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a b s t r a c t

Bugs are inescapable during software development due to frequent code changes, tight deadlines, etc.;
therefore, it is important to have tools to find these errors. One way of performing bug identification
is to analyze the characteristics of buggy source code elements from the past and predict the present
ones based on the same characteristics, using e.g. machine learning models. To support model building
tasks, code elements and their characteristics are collected in so-called bug datasets which serve as
the input for learning.

We present the BugHunter Dataset: a novel kind of automatically constructed and freely available
bug dataset containing code elements (files, classes, methods) with a wide set of code metrics
and bug information. Other available bug datasets follow the traditional approach of gathering the
characteristics of all source code elements (buggy and non-buggy) at only one or more pre-selected
release versions of the code. Our approach, on the other hand, captures the buggy and the fixed states
of the same source code elements from the narrowest timeframe we can identify for a bug’s presence,
regardless of release versions. To show the usefulness of the new dataset, we built and evaluated bug
prediction models and achieved F-measure values over 0.74.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The characterization of buggy source code elements is a popu-
ar research area these days. Programmers tend to make mistakes
espite the assistance provided by different integrated develop-
ent environments, and errors may also occur due to frequent
hanges in the code and inappropriate specifications; therefore,
t is important to get more and/or better tools to help the au-
omatic detection of errors (Johnson et al., 2013). For automatic
ecognition of unknown faulty code elements, it is a prerequisite
o characterize the already known ones.

During software development, programmers use a wide va-
iety of tools, including bug tracking, task management, and
ersion control systems. There are numerous commercial and
pen-source software systems available for these purposes. Fur-
hermore, different web services are built to meet these needs.
he most popular ones like SourceForge, Bitbucket, and GitHub
ulfill the above mentioned functionalities. They usually provide
everal services, such as source code hosting and user manage-
ent. Their APIs make it possible to retrieve various kinds of data,

∗ Correspondence to: H-6720 Szeged, Dugonics tér 13, Hungary.
E-mail addresses: ferenc@inf.u-szeged.hu (R. Ferenc),

gyimesi@inf.u-szeged.hu (P. Gyimesi), ggyimesi@inf.u-szeged.hu (G. Gyimesi),
izo@inf.u-szeged.hu (Z. Tóth), gyimothy@inf.u-szeged.hu (T. Gyimóthy).
ttps://doi.org/10.1016/j.jss.2020.110691
164-1212/© 2020 The Authors. Published by Elsevier Inc. This is an open access a
c-nd/4.0/).
e.g., they provide support for the examination of the behavior
or the co-operation of users or even for analyzing the source
code itself. Since most of these services include bug tracking, it
raises the idea to use this information in the characterization
of buggy source code parts (Zhou et al., 2012). To do so, the
bug reports managed by these source code hosting providers
must be connected to the appropriate source code parts (Wu
et al., 2011). A common practice in version control systems is
to describe the changes in a comment belonging to a commit
(log message) and often provide the identifier of the associated
bug report which the commit is supposed to fix (Kalliamvakou
et al., 2014). This can be used to identify the faulty versions of the
source code (Dallmeier and Zimmermann, 2007a,b). Processing
diff files can help us obtain the code sections affected by the
bug (Toth et al., 2013). We can use source code metrics (Couto
et al., 2012), for which we only need a tool that is able to produce
them.

To build a dataset containing useful buggy code element char-
acterization information, we chose GitHub, since it hosts several
regularly maintained projects and also a well defined API that
makes it possible to implement an automatic data retrieval tool.
We selected 15 Java projects as our subject systems, which differ
in many ways from each other (size, domain, number of bugs
reported) to cover a wide and general set of systems.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Previously published datasets follow a traditional concept to
reate a dataset that serves as a benchmark for testing bug pre-
iction techniques (D’Ambros et al., 2010; Jureczko and Madeyski,
010). These datasets include all code elements – both buggy
nd non-buggy – from one or more versions of the analyzed
ystem. In this work, we created a new approach that collects
efore-fix and after-fix snapshots of source code elements (and
heir characteristics) that were affected by bugs and does not
onsider those code elements that were not touched by bugs. This
ind of dataset helps to capture the changes in software product
etrics when a bug is being fixed. Thus, we can learn from the
ifferences in source code metrics between faulty and non-faulty
ode elements. As far as we know, there exists no other bug
ataset yet that tries to capture this before-fix and after-fix state.
Our new dataset is called BugHunter Dataset and it is freely

available (see Section 5.8). It can serve as a new kind of bench-
mark for testing different bug prediction methods since we in-
cluded a wide range of source code metrics to describe the
previously detected bugs in the chosen systems. We took all re-
ported bugs stored in the bug tracking system into consideration.
We used the usual methodology of connecting commits to bugs
by analyzing the log messages and by looking for clues that would
unambiguously identify the bug that was the intended target
of the corresponding fixing commit(s). Commit diffs helped us
detect which source code elements were modified by a given
change set, thus the code elements which had to be modified in
order to fix the bug.

The first version of this work was published in our earlier
conference paper (Gyimesi et al., 2015). Since then, we have
extended the list of subject projects (one project was replaced
because it contained template files with .java extension which
undermined the source code analysis) and we have also expanded
the time interval of the analysis of the projects’ history to cover
three additional years (from 2014 to 2017). Furthermore, we have
refined our technique and we have incorporated method level
bug information into our dataset as well. The dataset we present
in this paper has not been published before.

Here we also performed experiments to check whether our
novel dataset is suitable for bug prediction purposes. During this
investigation, we collected bug characterization metrics at three
source code levels (file, class, method). After the dataset was
constructed, we used different machine learning algorithms to
analyze the usefulness of the dataset.

We also performed a novel kind of experiment in which we
assessed whether the method level metrics are better predic-
tors when projected to class level than the class level metrics
themselves.

An important aspect to investigate is how the bug prediction
models built from the novel dataset compare to the ones which
used the traditional datasets as corpus. However, this comparison
is hard in its nature due to the variability in multiple factors.
One major problem is the difference in the corpus itself. The
list of the included projects vary from dataset to dataset. In our
previous work, we constructed a traditional dataset, the GitHub
Bug Dataset (Tóth et al., 2016), which consists of the same 15
projects we also included in our novel bug dataset. This gives
an opportunity to assess if there is any difference in the bug
prediction capabilities of these two datasets.

To emphasize the research artifact contribution and the re-
search questions, we highlighted them in the following box.
Research artifact: A freely available novel dataset containing source
code metrics of buggy Java source code elements (file, class, method)
before and after bug fixes were applied to them.
RQ1: Is the constructed dataset usable for bug prediction purposes?
RQ2: Are the method level metrics projected to class level better
predictors than the class level metrics themselves?
RQ3: Is the BugHunter Dataset more powerful and expressive than
the GitHub Bug Dataset, which is constructed with the traditional
approach?

The rest of the paper is structured as follows. In Section 2 we
discuss related work. We present some statistics about GitHub
and the projects that we have chosen for this work in Section 3.
Next, we introduce the metrics used for bug characterization in
Section 4. We describe our approach for generating and validating
the dataset in detail in Section 5. Then, we evaluate it by applying
different machine learning algorithms in Section 6, where we
also address our research questions. In Section 7, we present the
threats to validity. Finally, we conclude and describe some future
work directions in Section 8.

2. Related work

2.1. Bug localization and source code management

Many approaches have been presented dealing with bug char-
acterization and localization (Saha et al., 2013; Wang and Lo,
2014; Davies et al., 2012). Zhou et al. published a study describing
BugLocator (Zhou et al., 2012), a tool that detects the relevant
source code files that need to be changed in order to fix a bug.
BugLocator uses textual similarities (between initial bug report
and the source code) to rank potentially fault-prone files. Prior
information about former bug reports is stored in a bug database.
Ranking is based on the assumption that descriptions with high
similarities imply that the related files are highly similar too. A
similar ranking is done by Rebug-Detector (Wang et al., 2010), a
tool made by Wang et al. for detecting related bugs from source
code using bug information. The tool focuses on overridden and
overloaded method similarities. In our study, we constructed a
dataset that stores information about formerly buggy code ele-
ments that are now fixed, thus the same method could be applied
by using source code metrics for detecting similar source code
elements that are possibly fault-prone.

ReLink (Wu et al., 2011) was developed to explore missing
links between code changes committed in version control sys-
tems and the fixed bugs. This tool could be helpful for software
engineering research based on linkage data, such as software
defect prediction. ReLink mines and analyzes information like bug
reporter, description, comments, and date from a bug tracking
database and then tries to pair the bug with the appropriate
source code files based on the set of source code information ex-
tracted from a version control system. Most of the studies dealing
with this kind of linkage data use the SZZ algorithm, which has
been improved over the years (Kim et al., 2006; Williams and
Spacco, 2008). This approach uses file level textual features to ex-
tract extra information between bugs and the source code itself.
We characterized the set of bugs in a given system at file, class,
and method levels by assigning different source code metrics to
the source code elements (methods, classes, and files) affected
by bugs. Other approaches try to link information retrieved from
only version control and bug tracking systems (Fischer et al.,
2003; Mockus and Votta, 2000).

Kalliamvakou et al. mined GitHub repositories to investi-
gate their characteristics and their qualities (Kalliamvakou et al.,
2014). They presented a detailed study discussing different
project characteristics, such as (in)activity, while also involving
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further research questions – e.g., whether a project is standalone
or part of a more massive system. Results showed that the ex-
tracted data can serve as a good input for various investigations,
however one must use them with caution and always verify the
usefulness and reliability of the data. It is a good practice to
choose projects with many developers and commits, but it should
always be kept in mind that the most important point is to choose
projects that fit well for one’s own purpose. In our case, we have
tried to create a dataset that is large, reliable (through some
manual validation) and general enough for testing different bug
prediction techniques (Catal and Diri, 2009; Porter et al., 1990;
Ostrand et al., 2005; Ma et al., 2006; Zhou and Leung, 2006), while
still being created in an automatic way.

Mining software repositories can be a harsh task when an
automatic mechanism is used to construct a large set of data
based on the information gathered from a distributed software
repository. As we used GitHub to address our research questions,
we paid extra attention to prevent and avoid pitfalls. Bird et al.
(2009) presented a study on distributed version control systems
– focusing mainly on Git – that examined their usage and the
available set of data (such as whether the commits are removable,
modifiable, movable). The main purpose of the paper was to draw
attention to pitfalls and help researchers to avoid them during the
processing and analysis of a mined information set.

Many research papers showed that using a bug tracking sys-
tem improves the quality of the software system under devel-
opment. Bangcharoensap et al. introduced a method to locate
the buggy files in a software system very quickly using the bug
reports managed by the bug tracking system (Bangcharoensap
et al., 2012). The presented method contains three different ap-
proaches to rank the fault-prone files, namely: (a) Text mining,
which ranks files based on the textual similarity between a bug
report and the source code itself, (b) Code mining, which ranks
files based on prediction of the potential buggy module using
source code product metrics, and (c) Change history, which ranks
files based on prediction of the fault-prone module using change
process metrics. They used the gathered project data collected on
the Eclipse platform to investigate the efficiency of the proposed
approaches and showed that they are indeed suitable to locate
buggy files. Furthermore, bug reports with a short description and
many specific words greatly increase the effectiveness of finding
the ‘‘weak points’’ of the system.

Similarly to our study, Ostrand et al. investigated fault predic-
tion by using source code metrics. However, only file level was
considered as the finest granularity unit (Ostrand et al., 2007),
while we have built a toolchain to also support class and method
levels.

