed as an input for 13 different
machine learning algorithms to investigate which algorithm family performs the best in bug
prediction. They included many static source code metrics in the dataset and used these
measurements as independent variables in the machine learning process.

2.4 Additional Bug Datasets

In this section, we show additional datasets which could not be included in the chosen set of
datasets. Since this study focuses on datasets that fulfilled our selection criteria and could
be used in the unification, we only briefly describe the most important but excluded datasets
here.

2.4.1 Defects4J

Defects4J is a bug dataset which was first presented at the ISSTA conference in 2014 (Just
et al. 2014). It focuses on bugs from software testing perspective. Defects4J encapsu-
lates reproducible real world software bugs. Its repository1 includes software bugs with
their manually cleaned patch files (irrelevant code parts were removed manually) and most
importantly it includes a test suite from which at least one test case fails before the patch
was applied and none fails after the patch was applied. Initially, the repository contained
357 software bugs from 5 software systems, but it reached 436 bugs from 6 systems owing
to active maintenance.

2.4.2 IntroClassJava

IntroClassJava (Durieux and Monperrus 2016) dataset is a collection of software programs
each with several revisions2. The revisions were submitted by students and each revision is a
maven project. This benchmark is interesting since it contains C programs transformed into
Java. Test cases are also transformed into standard JUnit test cases. The benchmark consists
of 297 Java programs each having at least one failing test case. The IntroClassJava dataset is
very similar to Defects4J; however, it does not provide the manually cleaned fixing patches.

1https://github.com/rjust/defects4j
2https://github.com/Spirals-Team/IntroClassJava
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2.4.3 QuixBugs

QuixBugs is a benchmark for supporting automatic program repair research studies (Lin
et al. 2017). QuixBugs consists of 40 programs written in both Python and Java3. It also
contains the failing test cases for the one-line bugs located in each program. Defects are
categorized and each defect falls in exactly one category. The benchmark also includes the
corrected versions of the programs.

2.4.4 Bugs.jar

Bugs.jar (Saha et al. 2018) is a large scale, diverse dataset for automatic bug repair4.
Bugs.jar falls into the same dataset category as the previously mentioned ones. It consists
of 1,158 bugs with their fixing patches from 8 large open-source software systems. This
dataset also includes the bug reports and the test suite in order to support reproducibility.

2.4.5 Bears

Bears dataset (Madeiral et al. 2019) is also present to support automatic program repair
studies5. This dataset makes use of the continuous integration tool named Travis to generate
new entries in the dataset. It includes the buggy state of the source code, the test suite, and
the fixing patch as well.

2.4.6 Summary

All the above described datasets are focusing on bugs from the software testing perspective
and also support future automatic program repair studies. These datasets can be good candi-
dates to be used in fault localization research studies as well. These datasets capture buggy
states of programs and provide the test suite and the patch. Our dataset is fundamentally dif-
ferent from these datasets. The datasets we collected gather information from a wider time
interval and provide information for each source code element by characterizing them with
static source code metrics.

3 Data Processing

Although the found public datasets have similarities (e.g., containing source code metrics
and bug information), they are very inhomogeneous. For example, they contain different
metrics, which were calculated with different tools and for different kinds of code elements.
The file formats are different as well; therefore, it is very difficult to use these datasets
together. Consequently, our aim was to transform them into a unified format and to extend
them with source code metrics that are calculated with the same tool for each system. In this
section, we will describe the steps we performed to produce the unified bug dataset.

First, we transformed the existing datasets to a common format. This means that if a
bug dataset for a system consists of separate files, we conflated them into one file. Next,
we changed the CSV separator in each file to comma (,) and renamed the number of bug

3https://github.com/jkoppel/QuixBugs
4https://github.com/bugs-dot-jar/bugs-dot-jar
5https://github.com/bears-bugs/bears-benchmark
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column in each dataset to ‘bug’ and the source code element column name to ‘filepath’ or
‘classname’ depending on the granularity of the dataset. Finally, we transformed the source
code element identifier into the standard form (e.g. org.apache.tools.ant.AntClassLoader).

3.1 Metrics calculation

The bug datasets contain different kinds of metric sets, which were calculated with different
tools; therefore, even if the same metric name appears in two or more different datasets,
we cannot be sure they mean exactly the same metric. To eliminate this deficiency, we
analyzed all the systems with the same tool. For this purpose, we used the free and open-
source OpenStaticAnalyzer 1.0 (OSA)6 tool that is able to analyze Java systems (among
other languages). It calculates more than 50 different kinds (size, complexity, coupling,
cohesion, inheritance, and documentation) of source code metrics for packages and class-
level elements, about 30 metrics for methods, and a few ones for files. OSA can detect code
duplications (Type-1 and Type-2 clones) as well, and calculates code duplication metrics
for packages, classes, and methods. OpenStaticAnalyzer has two different kinds of textual
outputs: the first one is an XML file that contains, among others, the whole structure of the
source code (files, packages, classes, methods), their relationships, and the metric values
for each element (e.g. file, class, method). The other output format is CSV. Since different
elements have different metrics, there is one CSV file for each kind of element (one for
packages, one for classes, and so on).

The metrics in the bug datasets were calculated with 5 different tools (inFusion Moose,
ckjm, Visitors written for Java parser of Eclipse, Bad Smell Detector, SourceMeter – which
is a commercial product based on OSA; see Table 16). From these 5 tools, only ckjm and
SourceMeter/OSA are still available on the internet, but the last version of ckjm is from 2012
and the Java language evolved a lot since then. Additionally, ckjm works on the bytecode
representation of the code, which makes it necessary to compile the source code before
analysis. Consequently, we selected OSA because it is a state-of-the-art analyzer, which
works on the source code that besides being easier to use, enables also more precise analysis.

Of course, further tools are also available, but it was not the aim of this work to find the
best available tool.

For calculating the new metric values, we needed the source code itself. Since all datasets
belonged to a release version of a given software, therefore, if the software was open-source
and the given release version was still available, we could manage to download and analyze
it. This way, we obtained two results for each system: one from the downloaded bug datasets
and one from the OSA analysis.

3.2 Dataset unification

We merged the original datasets with the results of OSA by using the “unique identifiers”
of the elements (Java standard names at class level and paths at file level). More precisely,
the basis of the unified dataset was our source code analysis result and it was extended with
the data of the given bug dataset. This means that we went through all elements of the bug
dataset and if the “unique identifier” of an element was found in our analysis result, then
these two elements were conjugated (paired the original dataset entry with the one found in
the result of OSA); otherwise, it was left out from the unified dataset. Tables 3 and 4 show

6https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
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Table 3 Merging results (number of elements) – Class level datasets

Dataset Name OSA Orig. Dropped

PROMISE Ant 1.3 530 125 0

Ant 1.4 602 178 0

Ant 1.5 945 293 0

Ant 1.6 1,262 351 0

Ant 1.7 1,576 745 0

Camel 1.0 734 339 0

Camel 1.2 1,348 608 13 (+5)

Camel 1.4 2,339 872 0 (+31)

Camel 1.6 3,174 965 0 (+38)

Ckjm 1.8 9 10 1

Forrest 0.6 159 6 0

Forrest 0.7 76 29 0

Forrest 0.8 53 32 0

Ivy 1.4 421 241 0

Ivy 2.0 637 352 0

JEdit 3.2 552 272 0

JEdit 4.0 647 306 0

JEdit 4.1 722 312 0

JEdit 4.2 888 367 0

JEdit 4.3 1,181 492 0

Log4J 1.0 180 135 0

Log4J 1.1 217 109 0

Log4J 1.2 410 205 0

Lucene 2.0 758 195 1

Lucene 2.2 1,394 247 1

Lucene 2.4 1,522 340 1

Pbeans 1 38 26 0

Pbeans 2 77 51 0

Poi 1.5 472 237 0

Poi 2.0 667 314 0

Poi 2.5 780 385 0

Poi 3.0 1,508 442 0

Synapse 1.0 319 157 0

Synapse 1.1 491 222 0

Synapse 1.2 618 256 0

Velocity 1.4 275 196 0

Velocity 1.5 377 214 1

Velocity 1.6 458 229 1

Xalan 2.4 906 723 0

Xalan 2.5 992 803 0

Xalan 2.6 1,217 885 0

Xalan 2.7 1,249 909 0

Xerces 1.2 564 440 0
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Table 3 (continued)

Dataset Name OSA Orig. Dropped

Xerces 1.3 596 453 0

Xerces 1.4 782 588 42

Bug Prediction Dataset Eclipse JDT Core 3.4 2,486 997 0

Eclipse PDE UI 3.4.1 3,382 1,497 6

Equinox 3.4 742 324 5

Lucene 2.4 1,522 691 21

Mylyn 3.1 3,238 1,862 457

GitHub Bug Dataset Android U. I. L. 1.7.0 84 73 0

ANTLR v4 4.2 525 479 0

Elasticsearch 0.90.11 6,480 5,908 0

jUnit 4.9 770 731 0

MapDB 0.9.6 348 331 0

mcMMO 1.4.06 329 301 0

MCT 1.7b1 2,050 1,887 0

Neo4j 1.9.7 6,705 5,899 0

Netty 3.6.3 1,300 1,143 0

OrientDB 1.6.2 2,098 1,847 0

Oryx 562 533 0

Titan 0.5.1 1,770 1,468 0

Eclipse p. for Ceylon 1.1.0 1,651 1,610 0

Hazelcast 3.3 3,765 3,412 0

Broadleaf C. 3.0.10 2,094 1,593 0

Sum All 76,623 48,242 624

the results of this merging process at class and file level, respectively: column OSA shows
how many elements OSA found in the analyzed systems, column Orig. presents the number
of elements originally in the datasets, and column Dropped tells us how many elements of
the bug datasets could not be paired, and so they were left out from the unified dataset. The
numbers in parentheses show the amount of dropped elements where the drop was caused
because of the original sources were not real Java sources, such as package-info.java and
Scala files (which are also compiled to byte code and hence included in the original dataset).

