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Abstract 

Microcomputed-tomography (micro-CT) is a 3D imaging method capable of revealing the 

complete inner structure of materials. Besides imaging, micro-CT also provides quantitative 

information about numerous structural features including lacunarity, which describes the 
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heterogeneity of samples quantitatively. Theoretically, lacunarity is easily calculated using 

the gliding box method. However, when implemented in 3D, the computational costs of 

this method increase enormously, thus preventing its widespread use for large micro-CT 

datasets. Here we suggest a faster alternative method, based on the fixed-grid algorithm, 

which offers a viable alternative and renders 3D lacunarity calculations on micro-CT data 

feasible. Since a possible shortcoming of this alternative is that its reduced data could result 

in an inferior description of the real spatial heterogeneity of the structures, the two methods 

are compared concerning the accuracy, computational time, and applicability in materials 

science. The calculations are carried out on real 3D micro-CT datasets. Our implementation 

of the fixed-grid method can approximate gliding box lacunarity values rapidly and 

accurately, especially for large datasets of homogeneous structures. Therefore, we propose 

adding the fixed-grid method lacunarity calculation to the routine micro-CT analysis 

toolbox. Our image acquisition platform-independent software (Lac3D) to carry out this 

calculation is made freely accessible here. 

 

Keywords: Lacunarity; Heterogeneity; Microtomography; Materials science; 3D image 

analysis 
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1. Introduction 

Micro-CT is an important and dynamically spreading characterization tool in materials 

science [1][2]. While CT (computed tomography) was first introduced as a medical 

diagnostic tool in the 1970s [3], it soon became a widely used characterization technique in 

other scientific fields as well. With advancements in technology, high-resolution CTs 

became available, which are often called micro-CTs due to their ability to provide data with 

(sub)micron resolution. The technique is based on the different X-ray attenuations of 

materials, which depends mainly on their chemical composition and density. Micro-CT is a 

high resolution, non-destructive three-dimensional (3D) imaging technique, suitable for a 

broad variety of materials [4][5][6]. Its non-destructive nature makes it especially attractive 

for materials science purposes. 

The visualization and investigation of the inner structure of materials is an important task, 

and while micro-CT can provide valuable 3D images of the internal structure, it is much 

more than just a visualization tool; a large amount of quantitative data can also be extracted 

from the measurements, making micro-CT an important diagnostic tool. With this 

technique, we can harness the full range of spatial information obtainable at the given scale 

in 3D [7]. It is customary to use micro-CT for porosity determination, and the obtained 

images could be used to calculate fractal dimension [8][9], which provides information 

about the complexity of structures [10][11]. Fractal dimension is easily calculated by the 

box-counting method [12] from micro-CT images even in three dimensions [13][14][15]. 

Unfortunately, this property is only applicable for self-similar structures, and structures 

with the same fractal dimension can be highly different from each other in appearance [16]. 
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Other fractal parameters carrying valuable structural information are, for example, second-

order fractal metrics such as succolarity, which describes the anisotropy and percolation 

degree of structures [17], and lacunarity, which describes their heterogeneity and deviation 

from translational homogeneity [18]. Fractal dimension and lacunarity together can 

describe the complexity and heterogeneity of patterns in one, two, or three dimensions. 

Lacunarity (from the Latin ―lacuna‖, meaning gap) was first proposed by Mandelbrot [10] 

to complement fractal dimension. It can help distinguish between patterns with the same 

fractal dimensions yet different structures (different in e.g. appearance and heterogeneity); 

it provides information about texture. It is a multi-scale property, insensitive to image 

borders and independent of the image density. It can describe how space is occupied, 

provides information regarding the spatial distribution of gaps, and quantifies the degree of 

translational invariance [18]. Lacunarity is also applicable to real-life datasets with limited 

– or even no – self-similarity and can be used as a feature for automated image analysis 

[19] or classification [20]. Calculating lacunarity can be beneficial in various scientific 

fields from geography [21] and astronomy [22] through food chemistry [23] to 

neuroscience [24] and oncology [25][26][27]. It can be used to define the heterogeneity of 

forests from 2D maps [21] and can be a useful property for trabecular bone investigation 

[28][29] and cell classification [24]. 