In addition to the above presented methods, a significant
change in source code metrics can also indicate that the rele-
vant source code files contain potential bugs (Gyimothy et al.,
2005). Couto et al. presented a paper that shows the possible
relationship between changed source code metrics (used as pre-
dictors) and bugs as well (Couto et al., 2012). They described an
experiment to discover more robust evidences towards causality
between software metrics and the occurrence of bugs. Although
our method does not include this specific information, we still
aim to show that considering methods as basic elements and
including them in a dataset is also a way for building a working
corpus for bug prediction techniques.

2.2. Public datasets

The previously mentioned approaches use self-made datasets
for their own purposes, as illustrated in the work of Kalliamvakou
et al. too (Kalliamvakou et al., 2014). Bug prediction techniques
and approaches can be presented and compared in different
ways; however, there are some basic points that can serve as
common components (Li et al., 2018). One common element can
be a dataset used for the evaluation of the various approaches.
PROMISE (Shirabad and Menzies, 2005) is a repository of datasets
out of which several ones contain bugs gathered from open-
source and also from closed-source industrial software systems.
Amongst others it includes the NASA MDP dataset, which was
used in many research studies and also criticized for contain-
ing erroneous data (Shepperd et al., 2013; Petrić et al., 2016).
The PROMISE repository also contains an extensively referenced
dataset created by Jureczko and Madeyski (2010), which provides
object-oriented metrics as well as bug information for the source
code elements (classes). This latter one includes open-source
projects such as Apache Ant, Apache Camel, JEdit, Apache Lucene,
forming a dataset containing 48 releases of 15 projects. The
main purpose of these datasets is to support prediction methods
and summarize bugs and their characterizations extracted from
various projects. Many research papers used datasets from the
PROMISE repository as an input for their investigations.

A similar dataset for bug prediction came to be commonly
known as the Bug prediction dataset1 (D’Ambros et al., 2010). The
reason for creating this dataset was mainly inspired by the idea
of measuring the performance of the different prediction models
and also comparing them to each other. This dataset handles the
bugs and the relevant source code parts at class level, i.e., the bugs
are assigned to classes. As we have already mentioned, we do not
only focus on file and class levels, but on method-level elements
as well.

Zimmermann et al. (2007) used Eclipse as the input for a study
dealing with defect prediction. They investigated whether the
complexity metrics have the power to detect fault prone points
in the system at package and file level. During the study, they
constructed a public dataset2 that is still available. It contains
different source code metrics and a subset of the files/packages
is marked as ‘‘buggy’’ if it contained any bugs in the interval
between two releases.

A recent study showed that code smells also play a significant
role in bug prediction (Hall et al., 2014) but the constructed
dataset is not public. In our dataset, we also include code smell
metrics to enhance its usefulness.

iBUGS (Dallmeier and Zimmermann, 2007b) provides a com-
plex environment for testing different automatic defect localiza-
tion methods. Information describing the bugs comes from both
version control systems and from bug tracking systems. iBUGS
used the following three open-source projects to extract the
bugs from (the numbers of extracted bugs are in parentheses):
AspectJ — an extension for the Java programming language to
support aspect oriented programming (223); Rhino — a JavaSript
interpreter written in Java (32); and Joda-Time — a quality re-
placement (extension) for the Java date and time classes (8). The
authors attempted to generate the iBUGS dataset in an automatic
way and they compared the generated set to the manually val-
idated set of bugs (Dallmeier and Zimmermann, 2007a). iBUGS
is a framework aimed more towards bug localization and not
a standalone dataset containing source code elements and their
characterizations (i.e., metrics).

The Bugcatchers (Hall et al., 2014) dataset is created by Hall
et al. which is not only a bug dataset, but also contains bad smells
detected in the subject systems. The selected three systems are
Eclipse JDT Core, ArgoUML, and Apache Commons. The dataset is
built and evaluated at file level.

1 http://bug.inf.usi.ch/.
2 https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/.

http://bug.inf.usi.ch/
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
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omparison of the two types of datasets.
Feature Traditional Novel

Included time
interval

Usually 6 months Entire project history

Included source
code elements

All the elements from a
single version

Only the modified
elements right before
and after bug-fixes

Assumptions Source code elements that
are not included in any
bug-fix are non-faulty

No assumptions needed

Uncertainty The source code elements are
faulty in the latest release
version before the bug-fix
and non-faulty after the fix

The source code
elements are faulty
right before the bug-fix
and fixed afterwards

The ELFF dataset (Shippey et al., 2016) is a recent dataset
proposed by Shippey et al. They experienced that only a few
method level datasets exist, thus they created a dataset whose
entries are methods. Additionally, they also made class level
datasets publicly available. They used Boa (Dyer et al., 2013) to
mine SourceForge repositories and collect as many candidates
as they can, selecting 23 projects out of 50,000 that fulfilled
their criteria (number of closed bugs, bugs are referenced from
commits, etc.). They only kept projects with SVN version control
systems which narrows down their candidate set. They used the
classic and well-defined SZZ algorithm (Śliwerski et al., 2005) to
find linkage between bugs and the corresponding source code
elements.

The Had-oops! dataset (Harman et al., 2014) is constructed
y a new approach presented by Harman et al. They analyzed
consecutive Hadoop versions and investigated the impact of

hronology on fault prediction performance. They used Support
ector Machines (SVMs) with the Genetic Algorithm (for con-
iguration) to build prediction models at class level. For a given
ersion, they constructed a prediction model from all the previous
ersions and a model from only the current version and compared
hich one performed better. Results are not straightforward since
hey found early versions preferable in many cases as opposed to
odels built on recent versions. Moreover, using all versions is
ot always better than using only the current version to build a
odel from.
The Mutation-aware fault prediction dataset is a result of an

experiment carried out by Bowes et al. on using mutation metrics
as independent variables for fault prediction (Bowes et al., 2016).
They used 3 software systems from which 2 projects (Eclipse
and Apache) were open-source and one was closed. They used
the popular PITest (or simply, PIT (Coles, 2018)) to obtain the
set of mutation metrics that were included in the final dataset.
Besides the mutation metrics, some static source code metrics
(calculated by JHawk (2018)) were also included in the dataset
for comparison purposes. This dataset is also built at class level.
The GitHub Bug Dataset is a recent dataset that includes class
and file level static source code metrics (Tóth et al., 2016) for 15
Java systems gathered from GitHub. Besides size, documentation,
object-oriented, and complexity metrics, the dataset also contains
code duplication and coding rule violation metrics. This dataset is
our previous work that was still constructed in the ‘‘traditional’’
way. In Table 2, we compare the main characteristics of the
mentioned datasets.

Our goal was to pick the strong aspects of all the previ-
ous datasets and put them together, as its positive effects are
described by Li et al. (2019). Although the discussed works
successfully made use of their datasets, an extended dataset can
serve as a good basis for further investigations. Our dataset in-
cludes various projects from GitHub and includes numerous static
source code metrics and stores a large number of entries in fine
granularity (file, class, and method level as well). Furthermore, we
also experimented with chronology, although in a different way
compared to Harman et al. (2014). The differences between the
traditional datasets and the proposed novel dataset are summa-
rized in Table 1. See Section 5.2 for details about the process of
selecting the bug related data for the novel dataset. The detailed
comparison can be found in Section 6.3.

3. Data source

To address our research objectives, this section briefly intro-
duces the version control system used (Git), its corresponding
source code hosting service (GitHub), and their main function-
alities that are closely related to the creation of linkage data
between bugs and source code elements. Afterwards, we enu-
merate the chosen projects and give some further insight on the
reasons why we chose them as our subject systems.

3.1. GitHub

GitHub is one of today’s most popular source code hosting
services. It is used by several major open-source teams for man-
aging their projects like Node.js, Ruby on Rails, Spring Framework,
Zend Framework, and Jenkins, among others. GitHub offers public
and private Git repositories for its users, with some collaborative
services, e.g., built-in bug and issue tracking systems.

Bug reporting is supported by the fact that any GitHub user
can add an issue, and collaborators can even label these issues
for further categorization. The system provides some basic labels,
such as ‘‘bug’’, ‘‘duplicate’’, and ‘‘enhancement’’, but these tags can
be customized if required. In an optimal case, the collaborators
review these reports and label them with the proper labels, for
instance, the bug reports with the ‘‘bug’’ label. The most impor-
tant feature of bug tracking is that we can refer to an issue from
the log message of a commit by using the unique identifier of the
issue, thereby identifying a connection between the source code
Table 2
Comparison of the datasets.
Project Level of bugs Bug characteristics # of projects

NASA MDP Dataset Class Static source code metrics 11
Jureczko Dataset Class Static source code metrics 15
Bug prediction dataset Class Static source code metrics, process metrics 5
Eclipse dataset File, package Complexity metrics 1
iBUGS N/A Bug-fix size properties, AST fingerprints 3
Bugcatchers File Code smells 3
ELFF Class, method Static source code metrics 23
Had-oops! Class Static source code metrics 1
Mutation-aware fault prediction dataset Class Static source code metrics, mutation metrics 3
GitHub Bug Dataset File, class Static source code metrics, code duplication metrics, code smell metrics 15
Novel dataset File, class, method Static source code metrics, code duplication metrics, code smell metrics 15
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Table 3
The number of repositories created between 01-01-2013 and 07-09-2017 for the
top 10 languages.
Language Number of repositories

JavaScript 2,019,215
Java 1,465,168
Ruby 1,379,225
Python 1,014,760
PHP 983,479
C 737,314
C++ 619,914
CSS 568,493
C# 282,092
Shell 263,350

and the reported bug. GitHub has an API3 that can be used for
managing repositories from other systems, or query information
about them. This information includes events, feeds, notifications,
gists, issues, commits, statistics, and user data.

With the GitHub Archive4 project that also uses this API, we
can get up-to-date statistics about the public repositories. For
instance, Table 3 presents the number of repositories created
between 1 January 2013 and 7 September 2017, grouped by the
main programming languages they use (only the top 10 languages
are shown). Our approach uses Java repositories (the second most
used platform on GitHub) to gather a proper information base for
constructing a bug dataset.

Although extracting basic information from GitHub is easy,
some version control features are hard to deal with, especially
during the linking process when we try to match source code
elements to bugs. For example, Git provides a powerful branching
mechanism by supporting the creation, deletion, and selection
of branches. In our case, we have to handle different branches
because a fixing commit most often occurs on other – so called
‘‘topic’’ – branches and not on the master branch. Fortunately,
the projects we analyzed often solved this problem by merging.
During the merge, isomorphic commits are generated and placed
on the master branch, thus all the desired analysis can be done
by taking only the master branch with a given version as input.
Another example is forking a repository, which is used world-
wide. In our experiment, we do not handle forks, since it would
have encumbered the above mentioned linking process and we
would not gain significant additional information since bugs are
often corrected in the original repository. These details can be
viewed as our underlying assumptions regarding the usage of
GitHub.

3.2. The chosen projects

We considered several criteria when searching for appropriate
projects on GitHub. First of all, we searched for projects written
in Java, especially larger ones, because those are more suitable for
this kind of analysis. It was also important to have an adequate
number of issues labeled as bugs, and the number of references
from the log messages to certain commits is also a crucial factor
(this is how we can link source code elements to bugs). Addi-
tionally, we preferred projects that are still actively maintained.
Logged-in users can give a star for any repository and bookmark
selected ones to follow. The number of stars and watches applied
to repositories forms a ranking between them, which we will
refer to as ‘‘popularity’’ in the following. We performed our search
for candidate projects mainly based on popularity and activity.
We also found many projects during the search that would have

3 https://developer.github.com/v3/.
4 https://www.gharchive.org/.
fulfilled most aspects, had the developers not used an external
bug tracker system — something we could not support yet.