Although these numbers are very promising, we had to “modify” a few systems to
achieve this, but there were cases where we simply could not solve the inconsistencies. The
details of the source code modifications and main reasons for the dropped elements were
the following:

Camel 1.2: In the org.apache.commons.logging, there were 13 classes in the original dataset
that we did not find in the source code. There were 5 package-info.java7 files in the system,
but these files never contain any Java classes, since they are used for package level Javadoc
purposes; therefore, OSA did not find such classes.

7Scala (see Camel 1.4) and package-info.java files are “not real” Java source files therefore they should not
be included in the original results so their quantities are presented in parenthesis in Table 3.
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Table 4 Merging results (number of elements) – File level datasets

Dataset Name OSA Orig. Dropped

Eclipse Bug Dataset Eclipse 2.0 6,751 6,729 0

Eclipse 2.1 7,909 7,888 0

Eclipse 3.0 10,635 10,593 0

Bugcatchers Bug Dataset Apache Commons 491 191 0

ArgoUML 0.26 Beta 1,752 1,582 3

Eclipse JDT Core 3.1 12,300 560 25

GitHub Bug Dataset Android U. I. L. 1.7.0 63 63 0

ANTLR v4 4.2 411 411 0

Elasticsearch 0.90.11 3,540 3,035 0

jUnit 4.9 308 308 0

MapDB 0.9.6 137 137 0

mcMMO 1.4.06 267 267 0

MCT 1.7b1 1,064 413 0

Neo4j 1.9.7 3,291 3,278 0

Netty 3.6.3 914 913 0

OrientDB 1.6.2 1,503 1,503 0

Oryx 443 280 0

Titan 0.5.1 981 975 0

Ceylon for Eclipse 1.1.0 699 699 0

Hazelcast 3.3 2,228 2,228 0

Broadleaf C. 3.0.10 1,843 1,719 0

Sum All 57,530 43,772 28

Camel 1.4: Besides the 7 package-info.java files, the original dataset contained information
about 24 Scala files (they are also compiled to byte code); therefore, OSA did not analyze
them.

Camel 1.6: There were 8 package-info.java and 30 Scala files.

Ckjm 1.8: There was a class in the original dataset that did not exist in version 1.8.

Forrest-0.8: There were two different classes that appeared twice in the source code;
therefore, we deleted the 2 copies from the etc/test-whitespace subdirectory.

Log4j: There was a contribs directory which contained the source code of different contrib-
utors. These files were put into the appropriate sub-directories as well (where they belonged
according to their packages), which means that they occurred twice in the analysis and this
prevented their merging. Therefore, in these cases, we analyzed only those files that were
in their appropriate subdirectories and excluded the files found in the contribs directory.

Lucene: In all three versions, there was an org.apache.lucene.search.Remote-
Searchable Stub class in the original dataset that did not exist in the source
code.
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Velocity: In versions 1.5 and 1.6 there were two org.apache.velocity.app.event. imple-
ment.EscapeReference classes in the source code; therefore, it was impossible to conjugate
them by using their “unique identifiers” only.

Xerces 1.4.4: Although the name of the original dataset and the corresponding publication
state that this is the result of Xerces 1.4.4 analysis, we found that 256 out of the 588 elements
did not exist in that version. We examined a few previous and following versions as well, and
it turned out that the dataset is much closer to 2.0.0 than to 1.4.4, because only 42 elements
could not be conjugated with the analysis result of 2.0.0. Although version 2.0.0 was still
not matched perfectly, we did not find a “closer version”; therefore, we used Xerces 2.0.0
in this case.

Eclipse JDT Core 3.4: There were a lot of classes which appeared twice in the source code:
once in the “code” and once in the “test” directory; therefore, we deleted the test directory.

Eclipse PDE UI 3.4.1: The missing 6 classes were not found in its source code.

Equinox 3.4: Three classes could not be conjugated, because they did not have a unique
name (there are more classes with the same name in the system) while two classes were not
found in the system.

Lucene 2.4 (BPD): 21 classes from the original dataset were not present in the source code
of the analyzed system.

Mylyn 3.1: 457 classes were missing from our analysis that were in the original dataset;
therefore, we downloaded different versions of Mylyn, but still could not find the matching
source code. We could not achieve better result without knowing the proper version.

ArgoUML 0.26 Beta: There were 3 classes in the original dataset that did not exist in the
source code.

Eclipse JDT Core 3.1: There were 25 classes that did not exist in the analyzed system.

GitHub Bug Dataset Since OSA is the open-source version of SourceMeter, the tool used
to construct the GitHub Bug Dataset, we could easily merge the results. However, the
class level bug datasets contained elements having the same “unique identifier” (since class
names are not the standard Java names in that case), so this information was not enough to
conjugate them. Luckily, the paths of the elements were also available and we used them as
well; therefore, all elements could be conjugated. Since they performed a machine learning
step on the versions that contain the most bugs, we decided to select these release versions
and present the characteristics of these release versions. We also used these versions of the
systems to include in the unified bug dataset.

As a result of this process, we obtained a unified bug dataset which contains all of the
public datasets in a unified format; furthermore, they were extended with the same set of
metrics provided by the OSA tool. The last lines of Tables 3 and 4 show that only 1.29%
(624 out of 48,242) of the classes and 0.06% (28 out of 43,772) of the files could not be
conjugated, which means that only 0.71% (652 out of 92,014) of the elements were left out
from the unified dataset in total.
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Table 5 Metrics used in the PROMISE dataset

Name Abbr.

Weighted methods per class WMC

Depth of Inheritance Tree DIT

Number of Children NOC

Coupling between object classes CBO

Response for a Class RFC

Lack of cohesion in methods LCOM

Afferent couplings Ca

Efferent couplings Ce

Number of Public Methods NPM

Lack of cohesion in methods (by Henderson-Sellers) LCOM3

Lines of Code LOC

Data Access Metric DAM

Measure of Aggregation MOA

Measure of Functional Abstraction MFA

Cohesion Among Methods of Class CAM

Inheritance Coupling IC

Coupling Between Methods CBM

Average Method Complexity AMC

McCabe’s cyclomatic complexity CC

Maximum McCabe’s cyclomatic complexity MAX CC

Average McCabe’s cyclomatic complexity AVG CC

Number of files (compilation units) NOCU

In many cases, the analysis results of OSA contained more elements than the original
datasets. Since we did not know how the bug datasets were produced, we could not give an
exact explanation for the differences, but we list the two main possible causes:

– In some cases, we could not find the proper source code for the given system
(e.g., Xerces 1.4.4 or Mylyn), so two different but close versions of the same system
might be conjugated.

– OSA takes into account nested, local, and anonymous classes while some datasets
simply associated Java classes with files.

4 Original and extendedmetrics suites

In this section, we present the metrics proposed by each dataset. Additionally, we will show
a metrics suite that is used by the newly constructed unified dataset.

4.1 PROMISE

The authors Promiserepo (2018) calculated the metrics of the PROMISE dataset with the
tool called ckjm. All metrics, except McCabe’s Cyclomatic Complexity (CC), are class level
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Table 6 Metrics used in the Eclipse Bug Dataset

Name Abbr.

Number of method calls FOUT

Method lines of code MLOC

Nested block depth NBD

Number of parameters PAR

McCabe cyclomatic complexity VG

Number of field NOF

Number of method NOM

Number of static fields NSF

Number of static methods NSM

Number of anonymous type declarations ACD

Number of interfaces NOI

Number of classes NOT

Total lines of code TLOC

Number of files (compilation units) NOCU

metrics. Besides the C&K metrics, they also calculated some additional metrics shown in
Table 5.

4.2 Eclipse Bug Dataset

In the Eclipse Bug Dataset, there are two types of predictors. By parsing the structure of
the obtained abstract syntax tree, they Zimmermann et al. (2007) calculated the number of
nodes for each type in a package and in a file (e.g., the number of return statements in a
file). By implementing visitors to the Java parser of Eclipse, they also calculated various
complexity metrics at method, class, file, and package level. Then they used avg, max, total
avg, and total max aggregation techniques to accumulate to file and package level. The
complexity metrics used in the Eclipse dataset are listed in Table 6.

4.3 Bug Prediction Dataset

The Bug Prediction Dataset collects product and change (process) metrics. The
authors (D’Ambros et al. 2010) produced the corresponding product and process met-
rics at class level. Besides the classic C&K metrics, they calculated some additional
object-oriented metrics that are listed in Table 7.

4.4 Bugcatchers Bug Dataset

The Bugcatchers Bug Dataset is a bit different from the previous datasets, since it does
not contain traditional software metrics, but the number of bad smells for files. They used
five bad smells which are presented in Table 8. Besides, in the CSV file, there are four
source code metrics (blank, comment, code, codeLines), which are not explained in the
corresponding publication (Hall et al. 2014).
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Table 7 Metrics used in the Bug Prediction Dataset

Name Abbr.

Number of other classes that reference the class FanIn

Number of other classes referenced by the class FanOut

Number of attributes NOA

Number of public attributes NOPA

Number of private attributes NOPRA

Number of attributes inherited NOAI

Number of lines of code LOC

Number of methods NOM

Number of public methods NOPM

Number of private methods NOPRM

Number of methods inherited NOMI

4.5 GitHub Bug Dataset

The GitHub Bug Dataset (Tóth et al. 2016) used the free version of SourceMeter (2019)
static analysis tool to calculate the static source code metrics including software product
metrics, code clone metrics, and rule violation metrics. The rule violation metrics were not
used in our research; therefore, Table 9 shows only the list of the software product and code
clone metrics at class level. At file level, only a narrowed set of metrics is calculated, but
there are 4 additional process metrics included as Table 10 shows.

4.6 Unified Bug Dataset

The unified dataset contains all the datasets with their original metrics and with further
metrics that we calculated with OSA. The set of metrics calculated by OSA concurs with the
metric set of the GitHub Bug Dataset, because SourceMeter is a product based on the free
and open-source OSA tool. Therefore, all datasets in the Unified Bug Dataset are extended
with the metrics listed in Table 9 except the GitHub Bug Dataset, because it contains the
same metrics originally.