The potential advantages of lacunarity calculations in materials science are not yet widely 

exploited, but there are several interesting examples where lacunarity calculation added 

high value to the research. One of the most promising fields is the lacunarity of pores since 

the spatial distribution of pores in materials can greatly influence their physical properties 
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[30][31]. For example, in the case of building materials (e.g. concrete, brick) an uneven 

pore distribution can create weak spots and worsen their mechanical strength [32][33][34].  

Lacunarity can be used to characterize the heterogeneity of the pore structure of granular 

materials [35], soil samples [36], oil reservoir rocks [37][38], biomaterials [39] as well as 

bio-scaffolds [40] and carbon nanostructures [41][42]. Moreover, it can be a valuable 

structural descriptor in industrial quality control [43][44][45] and also suitable for 

quantifying the efficiency of mixing [46], a crucial operation in many industries. 

The higher the lacunarity, the more heterogeneous the structure and vice versa.  However, 

lacunarity is rarely described as a single numerical value, rather as a function of the box 

size.  A single numerical value – obtained by using a predefined box size –, is only suitable 

for comparing the heterogeneity of systems, whereas the shape of the lacunarity function 

provides valuable information about the texture as well. A sudden change in the steepness 

of the lacunarity curve indicates a change in scale and the point of the change on the 

abscissa marks the size of the grains/aggregates/clusters/particles involved [47]. The first 

derivative of the lacunarity curve can be used to identify hidden, scale-dependent patterns 

in structures more easily [48]. 

The gliding box method (GBM) is the most frequently used box-counting method to 

calculate lacunarity [49]. It can also be implemented in 3D by adding one more dimension 

to the original algorithm [50]. However, calculating gliding box lacunarity for large 3D 

datasets (e.g. real micro-CT data) is very time-consuming, therefore, there are several 

attempts to decrease the computational demand [51][52][53]. The fixed-grid method 

(FGM) [16][54] is a promising alternative. The actual calculation in every individual box is 
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the same as for the gliding box method, however, in FGM the boxes do not overlap, 

resulting in significantly decreased computational cost. The trade-off is that since lacunarity 

is a statistical value, less data could mean a less accurate description of the same volume. 

This concern has kept the fixed-grid algorithm largely out of scientific research, and 

consequently, the micro-CT community seldom exploits the rich lacunarity information 

present in each measured dataset. 

In this paper, we put forth an easy-to-use, fast calculation method based on the fixed-grid 

algorithm, which is suitable for lacunarity calculation on huge 3D datasets. The accuracy 

concern is addressed in detail by comparing the FGM and GBM methods in terms of 

accuracy, computational time, and applicability to large 3D datasets. First, we prove the 

operability of our self-developed Lac3D software on 2D datasets, then use the algorithms 

on real micro-CT data gradually increasing in size. Samples with evident materials science 

relevance were chosen for this comparison: a sandstone drilling core sample with a 

relatively homogeneous grain structure and a concrete cube with heterogeneously sized and 

distributed pores. Having demonstrated the practical equality of the results for large 3D 

datasets and the computational cost advantage of our fixed-grid algorithm implementation, 

we finally present exemplary lacunarity calculations for archetypal materials (solid, porous, 

fibrous, foam-like, and fractured) based on real 3D micro-CT measurements. 
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2. Materials and methods 

2.1. Microcomputed tomography (micro-CT) 

Two real-life materials science samples: a sandstone drilling core with quasi-homogeneous 

phase distribution (Fig. 1.A-C), and a concrete cube (d < 1 mm sand grains and EN 197-1 

CEM II/B-M (V-LL) 32,5 N cement) with highly heterogeneous pore distribution (Fig. 

1.D-F) provided the micro-CT data for the model calculations. 