In the end, we selected the 15 projects listed in Table 4 based
on the previously mentioned criteria. As the descriptions show,
these projects cover different domains; a good practice when the
goal is creating a general dataset. The table contains the following
additional data about the projects:

Stars the number of stars a project received on GitHub

Forks the number of forks of a project on GitHub

kLOC the thousand lines of code a project had at September,
2017

Recently, the repository of the Ceylon project was moved to a new
location and the old repository is not available anymore. Due to
this reason we could not obtain the total number of stars and the
total number of forks of this repository, resulting the low values
in the table.

Besides knowing each project’s domain, further descriptors
can help us get a more precise understanding. Table 5 provides
a more accurate picture of the projects by showing different
characteristics (related to the repositories) for each project. This
table sums up the occurrences of various bug reports and com-
mits of the projects present at September, 2017. Considering the
total number of commits (TNC) is a good starting point to show
the scale and activity of the projects. The number of commits
referencing a (closed) bug (NCRB) shows how many commits out
of TNC referenced a bug by using the pattern ‘#x’ in their commit
log messages, where x is a number that uniquely identifies the
proper issue that is labeled as a bug (Mockus and Votta, 2000).
NCBR (Number of Closed Bug Reports) is also important, since we
only consider closed bug reports and the corresponding commits
in this context. The abbreviations we used stand for the following:

TNC Total Number of Commits

NCRB Number of Commits Referencing a Bug

NBR Number of Bug Reports

NOBR Number of Open Bug Reports

NCBR Number of Closed Bug Reports

ANCBR Average Number of Commits per closed Bug Reports
(NCRB/NCBR)

It is apparent that the projects are quite different according to
the number of bug reports and the lines of code they have. NCRB
is always lower than NCBR except in three cases (ANTLR v4, Oryx,
Broadleaf Commerce) which means that not all bug reports have
at least one referencing commit to fix the bug. This is possible
since closing a bug is viable not only from a commit but directly
from GitHub’s Web user interface without committing anything.

Fig. 1 depicts the number of commits for each closed bug
report. One insight here is that the rate of closed bug reports is
high where not even a single commit is present to fix the bug.
There are several possible causes for this, for example, the bug
report is not referred from the commit’s log message, or the error
has already been fixed.

Fig. 2 shows the ratio of the number of commits per projects,
illustrating the activity and the size of the projects. Neo4j is dom-
inant if we consider only the number of commits, however bug
report related activities are slight. The presented figures show the
variability of the selected software systems, which ensures the

construction of a heterogeneous dataset.

https://developer.github.com/v3/
https://www.gharchive.org/


6 R. Ferenc, P. Gyimesi, G. Gyimesi et al. / The Journal of Systems & Software 169 (2020) 110691

4

a
m
p
f
t
c
a
d
m
s

Table 4
The selected projects and their descriptions.
Project name Description

Stars Forks kLOC

Android Universal Image Loadera An Android library that assists the loading of images.16,521 6357 13

ANTLR v4b A popular software in the field of language processing.
It is a powerful parser generator for reading, processing,
executing, or translating structured text or binary files.6030 1559 68

Elasticsearchc
A popular RESTful search engine.42,685 14,303 995

jUnitd A Java framework for writing unit tests.7536 2826 43

MapDBe
A versatile, fast and easy to use database engine in Java.3700 745 68

mcMMOf
An RPG game based on Minecraft.511 448 42

Mission Control Technologiesg Originally developed by NASA for the space flight
operations. It is a real-time monitoring and visualization
platform that can be used for monitoring any other data
as well.

818 280 204

Neo4jh The world’s leading graph database with high performance.6643 1636 1027

Nettyi An asynchronous event-driven networking framework.20,006 9128 380

OrientDBj A popular document-based NoSQL graph database.
Mainly famous for its speed and scalability.3919 792 621

Oryx 2k An open-source software with machine learning
algorithms that allows the processing of huge datasets.1633 388 34

Titanl
A high-performance, highly scalable graph database.4931 1015 108

Eclipse plugin for Ceylonm
An Eclipse plugin which provides a Ceylon IDE.56 30 181

Hazelcastn A platform for distributed data processing.3211 1169 949

Broadleaf Commerceo A framework for building e-commerce websites.1266 1020 322

ahttps://github.com/nostra13/Android-Universal-Image-Loader.
bhttps://github.com/antlr/antlr4.
chttps://github.com/elastic/elasticsearch.
dhttps://github.com/junit-team/junit4.
ehttps://github.com/jankotek/MapDB.
fhttps://github.com/mcMMO-Dev/mcMMO.
ghttps://github.com/nasa/mct.
hhttps://github.com/neo4j/neo4j.
ihttps://github.com/netty/netty.
jhttps://github.com/orientechnologies/orientdb.
khttps://github.com/OryxProject/oryx.
lhttps://github.com/thinkaurelius/titan.
mhttps://github.com/eclipse/ceylon-ide-eclipse.
nhttps://github.com/hazelcast/hazelcast.
ohttps://github.com/BroadleafCommerce/BroadleafCommerce.
. Metrics

A software metric is a quantified measure of a property of
software project. By using a set of different metrics, we can
easure the properties of a project objectively from various
oints of view. Metrics can be obtained from the source code,
rom the project management system, or even from the execution
races of the source code. We can deduce higher-level software
haracteristics from lower level ones (Bakota et al., 2011), such
s the maintainability of the source code or the distribution of
efects, but they can be also used to build a cost estimation
odel, apply performance optimization, or to improve activities
upporting software quality (Boehm et al., 2000; Bán et al., 2018;
Bán and Ferenc, 2014). In this work, we used static source code
metrics (also known as software product metrics).

The area of object-oriented source code metrics has been
researched for many years (Chidamber and Kemerer, 1994; Basili
et al., 1996; Bruntink and Van Deursen, 2004), thus no won-
der that several tools exist for measuring them. These tools are
suitable for detailed examination of systems written in vari-
ous programming languages. The source code metrics provide
information about the size, inheritance, coupling, cohesion, or
complexity of the code. We used the OpenStaticAnalyzer5 tool to
obtain various software product metrics for the selected systems.

5 https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer.

https://github.com/nostra13/Android-Universal-Image-Loader
https://github.com/antlr/antlr4
https://github.com/elastic/elasticsearch
https://github.com/junit-team/junit4
https://github.com/jankotek/MapDB
https://github.com/mcMMO-Dev/mcMMO
https://github.com/nasa/mct
https://github.com/neo4j/neo4j
https://github.com/netty/netty
https://github.com/orientechnologies/orientdb
https://github.com/OryxProject/oryx
https://github.com/thinkaurelius/titan
https://github.com/eclipse/ceylon-ide-eclipse
https://github.com/hazelcast/hazelcast
https://github.com/BroadleafCommerce/BroadleafCommerce
https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
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Fig. 1. The number of bug reports with the corresponding number of commits.
Fig. 2. The number of commits per projects.

able 5
tatistics about the selected projects.

TNC NCRB NBR NOBR NCBR ANCBR

Android Universal I. L. 1,025 52 90 15 75 0.69
ANTLR v4 6,526 162 179 23 156 1.04
Elasticsearch 28,815 2,807 4,494 207 4,287 0.65
jUnit 2,192 72 90 6 84 0.86
MapDB 2,062 167 244 16 228 0.73
mcMMO 4,765 268 664 8 656 0.41
Mission Control T. 977 15 46 9 37 0.40
Neo4j 49,979 781 1,268 116 1,152 0.68
Netty 8,443 956 2,240 33 2,207 0.43
OrientDB 15,969 722 1,522 250 1,272 0.57
Oryx 1,054 69 67 2 65 1.06
Titan 4,434 93 135 8 127 0.73
Eclipse p. for Ceylon 7,984 316 923 82 841 0.38
Hazelcast 24,380 3,030 3,882 120 3,762 0.81
Broadleaf Commerce 14,920 1,051 703 28 675 1.56

The full list of the object-oriented metrics we used is shown in
Table 6. The last three columns of the table indicate the kind
of elements the given metric is calculated for, namely method,
class, and file. The presence of ‘X’ indicates that the metric is
calculated for the given source code level. Most of the blanks
in the table come from the fact that the metric is defined only
for a given level. For instance, Weighted Methods per Class can-
not be interpreted for methods and files. Other blanks come
from the limitations of the used static source code analyzer
(i.e. OpenStaticAnalyzer).

One special metric category is provided by source code dupli-
cation detection (Roy et al., 2009). OpenStaticAnalyzer is able to
detect Type-1 (exact copy of code, not considering white spaces
and comments) and Type-2 clones (syntactically identical copy of
code where variable, function or type identifiers can be different;
also not considering white spaces and comments) in software
systems (Bellon et al., 2007) and also supports clone management
tasks, such as:

• Clone tracking: clones are tracked during the source code
analysis of consecutive revisions of the analyzed software
system.

• Calculating clone metrics: a wide set of clone related metrics
is calculated to describe the properties of a clone in the
system (for example, risk of a clone or the effort needed to
eliminate the clone from the system).

Basic clone related metrics that are calculated for methods and
classes are presented in Table 7.

OpenStaticAnalyzer also provides a coding rule violation de-
tection module. The presence of rule violations in a source code
element can cause errors (Boogerd and Moonen, 2008) in a later
phase (can easily be a ticking bomb); thus the number of different
rule violations located in the source code element can serve as
good predictors and the dataset encapsulates this information
too.