In spite of the fact that several of the original metrics can be matched with the metrics
calculated by OSA, we decided to keep all the original metrics for every system included in
the unified dataset, because they can differ in their definitions or in the ways of their calcu-
lation. One can simply use the unified dataset and discard the metrics that were calculated
by OSA if s/he wants to work only with the original metrics. Furthermore, this provides an
opportunity to confront the original and the OSA metrics.

Table 8 Bad smells used in the Bugcatchers Bug Dataset

Name

Data Clumps

Message Chains

Middle Man

Speculative Generality

Switch Statements
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Table 9 Class Level Metrics used in the GitHub Bug Dataset

Name Abbr. Name Abbr.

API Documentation AD Number of Local Public Methods NLPM

Clone Classes CCL Number of Local Setters NLS

Clone Complexity CCO Number of Methods NM

Clone Coverage CC Number of Outgoing Invocations NOI

Clone Instances CI Number of Parents NOP

Clone Line Coverage CLC Number of Public Attributes NPA

Clone Logical Line Coverage CLLC Number of Public Methods NPM

Comment Density CD Number of Setters NS

Comment Lines of Code CLOC Number of Statements NOS

Coupling Between Object classes CBO Public Documented API PDA

Coupling Between Obj. classes Inv. CBOI Public Undocumented API PUA

Depth of Inheritance Tree DIT Response set For Class RFC

Documentation Lines of Code DLOC Total Comment Density TCD

Lack of Cohesion in Methods 5 LCOM5 Total Comment Lines of Code TCLOC

Lines of Code LOC Total Lines of Code TLOC

Lines of Duplicated Code LDC Total Logical Lines of Code TLLOC

Logical Lines of Code LLOC Total Number of Attributes TNA

Logical Lines of Duplicated Code LLDC Total Number of Getters TNG

Nesting Level NL Total Number of Local Attributes TNLA

Nesting Level Else-If NLE Total Number of Local Getters TNLG

Number of Ancestors NOA Total Number of Local Methods TNLM

Number of Attributes NA Total Number of Local Public Attr. TNLPA

Number of Children NOC Total Number of Local Public Meth. TNLPM

Number of Descendants NOD Total Number of Local Setters TNLS

Number of Getters NG Total Number of Methods TNM

Number of Incoming Invocations NII Total Number of Public Attributes TNPA

Number of Local Attributes NLA Total Number of Public Methods TNPM

Number of Local Getters NLG Total Number of Setters TNS

Number of Local Methods NLM Total Number of Statements TNOS

Number of Local Public Attributes NLPA Weighted Methods per Class WMC

Table 10 File Level Metrics used in the GitHub Bug Dataset

Name Abbr.

McCabe’s Cyclomatic Complexity McCC

Comment Lines of Code CLOC

Logical Lines of Code LLOC

Number of Committers −
Number of developer commits −
Number of previous modifications −
Number of previous fixes −
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Instead of presenting all the definitions of metrics here, we give an external resource to
show metric definitions because of the lack of space. All the metrics and their definitions can
be found in the Unified Bug Dataset file reachable as an online appendix (see Appendix).

4.7 Comparison of theMetrics

In the unified dataset, each element has numerous metrics, but these values were calculated
by different tools; therefore, we assessed them in more detail to get answers to questions
like the following ones:

– Do two metrics with the same name have the same meaning?
– Do metrics with different names have the same definition?
– Can two metrics with the same definition be different?
– What are the root causes of the differences if the metrics share the definition?

Three out of the five datasets contain class level elements, but unfortunately, for each
dataset, a different analyzer tool was used to calculate the metrics (see Table 16). To be able
to compare class level metrics calculated by all the tools used, we needed at least one dataset
for which all metrics of all three tools are available. We were already familiar with the usage
of the ckjm tool, so we chose to calculate the ckjm metrics for the Bug Prediction dataset.
This way, we could assess all metrics of all tools, because the Bug Prediction dataset was
originally created with Moose, so we have extended it with the OSA metrics, and also – for
the sake of this comparison – with ckjm metrics.

In the case of the three file level datasets, the used analyzer tools were unavailable;
therefore, we could only compare the file level metrics of OpenStaticAnalyzer with the
results of the other two tools separately on Eclipse and Bugcatchers Bug datasets.

In each comparison, we merged the different result files of each dataset into one, which
contained the results of all systems in the given dataset and deleted those elements that
did not contain all metric values. For example, in case of the Bug Prediction Dataset, we
calculated the OSA and ckjm metrics, then we removed the entries which were not identified
by all three tools. Because we could not find the analyzers used in the file level datasets, we
used the merging results seen in Section 3.2. For instance, in case of the Bugcatchers Bug
Dataset, the new merged (unified) dataset has 14,543 entries (491 + 1,752 + 12,300) out of
which 2,305 were in the original dataset and not dropped (191 + 1,582 + 560 - 28).

The resulting spreadsheet files can be found in the Appendix. Table 11 shows how many
classes or files were in the given dataset and how many of them remained. We calculated
the basic statistics (minimum, maximum, average, median, and standard deviation) of the
examined metrics and compared them (see Table 12). Besides, we calculated the pairwise
differences of the metrics for each element and examined its basic statistics as well. In
addition, the Equal column shows the percentage of the classes for which the two examined
tools gave the same result (for example, at class level OSA and Moose calculated the same
WMC value for 2,635 out of the 4,167 elements, which is 63.2%, see Table 12).

Since the basic statistic values give only some impression about the similarity of the
metric sets, we performed a Wilcoxon signed-rank test (Myles et al. 2014), which deter-
mines whether two dependent samples were selected from populations having the same
distribution. In our test, the H0 hypothesis is that the difference between the pairs follows
a symmetric distribution around zero, while the alternative H1 hypothesis is that the differ-
ence between the pairs does not follow a symmetric distribution around zero. We used 95%
confidence level in the tests to calculate the p-values. This means that if a p-value is higher
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Table 11 Number of elements in the merged systems

Name Merged Remained elements

Bug Prediction Dataset 11,370 4,167

Eclipse Bug Dataset 25,295 25,210

Bugcatchers bug Dataset 14,543 2,305

than 0.05, we accept the H0 hypothesis; otherwise, we reject it and accept the H1 alterna-
tive hypothesis instead. In all cases, the p-values were less than 0.001; therefore, we had to
reject the H0 and accept that the difference between the pairs does not follow a symmetric
distribution around zero.

Although from statistical point of view the metric sets are different, we see that in many
cases, there are lot of equal metric values. For example, in case of the file level dataset of
Eclipse (see Table 14), only 11 out of 25,199 metrics are different, but 10 out of these 11 are
larger only by 1 than their pairs so the test recognizes well that it is not symmetric. On the
other hand, in this case, we can say that the two groups can be considered identical because
less than 0.1% of the elements differ, and the difference is really neglectable. Therefore,
we calculated Cohen’s d as well which indicates the standardized difference between two
means (Cohen 1988). If this difference, namely Cohen’s d value, is less than 0.2, we say
that the effect size is small and more than 90% of the two groups overlap. If the Cohen’s d
value is between 0.2 and 0.5, the effect size is medium and if the value is larger than 0.8, the
effect size is large. Besides, to see how strong or weak the correlations between the metric
values are, we calculated the Pearson correlation coefficient. The correlation coefficient
ranges from -1 to 1, where 1 (or -1) means that there is linear equation between the two sets,
while 0 means that there is no linear correlation at all. In general, the larger the absolute
correlation coefficient is, the stronger the relationship is. In the literature, there are different
recommendations for the threshold above the correlation is considered strong (Gyimothy
et al. 2005a; Jureczko 2011a), in this research, we used 0.8.

4.7.1 Class Level Metrics

The unified bug dataset contains the class level metrics of OSA and Moose on the Bug Pre-
diction dataset. We downloaded the Java binaries of the systems in this dataset and used
ckjm version 2.2 to calculate the metrics. The first difference is that while OSA and Moose
calculate metrics on source code, ckjm uses Java bytecode and takes “external dependen-
cies” into account; therefore, we expected differences, for instance, in the coupling metric
values.

We compared the metric sets of the three tools and found that, for example, CBO and
WMC have different definitions. On the other hand, efferent coupling metric is a good
example for a metric which is calculated by all three tools, but with different names (see
Table 12, CBO row). In the following paragraphs, we only examine those metrics whose
definitions coincide in all three tools even if their names differ. Table 12 shows these metrics
where the Metric column contains the abbreviation of the most widely used name of the
metric. The Tool column presents the analyzer tools, in the Metric name column, the metric
names are given using the notations of the different datasets. The “tool1−tool2” means the
pairwise difference where, for each element, we extracted the value of tool2 from the value
of tool1 and the name of this “new metric” is diff. The following columns present the basic
statistics of the metrics. The Equal column denotes the percentage of the elements having
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the same metric value (i.e., the difference is 0), and the last two columns are the Cohen’s d
value and the Pearson correlation coefficient (where it is appropriate). We highlighted with
bold face those values that suggest that the two metric set values are close to each other
from a given aspect:

– if more than half of the element pairs are equal (i.e., Equal is above 50%),
– if the effect size is small (i.e., Cohen’s d is less than 0.2),
– if there is strong linear correlation between the elements (i.e., the absolute value of the

Pearson correlation coefficient is larger than 0.8).

Next, we will analyze the metrics one at a time.

WMC: This metric expresses the complexity of a class as the sum of the complexity of
its methods. In its original definition, the method complexity is deliberately not defined
exactly; and usually the uniform weight of 1 is used. In this case, this variant of WMC is
calculated by all three tools. Its basic statistics are more or less the same and the pairwise
values of OSA and ckjm seem to be closer to each other (see OSA−ckjm row) than to
Moose and the extremely high Pearson correlation value (0.995) supports this. Among the
Moose results, there are several very low values where the other tools found a great number
of methods and that caused the extreme difference (e.g., the max. value of OSA−Moose is
420). In spite of this, the Pearson correlations between the results Moose and the other tools
are high. On the other hand, OSA and Moose gave the same result for almost two third of
the classes, which means that the difference probably comes from outliers. And finally, the
Cohen’s d values are small, so we can say that the three tools gave very similar results but
with notable outliers.

CBO: In this definition, CBO counts the number of classes the given class depends on.
Although it is a coupling metric, it counts efferent (outer) couplings; therefore, the met-
ric values should have been similar. On the other hand, based on the statistical values and
the pairwise comparison including Equal and Cohen values, we can say that these metrics
differ significantly. We can observe strong linear correlation among them (Pearson values
are close or above 0.8) but since there are few equal values we can suspect that they differ
by a constant in most cases. The reasons can be, for example, that ckjm takes into account
“external” dependencies (e.g., classes from java.util) or it counts coupling based on gener-
ated elements too (e.g., generated default constructor), but further investigation would be
required to determine all causes.

CBOI: It counts those classes that use the given class. Although the basic statistics of OSA
and ckjm are close to each other, its pairwise comparison suggests that they are different
because there are large outliers and the averages of the diffs are commensurable with the
averages of the tools. Based on Equal, Cohen, and Pearson values, it seems that the metric
values of OSA and ckjm are close to each other but the metric values of Moose are different.
The main reason can be, for example, that OSA found two times more classes; therefore, it
is explicable that more classes use the given class or ckjm takes into account the generated
classes and connections as well that exist in the bytecode, but not in the source code.

RFC: All three tools defined this metric in the same way but the comparison shows that the
metric values are very different. The tools are able to calculate the same metric value for
less than 10% of the classes (Equal value) but the high or almost high Pearson correlation
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values indicate that there is some connection between the values. The reasons for this are
mainly the same as in case of the CBO metric.

DIT: Although the statistical values “hardly” differ compared to the previous ones, these
values are usually small (as the max. values show); therefore, these differences are quite
large. From the minimal values, we can see that Moose probably counts Object too as the
base class of all Java classes, while the other two tools neglect this. The only significant
connection among them is the very large Paerson correlation (0.969) between OSA and
Moose but its proper explanation would require a deeper investigation of the tools.

NOC: Regarding this metric, the three tools calculate very similar values. More than 95%
of the metric values are the same for each paring which is very good. On the other hand,
the remaining almost 5% of the values may differ significantly because the minimum and
maximum values of the differences are large compared with the absolute maximum metric
values and, at the same time, the Pearson correlation values are not extremely large, which
means that the 5% impairs it a lot.

LOC: Lines of code should be the most unambiguous metric, but it also differs a lot.
Although this metric has several variants and it is not defined exactly how Moose and ckjm
counts it, we used the closest one from OSA based on the metric values. The very large
value of ckjm is surprising, but it counts this value from the bytecode; therefore, it is not
easy to validate it. Besides, OSA and Moose have different values, in spite of the fact that
both of them calculate LOC from source code. The 0 minimal value of Moose is also inter-
esting and suggests that either Moose used a different definition or the algorithm was not
good enough. We found the fewest equal metric pairs for LOC metric (Equal values are
3.1%, 0.6%, 0.1%) but the large Pearson correlation values (close or above 0.9%) suggest
that the metrics differ mainly by a constant value only.

NPM: Based on the statistical results, the number of public methods metrics seems to be
the most unambiguous metric. Both the basic statistics and the Equal, Cohen, and Pearson
triplet imply that the metrics are close to each other. OSA and ckjm are really close to
each other (75% of the values are the same and the rest is also close to each other because
the Pearson correlation coefficient is 0.999), while Moose has slightly different results.
However, the average difference is around 1, which can be caused by counting implicit
methods (constructors, static init blocks) or not.

The comparison of the three tools revealed that, even though they calculate the same
metrics, in some cases, the results are very divergent. A few of the reasons can be that ckjm
calculates metrics from bytecode while the other two tools work on source code, or ckjm
takes into account external code as well while OSA does not. Besides, we could not compare
the detailed and precise definitions of the metrics to be sure that they are really calculated in
the same way; therefore, it is possible that they differ slightly which causes the differences.

4.7.2 File level metrics

Bugcatchers, Eclipse, and GitHub Bug Dataset are the ones that operate at file level (GitHub
Bug Dataset contains class level too). Unfortunately, we could make only pairwise compar-
isons between file level metrics, since we could not replicate the measurements used in the
Eclipse Bug Dataset (custom Eclipse JDT visitors were used) and in the Bugcatchers Bug
Dataset (unknown bad smell detector was used).
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In case of Bugcatchers Bug Dataset, we compared the results of OSA and the original
metrics which were produced by a code smell detector. Since OSA only calculates a narrow
set of file level metrics, Logical Lines of Code (LLOC) is the only metric we could use
in this comparison. Table 13 presents the result of this comparison. Min, max, and median
values are likely to be the same. Moreover, the average difference between LLOC values
is less than 1 with a standard deviation of 6.05 which could be considered insignificant
in case of LLOC at file level. Besides, more than 90% of the metric values are the same,
and the remaining values are also close because the Cohen’s d is almost 0 and the Pearson
correlation coefficient is very close to 1. This means that the two tools calculate almost the
same LLOC values.

There is an additional common metric (CLOC) which is not listed in Table 13 since
OSA returned 0 values for all the files. This possible error in OSA makes it superfluous to
examine CLOC in further detail.

In case of the Eclipse Bug Dataset, LLOC values are the same in most of the cases
(see Table 14). OSA counted one extra line in 10 cases out of 25,210 and once it missed 7
lines which is a negligible difference. This is the cause of the “perfect” statistical values.
Unfortunately, there is a serious sway in case of McCabe’s Cyclomatic Complexity. There
is a case where the difference is 299 in the calculated values, which is extremely high for
this metric. We investigated these cases and found that OSA does not include the number
of methods in the final value. There are many cases when OSA gives 1 as a result while
the Eclipse Visitor calculates 0 as complexity. This is because OSA counts class definitions
but not method definitions. There are cases where OSA provides higher complexity values.
It turned out that OSA took the ternary operator (?:) into consideration, which is correct,
since these statements also form conditions. Both calculation techniques seem to have some
minor issues or at least we have to say that the metric definitions of cyclomatic complexity
differ. This is why there are only so few matching values (4%) but the Cohen’s d and the
Pearson correlation coefficient suggest that these values are still related to each other.

The significant differences both at class and file levels show that tools interpret
and implement the definitions of metrics differently. Our results further strengthen the
conclusion reported by Lincke et al. (2008), who described similar findings.

5 Evaluation

In this section, we first evaluate the unified bug dataset’s basic properties like the number
of source code elements and the number of bugs to gain a rough overview of its contents.
Next, we show the metadata of the dataset like the used code analyzer or the calculated
metric set. Finally, we present an experiment in which we used the unified bug dataset for
its main purpose, namely for bug prediction. Our aim was not to create the best possible bug
prediction model, but to show that the dataset is indeed a usable source of learning data for
researchers who want to experiment with bug prediction models.

5.1 Datasets and Bug Distribution

Table 15 shows the basic properties about each dataset. In the SCE column, the number of
source code elements is presented. Based on the granularity, it means the number of classes
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Table 15 Basic properties of each dataset

Name Granularity SCE SCEwBug SCEwBug% #Bug kLLOC Bug/kLine

Ant 1.3 class 125 20 16.00% 33 33 1.00

Ant 1.4 class 178 40 22.47% 47 43 1.09

Ant 1.5 class 293 32 10.92% 35 72 0.49

Ant 1.6 class 351 92 26.21% 184 98 1.88

Ant 1.7 class 745 166 22.28% 338 116 2.91

Camel 1.0 class 339 13 3.83% 14 26 0.54

Camel 1.2 class 590 216 36.61% 522 47 11.11

Camel 1.4 class 841 145 17.24% 335 76 4.41

Camel 1.6 class 928 188 20.26% 500 99 5.05

Ckjm 1.8 class 9 5 55.56% 23 8 2.88

Forrest 0.6 class 6 1 16.67% 1 19 0.05

Forrest 0.7 class 29 5 17.24% 15 4 3.75

Forrest 0.8 class 32 2 6.25% 6 3 2.00

Ivy 1.4 class 241 16 6.64% 18 31 0.58

Ivy 2.0 class 352 40 11.36% 56 54 1.04

JEdit 3.2 class 272 90 33.09% 382 55 6.95

JEdit 4.0 class 306 75 24.51% 226 63 3.59

JEdit 4.1 class 312 79 25.32% 217 72 3.01

JEdit 4.2 class 367 48 13.08% 106 88 1.20

JEdit 4.3 class 492 11 2.24% 12 109 0.11

Log4J 1.0 class 135 34 25.19% 61 10 6.10

Log4J 1.1 class 109 37 33.94% 86 14 6.14

Log4J 1.2 class 205 189 92.20% 498 23 21.65

Lucene 2.0 class 194 91 46.91% 268 68 3.94

Lucene 2.2 class 246 144 58.54% 414 111 3.73

Lucene 2.4 class 340 203 59.71% 632 126 5.02

Pbeans 1 class 26 20 76.92% 36 3 12.00

Pbeans 2 class 51 10 19.61% 19 6 3.17

Poi 1.5 class 237 141 59.49% 342 63 5.43

Poi 2.0 class 314 37 11.78% 39 82 0.48

Poi 2.5 class 385 248 64.42% 496 94 5.28

Poi 3.0 class 442 281 63.57% 500 140 3.57

Synapse 1.0 class 157 16 10.19% 21 20 1.05

Synapse 1.1 class 222 60 27.03% 99 33 3.00

Synapse 1.2 class 256 86 33.59% 145 46 3.15

Velocity 1.4 class 196 147 75.00% 210 26 8.08

Velocity 1.5 class 213 141 66.20% 330 33 10.00

Velocity 1.6 class 228 78 34.21% 190 37 5.14

Xalan 2.4 class 723 110 15.21% 156 104 1.50

Xalan 2.5 class 803 387 48.19% 531 126 4.21

Xalan 2.6 class 885 411 46.44% 625 154 4.06

Xalan 2.7 class 909 898 98.79% 1,213 160 7.58

Xerces 1.2 class 440 71 16.14% 115 65 1.77
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Table 15 (continued)