5. Dataset creation

In this section, we introduce the methodology we used to
create the dataset. We carried out the data processing in multiple
steps using the toolchain shown in Fig. 3. Each of these steps
– and their corresponding components – are detailed in their
dedicated sections below.
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able 6
ource code metrics used for characterization.
Abbreviation Full name Method Class File

CLOC Comment Lines of Code X X X
LOC Lines of Code X X X
LLOC Logical Lines of Code X X X

NL Nesting Level X X
NLE Nesting Level Else-If X X
NII Number of Incoming Invocations X X
NOI Number of Outgoing Invocations X X
CD Comment Density X X
DLOC Documentation Lines of Code X X
TCD Total Comment Density X X
TCLOC Total Comment Lines of Code X X
NOS Number of Statements X X
TLOC Total Lines of Code X X
TLLOC Total Logical Lines of Code X X
TNOS Total Number of Statements X X

McCC McCabe’s Cyclomatic Complexity X X

PDA Public Documented API X X
PUA Public Undocumented API X X

HCPL Halstead Calculated Program Length X
HDIF Halstead Difficulty X
HEFF Halstead Effort X
HNDB Halstead Number of Delivered Bugs X
HPL Halstead Program Length X
HPV Halstead Program Vocabulary X
HTRP Halstead Time Required to Program X
HVOL Halstead Volume X
MIMS Maintainability Index (Microsoft version) X
MI Maintainability Index (Original version) X
MISEI Maintainability Index (SEI version) X
MISM Maintainability Index (SourceMeter version) X
NUMPAR Number of Parameters X

LCOM5 Lack of Cohesion in Methods 5 X
WMC Weighted Methods per Class X
CBO Coupling Between Object classes X
CBOI Coupling Between Object classes Inverse X
RFC Response set For Class X
AD API Documentation X
DIT Depth of Inheritance Tree X
NOA Number of Ancestors X
NOC Number of Children X
NOD Number of Descendants X
NOP Number of Parents X
NA Number of Attributes X
NG Number of Getters X
NLA Number of Local Attributes X
NLG Number of Local Getters X
NLM Number of Local Methods X
NLPA Number of Local Public Attributes X
NLPM Number of Local Public Methods X
NLS Number of Local Setters X
NM Number of Methods X
NPA Number of Public Attributes X
NPM Number of Public Methods X
NS Number of Setters X
TNA Total Number of Attributes X
TNG Total Number of Getters X
TNLA Total Number of Local Attributes X
TNLG Total Number of Local Getters X
TNLM Total Number of Local Methods X
TNLPA Total Number of Local Public Attributes X
TNLPM Total Number of Local Public Methods X
TNLS Total Number of Local Setters X
TNM Total Number of Methods X
TNPA Total Number of Public Attributes X
TNPM Total Number of Public Methods X
TNS Total Number of Setters X

5.1. Collecting data

First, we save data about the selected projects via the GitHub
PI. This is necessary, because while the data is continuously
Table 7
Clone metrics used for characterization.
Abbreviation Full name

CC Clone Coverage
CCL Clone Classes
CCO Clone Complexity
CI Clone Instances
CLC Clone Line Coverage
CLLC Clone Lines of Code
LDC Lines of Duplicated Code
LLDC Logical Lines of Duplicated Code

changing on GitHub due to the activities in the projects, we
need a consistent data source for the analysis. The data we save
includes the list of users assigned to the repository (Contributors),
the open and closed bug reports (Issues), and all of the commits.
For open issues, we stored only the date of their creation. For
closed issues, we stored the creation date, closing date, and the
hash of the fixing commits with their commit dates. Additionally,
we focused exclusively on bug related issues, so closed bugs
that were not referenced from any commit were not stored.
This filtering is based on the issue labels provided by GitHub
and the set of labels we manually selected for each project. The
data we stored about the commits includes the identifier of the
contributor, the parent(s) of the commit, and the affected files
with their corresponding changes. All this raw information is
stored in an XML format, ready for further processing.

5.2. Processing raw data

While the data saved from GitHub includes all commits, we
only need the ones that relate to the bug reports. These commits
are then divided into different subsets, as depicted in Fig. 4. Green
nodes are directly referencing the bug report (fixing intention).
Gray nodes are commits applied between the first fix and the last
fix but not referencing the bug id in their commit log messages.
One extra commit taken into consideration is the one right before
the first fix (colored with orange). This commit holds the state
when the source code is buggy (not fixed yet), thus a snapshot
(source code analysis) will be performed at that point too. Al-
though the orange node represents the latest state where the bug
is not fixed yet, the blue nodes also contain the bug so we mark
the source code elements as buggy in these versions too. These
blue markings are important for distinguishing commits that are
involved in multiple bugs at the same time.

We have to perform code analysis on the orange and green
commits to construct dataset entries. Two entries are created
for every source code element they contain: one with the state
(metrics) right before the fix was applied, and one with the state
when the bug was fixed. At green commits except the last one,
we do not need to perform a full code analysis, since at those
points we are only interested in extracting the affected source
code elements. Amongst the selected commits, some further ones
can occur that need to be removed because they are no longer
available through Git (deleted, merged). Moreover, we do not only
search for links from the direction of commits but also from the
direction of issues (bug reports). When considering a bug report,
we can find a commit id showing that the bug was closed in that
specific commit. At this point, the full list is constructed as a text
file, which has all the commit ids (hash) for a selected project to
undergo static analysis.

5.3. Source code analysis

After gathering the appropriate versions of the source code
for a given project, feature extraction can begin. This component
wraps the results of the OpenStaticAnalyzer tool that computes
the source code metrics and determines the positions of the
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Fig. 3. The components of the process.
Fig. 4. The relationship between the bug reports and commits.
source code elements. Results are generated in a graph format,
which contains the files, classes, and methods with the computed
data that includes different software product metrics (described
in Section 4). At this point we have all the raw data desired,
including the source code elements located in the project and all
the bug related information.

5.4. Extracting the number of bugs

The next step is to link the two datasets – the results of the
code analysis and the data gathered from GitHub – and extract
the characteristics of the bugs. Here, we determine the source
code elements affected by the commits and the number of bugs
in each commit for file, class, and method levels.

To determine the affected source code parts, an approach
similar to the SZZ algorithm (Williams and Spacco, 2008) is used.
However, we do not want to detect the fix inducing commits,
only the mapping between the fixing code snippets and source
code elements. For this purpose, we used the diff files – from the
GitHub data we saved – that contain the differences between two
source code versions in a unified diff format. An example unified
diff file snippet is shown below.

--- /path/to/original’’timestamp’’
+++ /path/to/new’’timestamp’’
@@ -1,4 +1,4
@@+Added line
-Deleted line
This part of the
document has stayed the
same

Each diff contains a header information specifying the start-
ing line number and the number of affected lines. Using this
information, we can get the range of the modification (for a
given file pair: original and new). To obtain a more accurate
result, we subtracted the unmodified code lines from this range.
Although the diff files generated by GitHub contain additional
information about which method is affected, it does not carry
enough information because the difference can affect multiple
source code elements (overlapping cases that are not handled by
GitHub). Thus, there is no further task but to examine the source
code elements in every modified file and identify which ones of
them are affected by the changes. The method uses the source
code element positions, i.e., source line mappings from the output
of the OpenStaticAnalyzer tool. We identified the source code
elements by their fully qualified names that involve the name of
the package, the class, the method, the type of the parameters,
and the type of the return value.

Next, we take the commits that were selected by the ‘‘Pro-
cessing Raw Data’’ step and mark the code sections affected
by the bug in these commits. We do this by accumulating the
modifications on the issue level and collecting the fully qualified
names of the elements. Then, the algorithm marks the source
code elements in the appropriate versions that will be entries
in the dataset (touched in order to fix a bug). If a source code
element in a specific version is marked by multiple issues, then
it contains multiple bugs in that version. The dataset for files,
classes, and methods are exported into three different files in a
simple CSV format. The first row of these files contains the header
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nformation, namely the commit id, the qualified name and the
ug cardinality. Further lines store the data of the source code
lements according to the header.

.5. Combining CSV files

Now, the CSV outputs of OpenStaticAnalyzer and the previ-
usly described CSV output can be merged. In this phase, we
ttach the source code elements that are entries in the dataset
o the calculated metrics. The output of this step is also a CSV file
or each type of source code element, containing the hash code
f the version, unique identifiers of the source code elements,
dentifiers of metrics, rule violation groups, and bug cardinality
the number of bugs located in the source code elements). One
ntry is equivalent to one source code element at a given time
the same source code element can occur more than once with a
ifferent commit id — hash).

.6. Filtering

This dataset we compiled so far can contain various entries
hat complicate further investigations. As the dataset should be
uitable for studying the connection between different metrics
nd bug occurrences, it should serve as a practical input for
ifferent machine learning algorithms. It is possible, however,
o have entries in the dataset that have the same metric values
ith different number of bugs assigned to them. For example,

et us consider a buggy method f with metric values Mf1 . After
he bugfix, the metric values of f is changed to Mf2 . Similarly, let
s consider another buggy method g with metric values Mg1 and
g2 , respectively. These two methods could contain two different
ugs that are present in a system for distinct periods of time.
n this case, the dataset would contain 4 entries: Mf1 , Mf2 , Mg1 ,
Mg2 , where Mf1 and Mg1 are buggy and Mf2 and Mg2 are non-
uggy entries. If any of these metric values are equal (e.g. Mf1 =

g2 or Mg1 = Mg2 ), then redundancy occurs that can influence
he accuracy of machine learning for bug prediction (overfitting,
ontradicting records).
To solve this issue, we used different approaches to filter the

aw dataset and eliminate the redundant entries. We tried various
ethods to reduce the noise in the learning set, whose entries are
lassified into either buggy or not buggy.

• Removal: keep the entries located in the class with the
larger cardinality (e.g., for a 10:20 distribution, the result is
0:20)

• Subtract: reduce the number of entries in the class with
the larger cardinality by removing as many entries as the
cardinality of the smaller class (e.g., for a 10:20 distribution,
the result is 0:10)

• Single: remove the entries of the class with the smaller
cardinality and hold only one entry from the larger one
(e.g., for a 10:20 distribution, the result is 0:1)

• GCF: divide the number of entries of both classes by their
greatest common factor (or greatest common divisor) and
retain only the resulting amounts of entries from the classes
(e.g., for a 10:20 distribution, the result is 1:2)

Each selected approach can seriously modify the result set,
hus we investigated all four options and additionally the basic
ase when no filtering was applied. Tables 8, 10, and 12 present
verage F-measure values calculated for all of the machine learn-
ng algorithms we used for all of the projects. From these tables
e can see that the Single and GCF methods performed quite
imilarly but were less effective than Subtract or Removal.
We employed a statistical significance test, namely the Fried-

an test (Friedman, 1940) with a threshold of α = 0.05 to assess
able 8
iltering results at method level.
Method Precision Recall F-measure

No filter 0.5553 0.5501 0.5317
Removal 0.6070 0.5963 0.5773
Subtract 0.5974 0.5893 0.5717
Single 0.5495 0.5448 0.5250
GCF 0.5445 0.5408 0.5218

Table 9
Significance test results for method level filtering.

No filter Removal Subtract Single

Removal 0.001 (16.88)
Subtract 0.001 (13.87) 0.210 (3.00)
Single 0.736 (1.67) 0.001 (18.54) 0.001 (15.54)
GCF 0.020 (4.29) 0.001 (21.17) 0.001 (18.16) 0.343 (2.62)

the significance of the differences between the averages, as it was
done similarly in previous bug prediction studies (Herbold et al.,
2018; Ghotra et al., 2015). Our data does not follow normal distri-
bution, it consists of dependent samples and we have five paired
groups, thus the Friedman test is the appropriate choice. The null
hypothesis is that the multiple paired samples have the same
distribution. The tests resulted in very low p values (pmethod =

.32e-80, pclass = 2.03e-77, pfile = 1.83e-40); therefore, we reject
he null hypothesis which means the distributions are not equal.
hen, we applied the Nemenyi post-hoc test (Nemenyi, 1963)
α = 0.05) that is usually used after a null hypothesis is rejected
o gain more insight on the significance of the differences. The
ritical value for 5 groups and 176 samples (11 machine learning
lgorithms × 16 databases) based on the studentized range table
s qcrit = 3.9. Tables 9, 11, and 13 list the resulted p values with
he corresponding rank difference in parentheses.

Let us consider the method level F-measure values in Table 8
here Removal has the highest average F-measure (0.5773) and
ubtract is a close second (0.5717). In Table 9, the results of
he significance tests for method level show that the p value of
he test between Subtract and No filter is below the threshold
p = 0.001 < α = 0.05); therefore, the difference is significant
nd with Subtract having a higher average F-measure (0.5717)
han No filter (0.5317), we can state that it is significantly better.
e can conclude the same when comparing Subtract with Single

p = 0.001 < α = 0.05) or with GCF (p = 0.001 < α = 0.05).
he p value between Subtract and Removal is p = 0.210 > α =

.05 which is not significant.
Similar results can be concluded for class level and for file level

s well. We can state that the Removal and Subtract methods
erformed significantly better than the other methods in all three
ases. The difference between the Removal and Subtract methods
s not significant.