Name Granularity SCE SCEwBug SCEwBug% #Bug kLLOC Bug/kLine

Xerces 1.3 class 453 69 15.23% 193 69 2.80

Xerces 1.4 class 547 396 72.39% 1,554 74 21.00

Lucene 2.4 class 670 63 9.40% 96 126 0.76

Mylyn 3.1 class 1,405 209 14.88% 296 166 1.78

PDE UI 3.4.1 class 1,492 208 13.94% 340 186 1.83

Equinox 3.4 class 319 126 39.50% 239 64 3.73

Eclipse
JDT
Core 3.4

class 997 206 20.66% 374 630 0.59

Apache
Com-
mons

file 191 84 43.98% 223 53 4.21

ArgoUML
0.26
Beta

file 1,579 192 12.16% 285 186 1.53

Eclipse
JDT
Core 3.1

file 535 310 57.94% 567 1,594 0.36

Eclipse 2.0 file 6,729 2,610 38.79% 7,635 792 9.64

Eclipse 2.1 file 7,888 2,139 27.12% 4,975 988 5.04

Eclipse 3.0 file 10,593 2,913 27.50% 7,422 1,307 5.68

Android
U. I. L.
1.7.0

class 73 20 27.40% 35 4 8.75

ANTLR v4 4.2 class 479 21 4.38% 27 40 0.68

Broadleaf
C.
3.0.10

class 1,593 292 18.33% 353 125 2.82

Eclipse
p. for
Ceylon
1.1.0

class 1,610 68 4.22% 104 112 0.93

Elasticsearch
0.90.11

class 5,908 678 11.48% 1,182 362 3.27

Hazelcast 3.3 class 3,412 380 11.14% 1,053 179 5.88

JUnit 4.9 class 731 35 4.79% 41 16 2.56

MapDB 0.9.6 class 331 40 12.08% 96 47 2.04

mcMMO 1.4.06 class 301 57 18.94% 114 23 4.96

MCT 1.7b1 class 1,887 9 0.48% 9 104 0.09

Neo4j 1.9.7 class 5,899 58 0.98% 60 328 0.18

Netty 3.6.3 class 1,143 271 23.71% 423 76 5.57

OrientDB 1.6.2 class 1,847 280 15.16% 494 184 2.68

Oryx class 533 74 13.88% 80 29 2.76

Titan 0.5.1 class 1,468 96 6.54% 106 80 1.33

Android
U. I. L.
1.7.0

file 63 18 28.57% 33 4 8.25
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Table 15 (continued)

Name Granularity SCE SCEwBug SCEwBug% #Bug kLLOC Bug/kLine

ANTLR v4 4.2 file 411 41 9.98% 59 40 1.48

Broadleaf
C.
3.0.10

file 1,719 286 16.64% 350 125 2.80

Eclipse
p. for
Ceylon
1.1.0

file 699 57 8.15% 94 112 0.84

Elasticsearch
0.90.11

file 3,035 487 16.05% 899 362 2.48

Hazelcast 3.3 file 2,228 317 14.23% 911 179 5.09

JUnit 4.9 file 308 42 13.64% 50 16 3.13

MapDB 0.9.6 file 137 22 16.06% 59 47 1.26

mcMMO 1.4.06 file 267 57 21.35% 114 23 4.96

MCT 1.7b1 file 413 6 1.45% 6 104 0.06

Neo4j 1.9.7 file 3,278 32 0.98% 33 328 0.10

Netty 3.6.3 file 913 243 26.62% 381 76 5.01

OrientDB 1.6.2 file 1,503 270 17.96% 493 184 2.68

Oryx file 280 44 15.71% 48 29 1.66

Titan 0.5.1 file 975 70 7.18% 80 80 1.00

or files in the system. There are systems in the datasets with a wide variety of size from
2,636 Logical Lines of Code (LLOC)8 up to 1,594,471.

SCEwBug means the number of source code elements which have at least one bug;
SCEwBug% is the percentage of the source code elements with bugs in the dataset. The
SCEwBug% as the percentage of buggy classes or files describes how well-balanced the
datasets are. Since it is difficult to overview the numbers, Figs. 1 and 2 show the distribu-
tion of the percentages of faulty source code elements (SCEwBug%) for classes and files,
respectively. The percentages are shown horizontally, and, for example, the first column
means the number of systems (part of a dataset) that have between 0 and 10 percentages
of their source code elements buggy (0 included, 10 excluded). In case of the systems that
give bug information at class level, this number is 11 (5 at file level). We can see that there
are systems where the percentages of the buggy classes are very high, for example, 98.79%
of the classes are buggy for Xalan 2.7 or 92.20% for Log4J 1.2. Although the upper limit
of SCEwBug% is 100%, the reader may feel that these values are extremely high and it is
very difficult to believe that a release version of a system can contain so many bugs. The
other end is when a system hardly contains any bug, for example, in case of MCT and
Neo4j, less than 1% of the classes is buggy. From the project point of view, it is very good
but on the other hand, these systems are probably less usable when we want to build bug
prediction models. This phenomenon further strengthens the motivation to have a common
unified bug dataset which can blur these extreme outliers. Although there are many systems
with extremely high or low SCEwBug% values, we used them “as is” later in this research
because their validation was not the aim of this work.

8Lines of code not counting comments and whitespace.
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Fig. 1 Fault distribution (classes)

5.2 Meta data of the Datasets

Table 16 lists some properties of the datasets, which show the circumstances of the dataset,
rather than the data content. Our focus is on how the datasets were created, how reliable the
used tools and the applied methods were. Since most of the information in the table was
already described in previous sections (Analyzer, Granularity, Metrics, and Release), in this
section, we will describe only the Bug information row.

The Bug Prediction Dataset used the commit logs of SVN and the modification time of
each file in CVS to collect co-changed files, authors, and comments. Then, they D’Ambros
et al. (2010) linked the files with bugs from Bugzilla and Jira using the bug id from the
commit messages. Finally, they verified the consistency of timestamps. They filtered out
inner classes and test classes.

The PROMISE dataset used Buginfo to collect whether an SVN or CVS commit is a
bugfix or not. Buginfo uses regular expressions to detect commit messages which contain
bug information.
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Fig. 2 Fault distribution (files)
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The bug information of the Eclipse Bug Dataset was extracted from the CVS repository
and Bugzilla. In the first step, they identified the corrections or fixes in the version history by
looking for patterns which are possible references to bug entries in Bugzilla. In the second
step, they mapped the bug reports to versions using the version field of the bug report. Since
the version of a bug report can change during the life cycle of a bug, they used the first
version.

The Bugcatchers Bug Dataset followed the methodology of Zimmermann et al. (Eclipse
Bug Dataset). They developed an Ant script using the SVN and CVS plugins of Ant to
checkout the source code and associate each fault with a file.

The authors of the GitHub bug dataset gathered the relevant versions to be analyzed
from GitHub. Since GitHub can handle references between commits and issues, it was quite
handy to use this information to match commits with bugs. They collected the number of
bugs located in each file/class for the selected release versions (about 6-month-long time
intervals).

5.3 Bug Prediction

We evaluated the strength of bug prediction models built with the Weka (Hall et al. 2009)
machine learning software. For each subject software system in the Unified Bug Dataset,
we created 3 versions of ARFF files (which is the default input format of Weka) for the
experiments (containing only the original, only OSA, and both set of metrics as predictors).
In these files, we transformed the original bug occurrence values into two classes as follows:
0 bug → non buggy class, at least 1 bug occurrence → buggy class. Using these ARFF files,
we could run several tests about the effectiveness of fault prediction models built based on
the dataset.

5.3.1 Within-project Bug Prediction

As described in Section 4, we extended the original datasets with the source code metrics of
the OSA tool and we created a unified bug dataset. We compared the bug prediction capa-
bilities of the original metrics, the OSA metrics, and the extended metric suite (both metric
suites together). First, we handled each system individually, so we trained and tested on
the same system data using ten-fold cross-validation. To build the bug prediction models,
we used the J48 (C4.5 decision tree) algorithm with default parameters. We used only J48
since we did not focus on finding the best machine learning method, but we rather wanted
to show a comparison of the different predictors’ capabilities with this one algorithm. We
chose J48, because it has shown its power in case of the GitHub Bug Dataset (Tóth et al.
2016) and because it is relatively easy to interpret the resulting decision trees and to identify
the subset of metrics which are the most important predictors of bugs. Different machine
learning algorithms (e.g., neural networks) might provide different results. It is also impor-
tant to note that we did not use any sampling technique to balance the datasets, we used the
datasets ‘as is’. We will outline some connections between the machine learning results and
the characteristics of the datasets (e.g., SCEwBug%).

The F-measure9 results can be seen in Table 17 for classes and in Table 18 for files. We
also included the SCEwBug% characteristic of each dataset to gain a more detailed view

9F-measure is the harmonic mean of precision and recall.
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Table 17 F-Measure and AUC values in independent training at class level

Original OSA Merged

Dataset F-Measure AUC F-Measure AUC F-Measure AUC SCEwBug%

Eclipse
JDT
Core 3.4

0.665 0.687 0.819 0.699 0.817 0.637 9.40

Equinox 3.4 0.727 0.711 0.764 0.793 0.790 0.798 14.88

Lucene
2.4 BPD

0.891 0.635 0.878 0.611 0.879 0.443 13.94

Mylyn 3.1 0.932 0.635 0.806 0.600 0.813 0.610 39.50

PDE UI 3.4.1 0.856 0.638 0.820 0.608 0.816 0.592 20.66

Ant 1.3 0.799 0.603 0.846 0.747 0.827 0.707 16.00

Ant 1.4 0.724 0.681 0.717 0.603 0.726 0.616 22.47

Ant 1.5 0.887 0.579 0.854 0.562 0.871 0.571 10.92

Ant 1.6 0.775 0.665 0.752 0.704 0.745 0.663 26.21

Ant 1.7 0.794 0.727 0.788 0.652 0.788 0.654 22.28

Camel 1.0 0.943 0.433 0.946 0.494 0.932 0.391 3.83

Camel 1.2 0.626 0.624 0.673 0.627 0.686 0.647 36.61

Camel 1.4 0.805 0.637 0.806 0.594 0.814 0.612 17.24

Camel 1.6 0.744 0.597 0.767 0.628 0.776 0.661 20.26

Ckjm - - - - - - 55.56

Forrest 0.6 - - - - - - 16.67

Forrest 0.7 0.793 0.737 0.676 0.279 0.676 0.320 17.24

Forrest 0.8 0.891 0.900 0.907 0.100 0.907 0.700 6.25

Ivy 1.4 0.897 0.493 0.915 0.547 0.899 0.511 6.64

Ivy 2.0 0.855 0.624 0.835 0.517 0.847 0.585 11.36

Jedit 3.2 0.727 0.695 0.703 0.710 0.724 0.689 33.09

Jedit 4.0 0.774 0.662 0.766 0.655 0.780 0.654 24.51

Jedit 4.1 0.747 0.640 0.778 0.698 0.781 0.753 25.32

Jedit 4.2 0.866 0.634 0.847 0.650 0.849 0.631 13.08

Jedit 4.3 0.967 0.469 0.965 0.620 0.780 0.608 2.24

Log4J 1.0 0.776 0.637 0.835 0.759 0.781 0.687 25.19

Log4J 1.1 0.739 0.681 0.743 0.718 0.849 0.696 33.94

Log4J 1.2 0.892 0.621 0.885 0.421 0.963 0.495 92.20

Lucene 2.0 0.610 0.571 0.659 0.635 0.634 0.626 46.91

Lucene 2.2 0.584 0.631 0.655 0.657 0.661 0.638 58.54

Lucene 2.4 0.698 0.689 0.656 0.688 0.663 0.676 59.71

Pbeans 1 0.813 0.633 0.769 0.741 0.813 0.779 76.92

Pbeans 2 0.727 0.565 0.686 0.503 0.740 0.553 19.61

Poi 1.5 0.743 0.744 0.753 0.747 0.782 0.778 59.49

Poi 2.0 0.851 0.465 0.841 0.729 0.831 0.576 11.78

Poi 2.5 0.787 0.792 0.809 0.788 0.789 0.791 64.42

Poi 3.0 0.768 0.763 0.768 0.768 0.764 0.759 63.57

Synapse 1.0 0.830 0.524 0.843 0.531 0.839 0.576 10.19

Synapse 1.1 0.758 0.683 0.767 0.717 0.749 0.672 27.03
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Table 17 (continued)

Original OSA Merged

Dataset F-Measure AUC F-Measure AUC F-Measure AUC SCEwBug%

Synapse 1.2 0.738 0.670 0.734 0.677 0.733 0.663 33.59

Velocity 1.4 0.827 0.744 0.824 0.733 0.856 0.796 75.00

Velocity 1.5 0.706 0.660 0.728 0.696 0.778 0.742 66.20

Velocity 1.6 0.703 0.649 0.774 0.783 0.748 0.730 34.21

Xalan 2.4 0.802 0.621 0.807 0.645 0.794 0.562 15.21

Xalan 2.5 0.654 0.648 0.693 0.686 0.699 0.718 48.19

Xalan 2.6 0.751 0.747 0.730 0.707 0.747 0.750 46.44

Xalan 2.7 0.994 0.654 0.992 0.820 0.992 0.745 98.79

Xerces 1.2 0.815 0.716 0.824 0.683 0.823 0.716 16.14

Xerces 1.3 0.860 0.629 0.837 0.625 0.836 0.743 15.23

Xerces 1.4 0.938 0.904 0.804 0.815 0.932 0.935 72.39

Average 0.793 0.653 0.793 0.646 0.798 0.656 -

Android U. I.
L. 1.7.0

0.749 0.657 0.742 0.677 - - 27.40

ANTLR v4 4.2 0.944 0.618 0.922 0.555 - - 4.38

Broadleaf
C.
3.0.10

0.898 0.826 0.881 0.796 - - 18.33

Eclipse p. for
Ceylon 1.1.0

0.942 0.611 0.939 0.586 - - 4.22

Elasticsearch
0.90.11

0.871 0.645 0.874 0.683 - - 11.48

Hazelcast 3.3 0.876 0.693 0.878 0.658 - - 11.14

jUnit 4.9 0.927 0.579 0.928 0.624 - - 4.79

MapDB 0.9.6 0.911 0.659 0.886 0.673 - - 12.08

mcMMO
1.4.06

0.791 0.593 0.776 0.568 - - 18.94

MCT 1.7b1 0.993 0.480 0.993 0.478 - - 0.48

Neo4j 1.9.7 0.985 0.494 0.985 0.486 - - 0.98

Netty 3.6.3 0.809 0.699 0.802 0.699 - - 23.71

OrientDB 1.6.2 0.868 0.687 0.862 0.715 - - 15.16

Oryx 0.889 0.764 0.898 0.725 - - 13.88

Titan 0.5.1 0.922 0.696 0.926 0.706 - - 6.54

Average 0.892 0.647 0.886 0.642 - -

of the results. The tables contain two average values since the GitHub Bug Dataset used
SourceMeter, which is based on OSA to calculate the metrics.

The results of OSA and the Merged metrics would be the same. This could distort the
averages, so we decided to detach this dataset from others when calculating the averages.
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Table 18 F-Measure and AUC values in independent training at file level

Original OSA Merged

Dataset F-Measure AUC F-Measure AUC F-Measure AUC SCEwBug%

Apache
Com-
mons

0.779 0.733 0.454 0.536 0.712 0.778 43.98

Argo
UML
0.26
Beta

0.899 0.730 0.832 0.677 0.880 0.719 12.16

Eclipse JDT
Core 3.1

0.827 0.657 0.528 0.567 0.638 0.658 57.94

Eclipse 2.0 0.682 0.654 0.670 0.713 0.694 0.660 38.79

Eclipse 2.1 0.749 0.623 0.750 0.711 0.745 0.639 27.12

Eclipse 3.0 0.728 0.597 0.735 0.694 0.727 0.603 27.50

Average 0.777 0.666 0.662 0.650 0.733 0.676 -

Android U. I.
L. 1.7.0

0.611 0.484 0.624 0.654 - - 28.57

ANTLR v4 4.2 0.900 0.795 0.849 0.753 - - 9.98

Broadleaf
C.
3.0.10

0.862 0.759 0.823 0.795 - - 16.64

Eclipse p. for
Ceylon 1.1.0

0.879 0.639 0.874 0.574 - - 8.15

Elasticsearch
0.90.11

0.775 0.669 0.778 0.678 - - 16.05

Hazelcast 3.3 0.829 0.688 0.796 0.626 - - 14.23

jUnit 4.9 0.800 0.585 0.801 0.592 - - 13.64

MapDB 0.9.6 0.784 0.686 0.766 0.654 - - 16.06

mcMMO
1.4.06

0.731 0.669 0.794 0.614 - - 21.35

MCT 1.7b1 0.977 0.291 0.978 0.551 - - 1.45

Neo4j 1.9.7 0.985 0.474 0.985 0.474 - - 0.98

Netty 3.6.3 0.677 0.700 0.732 0.762 - - 26.62

OrientDB
1.6.2

0.739 0.759 0.751 0.722 - - 17.96

Oryx 0.771 0.467 0.861 0.735 - - 15.71

Titan 0.5.1 0.894 0.498 0.894 0.498 - - 7.18

Average 0.814 0.611 0.820 0.646 - - -

Results for classes need some deeper explanation for clear understanding. There are a
few missing values, since there were less than 10 data entries; not enough to do the ten-fold
cross-validation on (Ckjm and Forrest-0.6).

There are some outstanding numbers in the tables. Considering Xalan 2.7, for example,
we can see F-measure values with 0.992 and above. This is the consequence of the distribu-
tion of the bugs in that dataset which is extremely high as well (98.79%). The reader could
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argue that resampling the dataset would help to overcome this deficiency; however, the cor-
responding AUC value10 for the Original dataset is not outstanding (only 0.654). Besides,
later in this section, we will investigate the bug prediction capabilities of the datasets in a
cross-project manner and it turns out that these extreme outliers generally performed poor
in cross-project learning as we will describe it later in detail. Let us consider Forrest 0.8
as an example where the SCEwBug% is low (6.25); however, the F-measure values are still
high (0.891-0.907). In this case, the high values came from the fact that there are 32 classes
out of which only 2 are buggy, so the decision tree tends to mark all classes as non buggy.
On the other hand, the AUC values range from very poor (0.100) to very high (0.900) which
suggest that for small examples and small number of bugs, it is difficult build “reliable”
models.

The averages of F-measure and AUC slightly change in case of class level datasets and
the average of the merged dataset is only slightly better than the Original or the OSA. If
we consider F-measure, the GitHub Bug Dataset performed 10% better generally, while
the averages of UAC decreased by only 1% which is neglectable. One possible explanation
can be that the PROMISE dataset includes all the smaller projects, while the GitHub Bug
Dataset and the Bug Prediction Dataset rather contain larger projects.

Small differences in case of the GitHub Bug Dataset come from the difference of the
versions of the static analyzers. The SourceMeter version used in creating the GitHub
Bug Dataset is older than the OSA version used here, in which some metric calculation
enhancements took place. (SourceMeter is based on OSA.)

Results at file level are quite similar to class level results in terms of F-measure and
AUC. The only main difference is that the F-measure averages of OSA for Bugcatchers and
Eclipse bug datasets are notably smaller than the other values. The reason for this might
be that there are only a few file level metrics provided by OSA, and a possible contradic-
tion in metrics can decrease the training capabilities (we saw that even LLOC values are
very different). On the other hand, the corresponding AUC value is close to the others so
deeper investigation is required to find out the causes. Besides, the average F-measure of the
Merged model is slightly worse while the average AUC is slightly better than the Original
which means that in this case the OSA metrics were not able to improve the bug prediction
capability of the model. The small difference between the Original and the OSA results in
case of the GitHub Bug Dataset comes from the slightly different metric suites, since OSA
calculates the Public Documented API (PDA) and Public Undocumented API (PUA) met-
rics as well. Furthermore, the aforementioned static analyzer version differences also caused
this small change in the average F-measure and AUC values.