We speculate that a disadvantage to Single is that it drops
he multiplicity of the records (i.e., the weight information). The
roblem with GCF, on the other hand, is that it will only perform
iltering when the greatest common factor is not one, and that it
oes not eliminate the noise completely (i.e., it will keep at least
ne entry from both classes). Removal removes the noise entirely,
ut it suffers from the fact that it ignores the minority.
The Subtract method, however, neutralizes the positive and

egative entries with identical feature vectors. This means that it
emoves the noise while also keeping the weight of the records,
o this filtering method seems to be the best choice. Presenting all
he five different sets would be lengthy, thus we will only present
he results achieved by the Subtract method.

.7. Classification and resampling
As trying to predict the exact number of bugs in a given

ource code element would be much more difficult – and would
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Table 10
Filtering results at class level.
Method Precision Recall F-measure

No filter 0.5265 0.5235 0.5128
Removal 0.5567 0.5528 0.5419
Subtract 0.5541 0.5499 0.5393
Single 0.5236 0.5206 0.5090
GCF 0.5221 0.5201 0.5077

Table 11
Significance test results for class level filtering.

No filter Removal Subtract Single

Removal 0.0010 (15.92)
Subtract 0.0010 (15.40) 0.9000 (0.52)
Single 0.9000 (0.76) 0.0010 (16.69) 0.0010 (16.16)
GCF 0.0496 (3.86) 0.0010 (19.78) 0.0010 (19.26) 0.1828 (3.10)

Table 12
Filtering results at file level.
Method Precision Recall F-measure

No filter 0.5160 0.5117 0.4883
Removal 0.5451 0.5414 0.5194
Subtract 0.5407 0.5371 0.5147
Single 0.5187 0.5148 0.4910
GCF 0.5172 0.5129 0.4889

Table 13
Significance test results for file level filtering.

No filter Removal Subtract Single

Removal 0.0010 (14.21)
Subtract 0.0010 (13.21) 0.9000 (1.00)
Single 0.0682 (3.69) 0.0010 (10.51) 0.0010 (9.51)
GCF 0.9000 (0.36) 0.0010 (13.85) 0.0010 (12.85) 0.1262 (3.34)

presumably require much larger datasets – we chose to restrict
our study to predicting a boolean ‘‘flag’’ for the presence of any
bugs. Thus, we applied only classification algorithms, and to do
so, classes need to be formed from the bug numbers. For the
binary classification, we selected instances with zero bugs into
one class (non-buggy), and the remaining ones – with one or
more bugs – into the second class (buggy).

Another problem we faced is that imbalanced learning sets
ould be formed from the dataset, where the positive or negative
ntries are in a majority which could also be misleading for model
raining. For example, the ratio of buggy and non-buggy source
ode elements or files can be totally different.
To handle this issue at the machine learning level, we used

andom under sampling (He et al., 2009; Wang and Yao, 2013) to
btain an equivalent number of elements in the two categories.
or instance, if we have a final set as a corpus at method level
hat contains 10 buggy methods and 50 non-buggy methods, we
se random under sampling for the non-buggy set to decrease the
umber of samples and balance the ratio to 10-10. The training
rocess – using this random under sampling – is repeated mul-
iple times and finally, an average is calculated. Without random
nder sampling, the machine learning algorithms achieved very
igh precision, recall, and F-measure values (e.g., by classifying
ll elements as non-buggy) because a significantly large differ-
nce was usually present in the number of entries for the two
lasses (non-buggy vs. buggy). For this reason, we present only
he results achieved by using random under sampling.

.8. The BugHunter dataset

As a result and a main contribution, we constructed a novel
ind of bug dataset that contains before/after fix states of source
ode elements at file, class, and method levels. We produced
Table 14
BugHunter dataset metadata.
Type Bug prediction dataset

Granularity File, class, method

Number of projects 15

Number of metrics
Static source code metrics (66),
Code duplication metrics (8),
Code smell metrics (35)

Number of entries
File: 70,088
Class: 84,562
Method: 159,078

Ratio of the faulty entries
File: 1.03 (35,507/34,581)
Class: 0.95 (41,098/43,475)
Method: 0.59 (58,810/100,268)

a dataset for every project (see Table 4) and also a combined
one with all the projects included. In Table 14, we collected the
general metadata about the dataset which is scattered throughout
in the paper. The Ratio of the faulty entries varies between the
different granularity levels due to the nature of the bug-fixing
changes. For example, on method level it is more common to
split a method into multiple parts or to introduce new methods
to the source code during a fix, which results in more non-buggy
entries than buggy, hence the low ratio. On class level, however,
the ratio is closer to 1.0 because it is less likely to create a new
class in order to fix a bug. Furthermore, on class and file levels,
a new factor also contributes to the ratio. Because classes and
files represent a larger part of the source code than methods, it
happens that in a fixed state of a bug the containing class or file
contains other bugs as well. In these cases, the entries related to
the fixed state are marked as faulty in the dataset, which results
in higher ratio values, above 1.0 in the case of files.

The resulting BugHunter Dataset 1.0 is available as an online
appendix at: http://www.inf.u-szeged.hu/~ferenc/papers/BugHun
terDataSet/ or http://dx.doi.org/10.17632/8tx7kjbkg4.2

The BugHunterDataset-1.0.zip file contains the dataset
in CSV format as described above. The directory named full
contains the unfiltered database. The remaining four directories,
namely gcf, remove, single, and subtract contain the results
of the different filtering methods. Each of these directories con-
tain 15 subdirectories – one for each subject system – and an
additional directory named all which contains the summarized
dataset. Three CSV files are placed in these directories for file,
class, and method levels, respectively. There is also a fourth
CSV file in each directory, called method-p.csv which contains
the method level dataset extended with an additional column,
the name of the parent class (see Section 6.2). Additionally, the
appendix.zip file contains the analysis results presented in
Section 6 in spreadsheet files.

5.9. Validation

When constructing a dataset in an automatic way, one al-
ways has to validate the constructed set. As seen previously,
this kind of generated data should always be handled with mis-
trust (Kalliamvakou et al., 2014). We chose the mid-sized project
JUnit for such manual validation, which contains 90 bug reports
(6 open and 84 closed) and a total of 72 referencing commits
to the bugs, thus this project seems to be suitable for manual
validation investing a reasonable amount of effort. We validated
the 84 closed bug reports manually to verify whether the bugs are
valid, and whether the matching algorithm works well. Table 15
summarizes our findings.

From the total number of closed bugs, only 37 are present in
the dataset because many fixing commits are not related to the
source code (e.g., documentation) or Java code (e.g., bug in build
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able 15
alidation results.
Closed bugs Bugs in dataset Commits Java code Commit mismatch

84 37 72 61 5

Fig. 5. Distribution of the number of classes in a Java file.

XML). This is shown in the Java code column of the table that
summarizes the number of commits that contain Java language
code (61). These commits that include code are referencing 37
bugs, thus at least one bug exists that is referenced from multiple
commits according to the pigeonhole principle.

We found 5 ‘‘commit mismatch’’ cases in total, where only
omments were modified in the source code — this means 7
ntries in the dataset. The dataset created for JUnit has 734
ntries in total (92 files, 216 classes and 426 methods), thus a
ery small (0.95%) number of entries was incorrectly included.
ut of the 734 entries, 286 are not related to test code (43 files,
7 classes, and 166 methods). Based on this, we can presume that
ur validated dataset can be an appropriate corpus for further
nvestigations and that our bug extraction mechanism is working
uite reliably.

.10. Relationship of files and classes

In case of Java, there is usually one class per .java file. We
examined how true this is for our subject projects. We randomly
chose 100 commits that we analyzed from each project and we
counted the number of classes in each file, not including test
files. After we calculated the frequency of these values for each
commit, we calculated the average frequency (see Fig. 5). The
diagram shows that most of the files contain only a single class
(865), but there is a significant number of files with more than
one class (120 files with 2 classes, 46 files with 3 classes, etc.).

Although we have a larger set of metrics on class level than
on file level, we cannot associate a file to a single class due to the
one-to-many relationship between them.

5.11. Computational cost of extending the dataset

Extending the dataset comes with computational cost that
depends on multiple factors. Adding a new project to the dataset
requires the project to have bug reports with bug-fixing com-
mits. Finding such projects is time-consuming, because it mostly
requires manual work to select good candidates (see Section 3.2).

The most critical step is to collect appropriate bugs. For this
initial dataset, we collected projects from GitHub, since its API
makes it easy to gather the required information about bugs
automatically. The actual run-time of this step depends on the
size of the project, e.g. number of commits and number of bug
reports, but for the selected 15 projects, it took just a few hours
to save the required data. Selecting bugs manually would take
considerably more time. GitHub has a limit on the number of
API requests per hour which increased the total run-time. It
is possible to collect data from other sources, although it may
require a different amount of work.

The most time and resource consuming task is the source code
analysis. We used the OpenStaticAnalyzer tool which performs
deep static analysis; therefore, it requires more resources than a
simple parser tool. During this step, we extract the static source
code metrics and the source code positions of the classes and
methods, as described in Sections 5.2 and 5.3, respectively. The
computational cost of this step highly depends on the number of
bug-fixing commits, the size of the source code, and the analyzer
tool. It took days to analyze each of the nearly 10,000 bug-fixing
commits. There are other tools that could be used to extract
the source code positions and other tools to compute metrics
with potentially less run-time, but the tool we used produces
a wide range of metrics and rule violations accurately in a well
processable format.

The next step, determining the buggy source code elements,
is a simple algorithm that does not require much resources.
The run-time here mostly depends on the number of bug-fixing
commits. It took only a few hours for the 15 projects.

For example, to process a smaller project such as jUnit, it
took around 2 h of machine time: 10 min to download the data
from GitHub, 110 min to analyze 107 versions of the project (on
average 1 min per version) and around 2 min to produce the bug
dataset entries. Regarding a larger project, Elasticsearch, it took
around 6 h to download the data from GitHub, around 1600 h
to analyze 4881 versions of the project (on average 20 min per
version) and it took around 90 min to produce the bug dataset.

At this point, the data is ready to be added to the dataset. The
last step is to match the format of the dataset (see Section 5.8).
Since the dataset consist of CSV files, it is very easy to extend it
with new projects or with additional bugs for the projects that
are already present.

6. Evaluation

To evaluate the usefulness of our new bug dataset, we created
bug prediction models by using machine learning algorithms.
During the training, we used 10-fold cross validation to mea-
sure the accuracy of the models. To compare the models, we
used precision, recall, and F-measure metrics that are defined as
follows:

precision =
TP

TP + FP
recall =

TP
TP + FN

F-measure = 2 ·
precision · recall
precision + recall

,

here TP (True Positive) is the number of methods/classes/files
hat were predicted as faulty and observed as faulty, FP (False
Positive) is the number of methods/classes/files that were pre-
dicted as faulty but observed as not faulty, FN (False Negative) is
he number of methods/classes/files that were predicted as non-
aulty but observed as faulty. We used the following algorithms
rom the Weka library to find out how they perform on our
ataset:

• NaiveBayes
• NaiveBayesMultinomial
• Logistic
• SGD
• SimpleLogistic
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Table 16
TOP 5 machine learning algorithms for method level based on F-measure.
Algorithm Precision Recall F-measure

trees.RandomForest 0.6335 0.6324 0.6319
trees.J48 0.6147 0.6134 0.6119
trees.RandomTree 0.6115 0.6113 0.6110
functions.SimpleLogistic 0.6062 0.6043 0.6031
rules.DecisionTable 0.6138 0.6073 0.5983

• VotedPerceptron
• DecisionTable
• OneR
• J48 (C4.5)
• RandomForest
• RandomTree

We have 3 source code levels (method, class, file), 15 chosen
rojects (plus the summarized dataset), and 11 machine learning
lgorithms, implying that full tables with the obtained results
ould be too large to present in the paper, thus we introduce only
he best algorithms here for the overall dataset. Please note that
he online appendix (see Section 5.8 for the Web link) contains
ll the analysis results in spreadsheet files.