5.3.2 Merged Dataset Bug Prediction

So far, we compared the bug prediction capabilities of the old and new metric suites on the
systems separately, but we have not used its main advantage, namely, there are metrics that
were calculated in the same way for all systems (OSA metric suite). Seeing the results of
the within-project bug prediction, we can state that creating a larger dataset, which includes
projects varying in size and domain, could lead to a more general dataset with increased
usability and reliability. Therefore, we merged all classes (and files) into one large dataset
which consists of 47,618 elements (43,744 for files) and by using 10-fold cross validation,

10AUC is the area under the ROC curve, which is a measure of how well a parameter can distinguish between
two diagnostic groups.
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Table 19 Most dominant predictors per dataset

Dataset Level Dominant predictors

Bug Prediction Dataset class wmc, TNOS, cvsEntropy

GitHub Bug Dataset class WMC, NOA, TNOS

PROMISE class LOC, DIT, TNM

Unified Bug Dataset class CLOC, TCLOC, CBO, NOI, DIT

Bugcatchers Bug Dataset file code, PDA, SpeculativeGenerality

GitHub Bug Dataset file McCC, NumOfPrevMods, NumOfDevCommits

Eclipse Bug Dataset file TypeLiteral, NSF max, MLOC sum

Unified Bug Dataset file LOC, McCC

we evaluated the bug prediction model built by J48 on this large dataset as well. The F-
measure is 0.818 for the classes and 0.755 for the files while the AUC is 0.721 for classes
and 0.699 for files. Although the F-measure values are, for example, a little worse than the
average of GitHub results (0.892 for classes and 0.820 for files), the AUC values are better
than the best averages (0.656 for class and 0.676 for files) even if they were measured on a
much larger and very heterogeneous dataset.

After training the models at class and file levels, we dug deeper to see which predictors
are the most dominant ones. Weka gives us pruned trees as results both at class and file
levels. A pruned tree is a transformed one obtained by removing nodes and branches without
affecting the performance too much. The main goal of the pruning is to reduce the risk of
overfitting. We not only constructed a Unified Bug Dataset for all of the systems together
with the unified set of metrics, but we also built one for each collected dataset, one for the
Bug Prediction Dataset, one for the PROMISE dataset, etc. in which we could use a wider
set of metrics (including the original ones).

Table 19 presents the most dominant metrics for the datasets extracted from the con-
structed decision trees. We marked those metrics with bold face that occur in multiple
datasets. At class level, WMC (Weighted Methods per Class) and TNOS (Total Number
of Statements) are the most important ones; however, they happened not to be the most
dominant ones in the Unified Bug Dataset.

Regarding the Unified Bug Dataset, we found CLOC, TCLOC (comment lines of code
metrics), DIT (Depth of Inheritance), CBO (Coupling Between Objects) and NOI (Number
of Outgoing Invocations) as the most dominant metrics at class level. In other words, these
metrics have the largest entropy. This set of metrics being the most dominant is reasonable,
since it is easier to modify and extend classes that have better documentation. Furthermore,
coupling metrics such as CBO and NOI have already demonstrated their power in bug pre-
diction (Gyimóthy et al. 2005b; Briand et al. 1999). DIT is also an expressive metric for
fault prediction (El Emam et al. 2001).

At file level, the most dominant predictors in the different datasets show overlapping
with the ones being dominant in the Unified Bug Dataset. LOC (Lines of Code) and McCC
(McCabe’s Cyclomatic Complexity) were the upmost variables to branch on in the deci-
sion tree. These two metrics are reasonable as well, since the larger the file, the more
it tends to be faulty. Complexity metrics are also important factors to include in fault
prediction (Zimmermann et al. 2007).

The diversity of the most dominant metrics shows the diversity of the different datasets
themselves.
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5.3.3 Cross-project Bug Prediction

As a third experiment, we trained a model using only one system from a dataset and tested
it on all systems in that dataset. This experiment could not have been done without the uni-
fication of the datasets, since a common metric suite is needed to perform such machine
learning tasks. The result of the cross training is an NxN matrix where the rows and the
columns of the matrix are the systems of the dataset and the value in the ith row and jth col-
umn shows how well the prediction model performed, which was trained on the ith system
and was evaluated on the jth one.

We used the OSA metrics to test this criterion, but the bug occurrences are derived from
the original datasets which are transformed into buggy and non buggy labels. The matrix for
the whole Unified Bug Dataset would be too large to show here; thus, we will only present
submatrices (the full matrices for file and class levels are available in the Appendix). A
submatrix for the PROMISE dataset can be seen in Tables 20 and 21. Only the first version
is presented for each project except for the ones where an other version has significantly
different prediction capability (for example, Xalan 2.7 is much worse than 2.4 or Pbeans 2
is much better than 1). The values of the matrix are F-measure and AUC values, provided
by the J48 algorithm. Avg. F-m. and Avg. AUC columns11 present the average of the F-
measures and AUC values the given model achieved on the other systems. For a better
overview, we repeat SCEwBug% value here as well (see Table 15).

We can observe (see Table 20) that models built on systems (highlighted bold in the table)
having lots of buggy classes (more than 70%) performed very poor in the cross validation
if we consider the average F-measure (the values are under 0.4). Even more, these models
do not work well on other very buggy systems either, for example, model trained on Xalan
2.7 (the most buggy system) achieved only 0.078 F-measure on Log4J 1.2 (the second most
buggy system). Besides, in case of Ckjm 1.8, Lucene 2.2, and Poi 1.5, the rate of buggy
classes is between 50 and 70 percent, and their models are still weak, the average F-measure
is between 0.4 and 0.6 only. And finally, the other systems can be used to build such models
that achieve better result, namely higher F-measures, on other systems, even the ones hav-
ing lots of bugs. On the other hand, this trend cannot be observed on the AUC values (see
Table 21), because they range between 0.483 and 0.629 but there is no “white line” which
means that there is no model whose performance is very poor for all other systems. How-
ever, there are 0.000 and 0.900 AUC values in the table that suggest that the bug prediction
capabilities heavily depend on the training and testing dataset. For example, models evalu-
ated on Forrest 0.6 have extreme values, and it is probably only a matter of luck whether the
model takes into account the appropriate metrics or not.

Table 22 shows the cross training F-measure values for the GitHub Bug Dataset. Testing
on Android Universal Image Loader is the weakest point in the matrix, as it is clearly visible.
However, the values are not critical, the lowest value is still 0.611. Based on F-measure,
Elasticsearch performed slightly better than the others in the role of a training set. This might
be because of the size of the system, the average amount of bugs, and the adequate number
of entries in the dataset. On the other hand, the AUC values in the column of Android
Universal Image Loader are not significantly worse than any other value (see Table 23),
but rather the values in its row seems a little bit lower. From AUC point of view, Mission
Control T. is the most critical test system because it has the lowest (0.181) and the highest

11We present the average values only for PROMISE dataset because it contains extremely low values, namely
almost white lines.
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(0.821) AUC values. The reason can be the same as for Forrest 0.6. In general, the AUC
values are very diverse ranging from 0.181 to 0.821, and the average is 0.548.

Tables 24 and 25 show the F-measure and AUC values of cross training for the Bug
Prediction Dataset. Based on F-measure, Eclipse JDT Core passed the other systems in
terms of training but its AUC values, or at least the first two, seem worse than the others.
Equinox performed the worst in the role of being a training set, i.e., having the lowest F-
values, but from AUC point of view, Equinox is the most difficult test set because 3 out of
4 of its AUC values are much worse than the average. From testing and training, and from
F-measure and AUC value point of view, Mylyn is the best system.

The above described results were calculated for class level datasets. Let us now consider
the file level results. The three file level datasets are the GitHub, the Bugcatchers, and the
Eclipse bug datasets.

The GitHub Bug Dataset results can be seen in Tables 26 and 27. As in the case of class
level, the Android Universal Image Loader project performed the worst in the role of being
the test set based on F-measure and the worst system for building models (low AUC values).
It would be difficult to select the best system, but the Mission Control T. system is the most
critical test system again because it has the lowest and highest AUC values.

The cross-training results of the Bugcatchers Bug Dataset are listed in Tables 28 and 29.
The table contains 3 high and 3 low F-measure values and they range in a wide scale from
0.234 to 0.800 while the AUC values are much closer to each other (0.500−0.606). Since
only three systems are used and there is no significantly best or worst system, we cannot
state any conclusion based on these results.

In the Eclipse Bug Dataset, there are only three systems as well but they are three differ-
ent versions of the same system, namely Eclipse; therefore, we expected better results. As
we can see in Tables 30 and 31, in this case, the F-measure and AUC values coincide which
means that either both of them are high or both of them are low. The model built on version
2.0 performed better (0.705 and 0.700 F-measures and 0.723 and 0.708 AUC values) on the
other two systems than the models built on the other two systems and evaluated on version
2.0 (0.638 and 0.604 F-measures and 0.639 and 0.633 AUC values). This is perhaps caused
by the fact that this version contains the least number of bug entries. The other two systems
are “symmetrical”, the results are almost the same when one is the train and the other one
is the test system.

We also performed a full cross-system experiment involving all systems from all datasets.
This matrix is, however, too large to present here; consequently, it can be found in the
Appendix and Tables 32 and 33 show only the average of the F-measures and AUC val-
ues of the models performed on other datasets. More precisely, we trained a model using
each system separately and tested this model on the other systems, and we calculated the
averages of the F-measures and AUC values to see how they perform on other datasets.
For example, we can see that the average F-measures of the models trained and tested on
PROMISE is only 0.607 while if these models are validated on GitHub dataset the average
is 0.729. Examining F-measures, we can see that in general, models trained on PROMISE
dataset perform the worst, and what is surprising is that they gave the worst result (0.607) on
themselves. On the other hand, if we consider AUC values, the model trained on PROMISE
achieved the best result on PROMISE (0.554 vs 0.544). This means that in this case AUC
values do not help us to select the best or worst predictor/test dataset or even compare the
results. Another interesting observation is that the models perform better on GitHub dataset
no matter which dataset was used for training (GitHub column). On the other hand, GitHub
models achieve only slightly worse F-measures on the other datasets than the best one on
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Table 28 Cross training (Bugcatchers - File level) - F-Measure values

Train/Test Apache ArgoUML Eclipse JDT Core 3.1

Apache 0.800 0.676

ArgoUML 0.436 0.665

Eclipse JDT Core 3.1 0.388 0.234

Table 29 Cross training (Bugcatchers - File level) - AUC values

Train/Test Apache ArgoUML Eclipse JDT Core 3.1

Apache 0.541 0.519

ArgoUML 0.563 0.606

Eclipse JDT Core 3.1 0.500 0.588

Table 30 Cross training (Eclipse - File level) - F-Measure values

Train/Test Eclipse 2.0 Eclipse 2.1 Eclipse 3.0

Eclipse 2.0 0.705 0.700

Eclipse 2.1 0.638 0.725

Eclipse 3.0 0.604 0.676

Table 31 Cross training (Eclipse - File level) - AUC values

Train/Test Eclipse 2.0 Eclipse 2.1 Eclipse 3.0

Eclipse 2.0 0.723 0.708

Eclipse 2.1 0.639 0.700

Eclipse 3.0 0.633 0.702

Table 32 Average F-measures of the full cross-system experiment (class level)

Train/Test GitHub PROMISE Bug prediction

GitHub 0.842 0.678 0.727

PROMISE 0.729 0.607 0.617

Bug prediction 0.815 0.680 0.742

Table 33 Average AUC values of the full cross-system experiment (class level)

Train/Test GitHub PROMISE Bug prediction

GitHub 0.548 0.544 0.562

PROMISE 0.552 0.554 0.557

Bug Prediction 0.555 0.541 0.555
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Table 34 Average F-measures of the full cross-system experiment (file level)

Train/Test GitHub Bugcatchers Eclipse

GitHub 0.786 0.613 0.583

Bugcatchers 0.654 0.533 0.529

Eclipse 0.769 0.660 0.675

the given dataset (0.678 vs 0.680 on PROMISE and 0.727 vs 0.742 on Bug pred.), which
suggests that the good testing results are not a consequence of some unique feature of the
dataset because it can also be used to train “portable” bug prediction models.

Table 34 shows the average F-measures for the file level datasets. We can observe a sim-
ilar trend, namely, all models performed the best on GitHub dataset. Besides, the results of
Bugcatchers on itself is poor and the other two bug prediction models sets performed bet-
ter on it. On the other hand, the AUC values do not support this observation (see Table 35).
Compared with class level, the AUC values range on a wider scale, from 0.525 to 0.684,
and suggest that the Eclipse is the best dataset for model building and this observation is
supported by the F-measures as well.

To sum up the previous findings based on the full cross-system experiment, it may seem
like file level models performed slightly better than class level predictors because the aver-
age F-measure is 0.717 and the average AUC value is 0.594 for files while they are only
0.661 and 0.552 for classes. On the other hand, this might be the result of the fact that we
saw that several systems of PROMISE contain too many bugs; therefore, they cannot be
used alone to build sophisticated prediction models. Another remarkable result is that all
models performed notably better on GitHub dataset, which requires further investigation in
the future.

6 Threats to validity

First of all, we accepted the collected datasets “as is”, which means that we did not validate
the data, we just used them to create the unified dataset and to examine the bug prediction
capabilities of the different bug datasets. Since the bug datasets did not contain the source
code, neither a step-by-step instruction on how to reproduce the bug datasets, we had to
accept them, even if there were a few notable anomalies in them. For example, Camel 1.4
contains classes with LOC metrics of 0; in the Bugcatchers dataset, there are two Mes-
sageChains metrics and in several cases, the two metric values are different; or there are
more datasets with extreme SCEwBug% (buggy classes percentage) values (more than 90%
high or less than 1% low).

Table 35 Average AUC values of the full cross-system experiment (file level)

Train/Test GitHub Bugcatchers Eclipse

GitHub 0.587 0.525 0.585

Bugcatchers 0.579 0.553 0.612

Eclipse 0.661 0.564 0.684
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Although the version information was available for each system, in some cases, there
were notable differences between the result of OSA and the original result in the corre-
sponding bug dataset. Even if the analyzers would parse the classes in different ways, the
number of files should have been equal. If the analysis result of OSA contains the same
number of elements or more, and (almost) all elements from the corresponding bug dataset
could be paired, we can say that the unification is acceptable, because all elements of the
bug dataset were put into the unified dataset. On the other hand, for a few systems, we could
not find the proper source code version and we had to leave out a negligible number of
elements from the unified dataset.

Many systems were more than 10 years old when the actual Java version was 1.4 and
these systems were analyzed according to that standard. The Java language has evolved a lot
since then and we analyzed all systems according to the latest standard, which might have
caused minor but negligible mistakes in the analysis results.

In Section 4.7, we used ckjm 2.2 to analyze the projects included in the Bug Prediction
Dataset. We chose version 2.2 since the original paper did not mark the exact version of
ckjm (D’Ambros et al. 2010); consequently, we experimented with different ckjm versions
(1.9, 2.0, 2.1, 2.2) and we experienced version 2.2 to be the best candidate, since it produced
the smallest differences in metric values compared with the original metric values in the
Bug Prediction Dataset.

We used a heuristic method based on name matching to conjugate the elements of the
datasets. Although there were cases where the conjugation was unsuccessful, we examined
these cases manually and it turned out that the heuristics worked well and the cause of the
problem originated from the differences of the two datasets (all cases are listed in Section 3).
We examined the successful conjugations as well and all of them were correct. Even though
the heuristics could not handle elements having the same name during the conjugation, only
a negligible amount of such cases happened.

Even when the matching heuristics worked well, the same class name could have differ-
ent meanings in different datasets. For example, OSA handles nested, local, and anonymous
classes as different elements, while other datasets did not take into account such elements.
Even more, the whole file was associated with its public class. This way, a bug found in a
nested or inner class is associated with the public class in the bug datasets, but during the
matching, this bug will be associated with the wrong element of the more detailed analysis
result of OSA.

7 Conclusion and future work

There are several public bug datasets available in the literature, which characterize the
bugs with static source code metrics. Our aim was to create one public unified bug
dataset, which contains all the publicly available ones in a unified format. This dataset can
provide researchers real value by offering a rich bug dataset for their new bug prediction
experiments.

We considered five different public bug datasets: the PROMISE dataset, the Eclipse Bug
Dataset, the Bug Prediction Dataset, the Bugcatchers Bug Dataset, and the GitHub Bug
Dataset. We gave detailed information about each dataset, which contains, among others,
their size, enumeration of the included software systems, used version control, and bug
tracking systems.
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We developed and executed a method on how to create the unified set of bug data, which
encapsulates all the information that is available in the datasets. Different datasets use dif-
ferent metric suites; hence, we collected the Java source code for all software systems of
each dataset, and analyzed them with one particular static source code analyzer (OpenStati-
cAnalyzer) in order to have a common and uniform set of code metrics (bug predictors) for
every system. We constructed the unified bug dataset from the gathered public datasets at
file and class level and made this unified bug dataset publicly available to anyone for future
use.

We investigated the possible differences between the calculated metric values. For this
purpose, we ran the ckjm analyzer tool on the Bug Prediction Dataset in order to have all
the metrics from different metric suites. Then, we selected the source code elements which
were identified by all three static analyzers. For this subset of source code elements, we
calculated the pairwise differences and provided basic statistics for these differences as well.
We performed the same steps for the Bugcatchers and the Eclipse bug datasets at file level.
To see if there is any statistically significant difference, we applied a pairwise Wilcoxon
signed-rank test. We experienced statistically significant differences in all cases except in
the case of NOC (at class level between Moose and ckjm) and LLOC (at file level between
OSA and Eclipse).

We evaluated the datasets according to their meta data and functional criteria. Metadata
analysis includes the investigation of the used static analyzer, granularity, bug tracking and
version control system, and the set of used metrics. As functional criteria, we compared
the bug prediction capabilities of the original metrics, the unified ones, and both together.
We used the J48 decision tree algorithm from Weka to build and evaluate bug prediction
models per project (within-project learning) in the unified bug dataset. Next, we united the
contents of the datasets both at file (43,744 elements) and class level (47,618 elements),
and evaluated the bug prediction capabilities of this united dataset. This large dataset blurs
the deficiencies of the smaller datasets (for example, datasets with more than 90% of buggy
source elements). As an additional functional criterion, we used different software systems
for training and for testing the models, also known as cross-project training. We performed
this step on all the systems of the various datasets. Our experiments showed that the unified
bug dataset can be used effectively in bug prediction.

We encourage researchers to use this large and public unified bug dataset in their exper-
iments and we also welcome new public bug datasets. As a future work, we would like to
keep this unified dataset up-to-date and extend it with newer public datasets (i.e., Had-oops
dataset (Harman et al. 2014), Mutation bug dataset Bowes et al. 2016) and others, which
will be published in the future.
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Appendix

The Unified Bug Dataset 1.2 which was created during this work is available as an online
appendix at: https://doi.org/10.5281/zenodo.3693685 and at http://www.inf.u-szeged.hu/
∼ferenc/papers/UnifiedBugDataSet

The UnifiedBugDataset-1.2.zip file contains

– the original bug datasets in their original form,
– the list of projects contained in each dataset,
– the source code of the systems that was used to develop the datasets,
– the unified dataset in CSV and ARFF format at file/class level,
– the dataset containing only the results of OpenStaticAnalyzer in ARFF format at

file/class level,
– description of the OpenStaticAnalyzer metrics,
– metrics comparisons in spreadsheet format of the PROMISE (2018), Eclipse (Zimmer-

mann et al. 2007), Bug Prediction (D’Ambros et al. 2010), Bugcatchers (Hall et al.
2014), and GitHub (Tóth et al. 2016) bug datasets,

– the results of the within-project training at file/class level in spreadsheet format,
– the results of the cross training at file/class level in spreadsheet format.

For a more exhaustive description of the exact contents of the files and usage information,
one should refer to the ‘README.txt’ file which is located in the root folder of the Unified
Bug Dataset package.
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