.1. First research question

The first research question we will answer is the following:

RQ1: Is the constructed dataset usable for bug prediction
purposes?

To answer RQ1, we present the best results obtained by dif-
erent machine learning algorithms at method, class, and file
evel. Similar to Section 5.6, we used the Friedman test and the
emenyi post-hoc test to check whether the distributions of the
amples are equal or not. We observed the same, very low p
values (pmethod = 1.21e-14, pclass = 1.54e-07, pprojected = 3.77e-14,
pfile = 1.06e-05), thus the distributions are not equal. With
α = 0.05, the critical value in this case for 11 groups (machine
learning algorithms) and 16 samples (databases) based on the
studentized range table is qcrit = 5.256. Due to the size of the
tables, we do not include them here, instead, the complete tables
are available in the Appendix A (see Tables 29, 30, 31, and 32).

6.1.1. Method level
We trained models to use method level metrics to predict

future failures at method level. The results are shown in Table 16
containing the best five algorithms selected by F-measure values.

The fifth best algorithm with 0.5983 F-measure value is Deci-
sionTable (Kohavi, 1995). The SimpleLogistic algorithm resulted
a slightly higher F-measure (0.6031). SimpleLogistic algorithm
builds linear logistic regression models that uses automatic at-
tribute selection (Landwehr et al., 2005). The first three algo-
rithms are all from the tree family. J48 (Quinlan, 1993) that
uses pruned or unpruned C4.5 decision tree to build a model
is the second best algorithm (0.6119). The third and the first
algorithms also use trees to produce prediction models. Ran-
domForest (0.6319) builds a forest from RandomTrees to get a
slightly better result than RandomTree (0.6110). The results of
the statistical tests in Table 29 show that the differences between
the top five algorithms are not statistically significant (p > α =

0.05) but the difference between the worst (NaiveBayes, Naive-
BayesMultinomial and VotedPerceptron) and the best performing
algorithms are significant.

At method level, trees were performing the best and can result
up to 0.6319 when considering F-measure values. We also inves-
tigated the results by projects and found that specific projects
Table 17
The best F-measure values by projects at method level.
Project F-measure Algorithm

antlr4 0.7573 trees.RandomForest
BroadleafCommerce 0.7366 trees.RandomForest
hazelcast 0.7170 trees.RandomForest
mct 0.6876 trees.RandomForest
oryx 0.6678 trees.RandomForest
junit 0.6638 rules.DecisionTable
all 0.6622 trees.RandomForest
netty 0.6412 trees.RandomForest
elasticsearch 0.6411 trees.RandomForest
orientdb 0.6236 trees.RandomForest
titan 0.6216 functions.SGD
neo4j 0.6086 functions.Logistic
mcMMO 0.5815 trees.RandomForest
MapDB 0.5610 functions.SimpleLogistic
Android-Universal-Image-Loader 0.5569 functions.SGD
ceylon-ide-eclipse 0.5395 trees.RandomTree

Table 18
TOP 5 machine learning algorithms for class level based on F-measure.
Algorithm Precision Recall F-measure

functions.SimpleLogistic 0.5760 0.5763 0.5685
rules.DecisionTable 0.5703 0.5705 0.5637
functions.SGD 0.5718 0.5676 0.5626
functions.Logistic 0.5561 0.5552 0.5537
trees.J48 0.5531 0.5530 0.5520

performed worse than others. Android Universal Image Loader
and Ceylon were the worst, both when considering precision,
recall, or F-measure. Achieved F-measure values depend highly
upon the project itself. A possible factor that plays role in this
is the size of the built corpus. These projects have a smaller
training corpus and more inconsistency in the feature vectors,
consequently it is harder to build a well-performing prediction
model. This phenomenon does not appear only at method level
but at class and file level too, since at these levels even less entries
are created in the dataset. The best F-measure values (over 0.75
in one case) achieved on different projects are demonstrated in
Table 17.

6.1.2. Class level
When considering class level, we have quite a different set

of algorithms in the top five than in the case of methods. Fur-
thermore, the precision, recall, and F-measure values differ sig-
nificantly from those we obtained at method level. We suspect
that the main reason behind this is the different set of metrics
used to build models, thus to predict the possibility of occurring
bugs in a class. At class level, simple logistic, decision table, and
SGD were the best. Function and rule based groups of machine
learning algorithms can be emphasized as the best when consid-
ering class level. The best machine learning algorithms at class
level are shown in Table 18 with F-measure values around 0.56.
In Table 30, the results of the significance tests show that the
best algorithm, SimpleLogistic with 0.5685 F-measure, achieved
significantly better results than the worst two algorithms that are
not in the top five (NaiveBayes p = 0.019 and VotedPerceptron
p = 0.001). Between the top five algorithms, the differences are
not significant (p > α = 0.05).

The low F-measures values suggest that one cannot build
efficient prediction models at class level.

However, we present the F-measure values of individual
projects in Table 19. Considering these F-measure values, we can
see the same phenomenon as in the case of methods. McMMO,
Android Universal Image Loader, and Neo4J are in the worst
5, which supports the previous experience according to which
different projects provide different amount of ‘‘munition’’ for
predicting faults. The best case, however, provides an F-measure
of 0.74.
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able 19
he best F-measure values by projects at class level.
Project F-measure Algorithm

BroadleafCommerce 0.7400 trees.RandomForest
oryx 0.7095 functions.SGD
junit 0.6639 rules.DecisionTable
hazelcast 0.6175 trees.RandomTree
MapDB 0.6138 functions.SimpleLogistic
orientdb 0.6132 functions.SimpleLogistic
mct 0.5825 functions.SGD
elasticsearch 0.5817 rules.DecisionTable
all 0.5803 rules.DecisionTable
ceylon-ide-eclipse 0.5789 rules.DecisionTable
antlr4 0.5685 rules.OneR
mcMMO 0.5670 functions.SGD
titan 0.5614 functions.SimpleLogistic
netty 0.5537 functions.Logistic
neo4j 0.5413 functions.SimpleLogistic
Android-Universal-Image-Loader 0.4713 bayes.NaiveBayes

Table 20
TOP 5 machine learning algorithms for file level based on F-measure.
Algorithm Precision Recall F-measure

trees.RandomTree 0.5484 0.5484 0.5476
trees.RandomForest 0.5458 0.5461 0.5455
functions.Logistic 0.5528 0.5474 0.5367
rules.OneR 0.5358 0.5359 0.5348
functions.SimpleLogistic 0.5491 0.5474 0.5321

6.1.3. File level
In Java context, a public class is almost equivalent to a file with
’.java’ extension. However, despite the fact that we compute

a different set of metrics for class and file level, the results are
quite similar. Since we operate on a different set of metrics at
class and file level, this explains that different machine learning
algorithms performed the best. The best algorithms for this level
use tree-based approaches to predict bugs as it is shown in
Table 20. Similar to class level, the differences between the top
five algorithms are not considered significant (p > α = 0.05), as
an be seen in Table 32. The best performing algorithm, achieving
n F-measure value of 0.5476, is RandomTree. The top five algo-
ithms achieved significantly better results compared to the worst
lgorithm (VotedPerceptron). Between the top five algorithms,
he differences are not considered significant (p > α = 0.05).

We also present the F-measure values obtained on projects
in Table 21. The takeaway remains the same, Android Universal
Image Loader and Neo4J are located in the worst five projects
again. On the other hand, Broadleaf Commerce, Oryx, and Hazel-
cast seem to be appropriate to use in model building. The best
F-measure value is over 0.77.

Answering RQ1: Considering the results we obtained, we
can state that creating bug prediction models at method level
is more successful than at file and class levels if we consider
the full dataset. We also showed the diversion in F-measure
values by projects, which strengthens our assumption that
not all projects are capable of providing an appropriate
training set. We can obtain F-measure values on separate
projects up to 0.7573, 0.7400, and 0.7741 at method, class
and file level, respectively, which is promising. In our next re-
search question, we accomplish an experiment and its results
are even better. However, even without knowing that there
is a better solution, we can answer this research question in
a positive manner and say that the constructed dataset is
usable for bug prediction.
Table 21
The best F-measure values by projects at file level.
Project F-measure Algorithm

BroadleafCommerce 0.7741 trees.RandomForest
oryx 0.6458 bayes.NaiveBayesMultinomial
hazelcast 0.6417 trees.RandomTree
all 0.6234 trees.RandomTree
orientdb 0.6200 rules.DecisionTable
elasticsearch 0.6073 trees.RandomTree
ceylon-ide-eclipse 0.5857 trees.J48
titan 0.5793 functions.SimpleLogistic
mcMMO 0.5702 trees.RandomForest
MapDB 0.5525 rules.OneR
junit 0.5484 rules.OneR
netty 0.5344 trees.RandomTree
antlr4 0.5212 trees.RandomForest
neo4j 0.5138 rules.DecisionTable
Android-Universal-Image-Loader 0.4781 rules.DecisionTable
mct 0.4576 functions.Logistic

6.2. Second research question

The dataset contains the bug information on both method
and class levels, and we also know the containing relationships
between classes and methods. However, since classes have a
different source code metrics set than methods, a question arose:
can we (and more importantly, should we) use method level
metrics to predict faulty classes? The second research question
we will answer is the following:

RQ2: Are the method level metrics projected to class level better
predictors than the class level metrics themselves?

We carried out an experiment where we projected the results
of the method-level learning to the class level. During the cross-
validation of the method level learning, we used the containing
classes of the methods to calculate the confusion matrix from
the number of classes classified as buggy and non-buggy. Classes
containing at least one buggy method were considered as buggy.

We compared this result with the result of the class-level pre-
diction. The results in Table 22 show that the projection method
performs much better than the prediction with class level met-
rics.

We applied the Wilcoxon-signed-rank test (Wilcoxon, 1945)
(a non-parametric paired test for dependent samples), with a
threshold of Zcrit = 1.96 (for a two-tailed test with α = 0.05) to
check whether the difference is significant. We also calculated the
effect size of these tests with the Pearson correlation coefficient
(Pearson’s r) from the formula r =

Z
√
N
, where N is the total num-

ber of samples and Z is the z-score of the test (Rosenthal et al.,
1994). According to Cohen (1992), the effect size is considered
small if r ≈ 0.1, medium if r ≈ 0.3 or large if r ≈ 0.5.

After the test, we can confirm that the difference between the
projection method and the prediction with class level metrics is
significant (Z = 10.9 > Zcrit = 1.96) and the effect size is
considered large (r = 0.58).

We suspect that this is due to the generality of class-level
metrics, which are therefore not powerful enough to effectively
distinguish source code bugs. Although the bug information for
methods does not include all bugs that affect the containing class
(e.g. change of fields, interfaces or superclasses), method level
metrics are more useful for bug prediction.

The results of the significance tests between the different
machine learning algorithms is displayed in Table 31. The best
performing algorithm is RandomForest with 0.7405 F-measure
and it is significantly better than the worst three algorithms
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Table 22
The results of projected learning.
Algorithm Precision Recall F-measure

Projected Class Projected Class Projected Class

trees.RandomForest 0.7471 0.5336 0.7370 0.5336 0.7405 0.5334
trees.RandomTree 0.7421 0.5381 0.7273 0.5380 0.7330 0.5376
functions.SGD 0.7441 0.5718 0.7288 0.5676 0.7322 0.5626
rules.DecisionTable 0.7425 0.5703 0.7404 0.5705 0.7309 0.5637
trees.J48 0.7390 0.5531 0.7250 0.5530 0.7290 0.5520

that are not displayed in Table 22 (NaiveBayes p = 0.001;
NaiveBayesMultinomial p = 0.001; VotedPerceptron p = 0.003).
The difference between the top five algorithms is not considered
significant (p > α = 0.05).

When using the projection approach to predict bugs in classes,
the F-measure values reach 0.74. As an extension of the answer
to RQ1, we can provide the above described mechanism to locate
class level bugs with a higher accuracy in a software system.

Answering RQ2: Using method level metrics for class level
bug prediction performed the best in our study. This fact also
contributes to the answer given for RQ1. Furthermore, method
level metrics are better predictors when projected to class level
than class level metrics by themselves.

6.3. Third research question

The third research question we will answer is the following:

RQ3: Is the BugHunter Dataset more powerful and expressive
than the GitHub Bug Dataset, which is constructed with the
traditional approach?

Comparing the expressive power of different datasets is a
arsh task since the various datasets were created with different
urposes, they often have only few independent variables in
ommon. The projects included in these datasets are different
s well. Therefore, we provide an objective comparison between
ur previously published traditional bug dataset, the GitHub Bug

Dataset (Tóth et al., 2016) and the BugHunter Dataset in the fol-
owing. These two datasets include exactly the same 15 projects
nd the set of independent variables are common and also cal-
ulated in the same way with the same tool. We used the same
achine learning algorithms to build prediction models. This
way, it is quite straightforward to compare the expressiveness
and compactness of these datasets.

Firstly, we compare the size of the datasets expressed with
the number of entries located in the datasets. Table 23 shows the
number of entries at method, class, and file level. The number of
entries contained in the traditional dataset are listed in the ‘‘Trad’’
column. The ‘‘BH’’ column represents the number of entries in the
BugHunter dataset, while ‘‘Rate’’ is calculated as follows:

Rate =
# of entries in the traditional dataset
# of entries in the BugHunter dataset

The obtained rate is higher than 1.0 for most of the projects in
case of the method level, which shows that the new approach
contains less entries at this level. A rate of 1.54 is achieved
at method level, 0.41 at class level, and 0.33 at file level. It is
important to note that the traditional dataset encompasses data
for only a six-month long interval which has the most bugs in it.
On the other hand, the BugHunter dataset contains information
from the beginning of the project up to September, 2017. One
would expect that the new approach will contain less entries
than the traditional one since the BugHunter dataset contains
only the entries which were affected by a closed bug. However,
the traditional dataset only depends on the size (number of files,
classes, and methods) of the projects included. In contrast, the
BugHunter dataset highly depends on the number of closed bugs
in the system (large projects can have small amount of reported
bugs). Even if no feature development was performed on a project
(the size of the project remains quasi-same: in general no new
files and classes are added, only modified) the number of closed
bugs imply more entries in the BugHunter dataset, while size is
not affected in any way in the traditional dataset.

To sum up, we cannot clearly decide whether the new dataset
is more compact; however it is clearly visible that BugHunter
could compress the bug related information at method level. We
achieved an F-measure value of 0.6319 at method level (see Ta-
ble 24) and the composed dataset contains 58,464 less entries
than the traditional one. In both datasets, the number of entries
are sufficient to build a predictive model from; however we
should investigate the predictive capabilities first to conclude our
findings related to expressive power and compactness.

In the following, we present tables that capture the differ-
ences of the prediction capabilities between the two datasets
(using F-measures, as before). Tables 24, 25, 26, and 27 present
machine learning results for method, class, file levels and also
the F-measure values for the projected method level predictors,
respectively. The complete tables are not presented here due to

lack of space, however average, standard deviation, min, and max
Table 23
Comparison of the size of the datasets.
Project Method Class File

Trad BH Rate Trad BH Rate Trad BH Rate

Android-U.-I.-L. 432 325 1.33 73 156 0.47 63 145 0.43
antlr4 3,640 840 4.33 479 314 1.53 411 347 1.18
BroadleafCommerce 14,651 4,709 3.11 1,593 2,957 0.54 1,719 2,969 0.58
ceylon-ide-eclipse 8,787 2,087 4.21 1,611 1,275 1.26 700 946 0.74
elasticsearch 34,324 35,862 0.96 5,908 24,994 0.24 3,035 17,724 0.17
hazelcast 21,642 32,973 0.66 3,412 19,845 0.17 2,228 14,913 0.15
junit 2,441 462 5.28 731 316 2.31 309 177 1.75
MapDB 2,913 1,456 2.00 331 899 0.37 138 482 0.29
mcMMO 2,531 1,184 2.14 301 732 0.41 267 678 0.39
mct 9,836 105 93.68 1,887 66 28.59 413 52 7.94
neo4j 30,256 7,030 4.30 5,899 3,701 1.59 3,278 2,934 1.12
netty 8,312 11,171 0.74 1,143 5,677 0.20 914 4,023 0.23
orientdb 17,013 9,445 1.80 1,847 4,134 0.45 1,503 3,564 0.42
oryx 2,506 810 3.09 533 598 0.89 281 536 0.52
titan 8,424 785 10.73 1,468 428 3.43 976 378 2.58

Total 167,708 109,244 1.54 27,216 66,092 0.41 16,235 49,868 0.33
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redictive capabilities — Method level.
Dataset Avg. Std.dev. Min Max

BugHunter 0.6319 0.0836 0.3376 0.7573
Traditional 0.7348 0.0789 0.4019 0.8339

Table 25
Predictive capabilities — Class level.
Dataset Avg. Std.dev. Min Max

BugHunter 0.5685 0.0704 0.3572 0.7400
Traditional 0.7710 0.0869 0.3446 0.8331

Table 26
Predictive capabilities — File level.
Dataset Avg. Std.dev. Min Max

BugHunter 0.5147 0.0749 0.3328 0.7741
Traditional 0.6058 0.1076 0.2882 0.8247

Table 27
Predictive capabilities — Projected.
Dataset Avg. Std.dev. Min Max

BugHunter 0.7405 0.0914 0.3178 0.8386
Traditional 0.7831 0.0716 0.4399 0.8825

Table 28
Uncertainty in the traditional dataset.
Project Average

days
Average commits
before reported

Average commits
before fixed

Android-U.-I.-L. 78.78 179.04 22.82
antlr4 83.73 94.83 66.21
BroadleafCommerce 96.40 524.88 116.74
ceylon-ide-eclipse 136.05 442.00 20.22
elasticsearch 93.85 1004.60 382.79
hazelcast 84.61 1905.88 143.54
junit 91.94 76.71 171.09
MapDB 102.09 150.47 25.06
mcMMO 108.71 289.83 41.72
mct 64.00 203.00 55.93
neo4j 39.53 535.77 189.30
netty 83.65 411.60 48.96
orientdb 99.21 568.76 179.30
oryx 63.00 104.42 3.40
titan 51.35 65.91 59.85

values are calculated and included in the tables which provide
a general picture for the comparison. The appendix.zip file
supplied as an online appendix (see Section 5.8) contains the
complete tables with all F-measure values. For the sake of clarity,
we describe how we obtained the averages presented here in
the paper in detail. First, since the traditional dataset consists
of multiple versions with bugs from six-months long intervals,
for each project we selected the version from the traditional
dataset that has the most number of bugs assigned to them. After
collecting the machine learning results of the selected versions,
we calculated average F-measure values for each algorithm we
used. Then we ranked the algorithms based on these averages and
we selected the one with the highest average value. We used this
average value for the traditional dataset in the comparison. From
the BugHunter dataset, we used the average F-measure value
of the previously selected algorithm calculated on the results
obtained after applying the Subtract filtering. We performed this
process for method, class, file, and projected levels separately.
On the traditional dataset, the machine learning algorithms
performed better, achieving higher F-measure values in every
case. The two kinds of datasets differ fundamentally, because they
are constructed with two different methods. For the traditional
dataset, we divided the history of the projects into six-month long
intervals by selecting release versions from the GitHub reposi-
tory. We collected the reported bugs from these intervals and
we assigned the buggy source code elements to these release
versions based on the bugfixes. Then we used the state of the
source code elements from these selected versions to assemble
the bug dataset. This method was used in several previous stud-
ies (D’Ambros et al., 2010; Gyimothy et al., 2005). It is necessary,
because the bugs are reported usually after releasing a version,
thus at the time of the release there are too few bugs to con-
struct a bug dataset. For the bug assignment, we used a heuristic
method — similar to other studies (Gyimothy et al., 2005) - where
we assigned each bug to the latest selected version before the bug
was reported into the issue tracking system. This method leads
to some uncertainty in the dataset, because it could happen that
the bug is not yet present in the assigned version. Table 28 shows
some characteristics of this uncertainty.

The second column is the average number of days elapsed
between the date of the release and the date of the bugs reported.
The maximum that could occur is 180 days, because we used
intervals around 6 months long. We can see that these averages
are quite high, the overall average is 85 days. The third column
is the average number of commits contributed to the project
between the release commit and the date of the bugs reported.
These values vary for each project, because it depends on the
developers’ activity. For some projects (Elasticsearch, Hazelcast)
it could mean thousands of modifications before the bug was
reported. The more commits are performed, the higher the prob-
ability that the source code element became buggy after the
release. The fourth column shows the average number of commits
performed from the time when the bug was reported and when
the fix was applied. These numbers are much smaller, which
also demonstrates that bugs are fixed relatively fast. This fast
corrective behavior causes before and after fix states to be less
different for the BugHunter approach. Consequently, less differ-
ence in metric values makes building a precise prediction model
more difficult.

The uncertainty is also visualized in Figs. 6 and 7 for the sake
of better comprehension. The first timeline (traditional dataset)
shows a case when the actual bug occurred after Release #1, then
the bug was reported and finally fixed before Release #2. In this
case, the source code elements touched by the bug are included
in the dataset with a buggy label. This dataset is created with the
state captured at the time of Release #1. However, these source
code elements became buggy after Release #1, thus the dataset
marked them buggy at that point incorrectly. This error comes
from the methodology itself which could be leveraged by narrow-
ing the time window (which is 6 months wide traditionally). On
the other hand, 6 months interval is not an unwitting choice. If we
narrow down the time window, we will also have less bugs for an
interval, which results in a more unbiased dataset, thus only less
powerful predictive models can be built. It would be important
to see how many source code elements were marked as buggy
incorrectly, however this cannot be easily measured since the
exact time of the bug occurrence cannot be determined (we only
know the time when a bug was reported).

The new BugHunter approach (see Fig. 7), however, is free
from the uncertainty mentioned above because it uses only the
buggy and the fully fixed states of the bug related source code
elements. This way, the produced bug dataset is more precise,
hence it is more appropriate for machine learning. Therefore, we
cannot clearly state that the traditional dataset is better, even
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Table 29
Significance test results for method level — Algorithms.

NaiveBayes NaiveBayes-
Multinomial

Logistic SGD Simple-
Logistic

Voted-
Perceptron

Decision-
Table

OneR J48 Random-
Forest

NaiveBayesMultinomial 0.900 (1.28)
Logistic 0.129 (4.07) 0.007 (5.35)
SGD 0.045 (4.60) 0.002 (5.88) 0.900 (0.53)
SimpleLogistic 0.053 (4.52) 0.002 (5.80) 0.900 (0.45) 0.900 (0.08)
VotedPerceptron 0.900 (1.88) 0.900 (0.60) 0.001 (5.95) 0.001 (6.48) 0.001 (6.41)
DecisionTable 0.045 (4.60) 0.002 (5.88) 0.900 (0.53) 0.900 (0.00) 0.900 (0.08) 0.001 (6.48)
OneR 0.302 (3.54) 0.027 (4.82) 0.900 (0.53) 0.900 (1.06) 0.900 (0.98) 0.006 (5.43) 0.900 (1.06)
J48 0.023 (4.90) 0.001 (6.18) 0.900 (0.83) 0.900 (0.30) 0.900 (0.38) 0.001 (6.78) 0.900 (0.30) 0.900 (1.36)
RandomForest 0.001 (7.61) 0.001 (8.89) 0.302 (3.54) 0.546 (3.02) 0.513 (3.09) 0.001 (9.50) 0.546 (3.02) 0.129 (4.07) 0.679 (2.71)
RandomTree 0.019 (4.97) 0.001 (6.23) 0.900 (0.90) 0.900 (0.38) 0.900 (0.45) 0.001 (6.86) 0.900 (0.38) 0.900 (1.43) 0.900 (0.08) 0.712 (2.64)
Table 30
Significance test results for class level — Algorithms.

NaiveBayes NaiveBayes-
Multinomial

Logistic SGD SimpleLo-
gistic

VotedPer-
ceptron

Deci-
sionTable

OneR J48 Random-
Forest

NaiveBayesMultinomial 0.900 (1.13)
Logistic 0.169 (3.92) 0.646 (2.79)
SGD 0.169 (3.92) 0.646 (2.79) 0.900 (0.00)
SimpleLogistic 0.019 (4.97) 0.191 (3.84) 0.900 (1.06) 0.900 (1.06)
VotedPerceptron 0.900 (1.88) 0.546 (3.02) 0.002 (5.80) 0.002 (5.80) 0.001 (6.86)
DecisionTable 0.004 (5.58) 0.063 (4.45) 0.900 (1.66) 0.900 (1.66) 0.900 (0.60) 0.001 (7.46)
OneR 0.878 (2.26) 0.900 (1.13) 0.900 (1.66) 0.900 (1.66) 0.679 (2.71) 0.113 (4.15) 0.406 (3.32)
J48 0.369 (3.39) 0.878 (2.26) 0.900 (0.53) 0.900 (0.53) 0.900 (1.58) 0.009 (5.28) 0.900 (2.19) 0.900 (1.13)
RandomForest 0.900 (0.75) 0.900 (0.38) 0.479 (3.17) 0.479 (3.17) 0.098 (4.22) 0.712 (2.64) 0.027 (4.82) 0.900 (1.51) 0.712 (2.64)
RandomTree 0.900 (1.66) 0.900 (0.53) 0.878 (2.26) 0.878 (2.26) 0.406 (3.32) 0.302 (3.54) 0.169 (3.92) 0.900 (0.60) 0.900 (1.73) 0.900 (0.90)
Table 31
Significance test results for projected — Algorithms.

NaiveBayes NaiveBayes-
Multinomial

Logistic SGD SimpleLo-
gistic

VotedPer-
ceptron

Deci-
sionTable

OneR J48 Random-
Forest

NaiveBayesMultinomial 0.900 (0.68)
Logistic 0.003 (5.73) 0.001 (6.41)
SGD 0.001 (7.01) 0.001 (7.69) 0.900 (1.28)
SimpleLogistic 0.006 (5.43) 0.001 (6.11) 0.900 (0.30) 0.900 (1.58)
VotedPerceptron 0.900 (1.81) 0.778 (2.49) 0.169 (3.92) 0.011 (5.20) 0.271 (3.62)
DecisionTable 0.001 (7.69) 0.001 (8.37) 0.900 (1.96) 0.900 (0.68) 0.878 (2.26) 0.002 (5.88)
OneR 0.005 (5.50) 0.001 (6.18) 0.900 (0.23) 0.900 (1.51) 0.900 (0.08) 0.242 (3.69) 0.900 (2.19)
J48 0.001 (5.95) 0.001 (6.63) 0.900 (0.23) 0.900 (1.06) 0.900 (0.53) 0.113 (4.15) 0.900 (1.73) 0.900 (0.45)
RandomForest 0.001 (7.46) 0.001 (8.14) 0.900 (1.73) 0.900 (0.45) 0.900 (2.04) 0.003 (5.65) 0.900 (0.23) 0.900 (1.96) 0.900 (1.51)
RandomTree 0.005 (5.50) 0.001 (6.18) 0.900 (0.23) 0.900 (1.51) 0.900 (0.08) 0.242 (3.70) 0.900 (2.19) 0.900 (0.00) 0.900 (0.45) 0.900 (1.96)
Table 32
Significance test results for file level — Algorithms.

NaiveBayes NaiveBayes-
Multinomial

Logistic SGD SimpleLo-
gistic

VotedPer-
ceptron

Deci-
sionTable

OneR J48 Random-
Forest

NaiveBayesMultinomial 0.900 (1.88)
Logistic 0.129 (4.07) 0.900 (2.19)
SGD 0.900 (0.15) 0.900 (2.04) 0.098 (4.22)
SimpleLogistic 0.148 (4.00) 0.900 (2.11) 0.900 (0.08) 0.113 (4.15)
VotedPerceptron 0.900 (1.21) 0.513 (3.09) 0.009 (5.28) 0.900 (1.06) 0.011 (5.20)
DecisionTable 0.443 (3.24) 0.900 (1.36) 0.900 (0.83) 0.369 (3.39) 0.900 (0.75) 0.063 (4.45)
OneR 0.148 (4.00) 0.900 (2.11) 0.900 (0.08) 0.113 (4.15) 0.900 (0.00) 0.011 (5.20) 0.900 (0.75)
J48 0.513 (3.09) 0.900 (1.21) 0.900 (0.98) 0.443 (3.24) 0.900 (0.90) 0.085 (4.30) 0.900 (0.15) 0.900 (0.90)
RandomForest 0.098 (4.22) 0.845 (2.34) 0.900 (0.15) 0.073 (4.37) 0.900 (0.23) 0.006 (5.43) 0.900 (0.98) 0.900 (0.23) 0.900 (1.13)
RandomTree 0.098 (4.22) 0.845 (2.34) 0.900 (0.15) 0.073 (4.37) 0.900 (0.23) 0.006 (5.43) 0.900 (0.98) 0.900 (0.23) 0.900 (1.13) 0.900 (0.00)
despite the higher F-measure values. The difference between the
values of the two dataset is around 0.10 at method level, 0.21 at
class level, and 0.09 at file level. Projecting method level metrics
to class level achieved almost as high an F-measure value (0.7405)
as in the traditional case (0.7831). The difference is only 0.04, yet
it is on a much more precise dataset.
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Fig. 6. Traditional approach.
Fig. 7. BugHunter approach.
Answering RQ3: Traditional datasets include a high risk when
labeling source code elements as buggy since the elements may
become buggy after the release version. This injects false labeling
into the training set, which might end up in deceptive machine
learning results (as successfully predicting a bad label is not
correct). Unfortunately, the number of incorrectly labeled source
code elements cannot be determined since we only know the
time when a bug was reported, we do not know the exact time
when it was inserted into the system. These facts make it really
hard to take one dataset and state that it is better for bug
prediction.

7. Threats to validity

In this section, we briefly describe the threats to validity.
irstly, we present the construct validity, then the internal and
xternal validity threats.

.1. Threats to construct validity

When constructing a dataset in an automatic way, there are
lways some possible threats to validity. We validated our match-
ng algorithm on JUnit, which was fair in size. However, investi-
ating the validity of the matching in other systems could have
evealed additional findings.

As we have seen, commit mismatches can occur during this
rocess, which can distort the final bug dataset. However, man-
ally validating all bugs and the corresponding commits would
ave been an enormous task.
Deciding which source code elements are faulty and which

re not can also cause a construct validity threat. We consider a
ource code element faulty before the corresponding bug is fixed
the source code element had to be modified in that fix) and after
he corresponding bug report is present. The source code element
an already be faulty before the report and can have multiple
hanges in that period; and it can be faulty also after the last fix,
but we do not know the issue at that time, which can also distort
the measurements. Unfortunately, these uncertainties cannot be
solved, since there are no further data to rely on.

7.2. Threats to internal validity

It would be meaningful to use multiple static source code
analyzers in order to decrease the threats to internal validity
caused by measuring source code element characteristics with
only one tool. However, it would mean much more work, and
even then, additional manual validations would be needed to
decide which tool measures a given metric more precisely, which
often depends on interpreting the conceptual definitions.

7.3. Threats to external validity

Currently, the constructed dataset consists of 15 projects
which may limit the capabilities of the bug prediction models.
Selecting more projects to be included in the dataset would
increase the generalizability of the built bug prediction models.
Considering additional source hosting platforms (SourceForge,
Bitbucket, GitLab) would also increase the external validity of the
dataset.

Widely used and accepted programming constructs and struc-
tures can vary from programming language to programming lan-
guage. Using different constructs may have a significant result
on the calculated metric values. Selecting projects written in
different programming languages, not only Java software systems,
could further strengthen the generalizability of our method.

8. Conclusions and future work

In this study, we developed a method that generates a bug
dataset whose entries are source code elements touched by bug-
fixes mined from GitHub. The entries represent before and after
states of source code elements on which bug fixes were applied.
The presented approach allows the simultaneous processing of
several publicly available projects located on GitHub, thereby
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resulting in the production of a large – and automatically ex-
pandable – dataset. In contrast, previous studies have dealt with
only a few large-scale datasets, which were created under strict
individual management. Additionally, our dataset contains new
source code metrics compared to other datasets, allowing the ex-
amination of the relationship between these metrics and software
bugs. Furthermore, manual examinations showed the reliability
of our approach, so the adaptation of project-specific labels to the
presence of bugs remains the only non-automatic step. Our initial
adaptation of 15 suitable Java projects lead to the construction of
the current dataset, which is one of our main – publicly available
– contributions.

During empirical evaluations, we showed that the dataset can
be used for further investigations such as bug prediction. For this
purpose, we used several machine learning algorithms at three
different granularity levels (method, class, file) from which the
method-level prediction achieved the highest F-measure values.
As a novel kind of experiment, we also investigated whether
the method-level metrics projected to the class level are better
predictors than the class-level metrics themselves, and found a
significant improvement in the results.

As potential future work, we are planning to expand the
dataset with additional projects and even additional data sources,
such as SourceForge and Bitbucket. Supporting different exter-
nal bug tracking systems is another option for extending our
approach. We will also dedicate more attention to the concrete
prediction models we generate, as this study focused solely on
showing the conceptual usability of our dataset.
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