 

 

 

Figure 1. 3D volume-rendered micro-CT images of (A) a rock core sample (grayscale) 

with homogeneously distributed sand grain texture (blue) and (D) a concrete cube 
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(grayscale) with a heterogeneous pore structure (blue); (B and E) representative selected 

volume of interests (VOI) for the calculations in the case of rock core and concrete cube 

samples, respectively: cubiform volumes with an edge length of 300 pixels (300x300x300 

voxels, i.e. 27,000,000 B/W points in 3-dimension). (C and F) Representative segmented 

slices from the 3D volume of interests. The difference in the length scales (A, D) comes 

from the different pixel resolution: it was 9 µm in the case of the core sample and 30 µm 

for the concrete cube. 

 

The microtomography measurements were carried out using a Bruker Skyscan 2211 X-ray 

nanotomograph. The drilling core sample was scanned using an open type pumped X-ray 

source operating at 180 kV tube voltage and 70 μA emission current (0.5 mm Cu filter). 

The pixel resolution was 9 μm using a 3 Mp cooled Flat Panel camera with an exposure 

time of 65 ms. A total of 1201 projection images were obtained by a 360° rotation of the 

sample with a 0.3° rotation step in 30 min scan time. These values for the concrete cube 

samples were 130 kV tube voltage, 155 μA emission current (0.5 mm Ti filter), 30 μm pixel 

resolution, 50 ms exposure time, 1042 projections, 180° rotation, 0.2° rotation step, 30 min 

scan time. The images were reconstructed with NRecon (Skyscan Bruker, Belgium) 

software; this step includes the correction of the most common imaging artifacts (i.e. ring 

artifact, beam-hardening and misalignment). After reconstruction, the volume-rendered 3D 

CT images were visualized using the CTVox (Skyscan Bruker, Belgium) software. The 

segmented 3D datasets for the chosen volume of interests (VOIs) were generated by the 

CTAn (Skyscan, Bruker, Belgium) software after noise reduction on the original images. 
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The same imaging and post processing steps were applied for several archetypal materials 

science examples; the pixel resolution for the limestone, timber, mortar, Al foam and 

andesite rock samples were 8, 0.8, 30, 5 and 25 µm, respectively. The lacunarity curves of 

each sample were calculated for the segmented images by a self-developed software. 

 

2.2. Gliding box method (GBM) 

The gliding box algorithm for 2D datasets was published by Allain and Cloitre in 1991 

[49]. Fig. 2 shows the principle of operation of this algorithm. On this schematic 

illustration, a binarized M x M (M = 8) random dataset (containing 64 pixels) is 

represented, where the colored pixels are the objects (Boolean 1) and the white pixels are 

empty (Boolean 0). In this example, an ε x ε (ε = 2) sized box (framed by a solid blue line) 

is placed on the grid and the number of objects in this box is counted: 3 of 4 pixels are 

objects, this number is referred to as the mass of the box. In this particular case, the box 

mass can vary between 0 and 4 (see Table 1). The box is now moved one row to the Y-

direction (dashed blue line) and the box mass is counted again (1 of 4). The number of 

possible box positions is N(M,ε) = (M-ε+1)
2
 (= 49, here). If the number of boxes with size ε 

containing P object pixels is n(P,ε), then this frequency distribution can be converted into a 

probability distribution Q(P,ε), showed by Eq. (1). 

       
      

      
                                                          (1) 

The first and second moments of this distribution are determined by Eqs. (2-3), and Λ(ε), 

the lacunarity for box size ε is defined by Eq. (4) [55].  
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     ∑                                                                       (2) 

     ∑                                                                      (3) 

     
    

(      )
                                                                  (4) 

 

 

 

Figure 2. Schematic representation of the principle of operation of the gliding box 

algorithm for lacunarity calculation in 2D.  

 

Table 1. Calculated data (by GBM) for the example shown in Fig. 2: size of the map, M = 

8; size of the box, ε = 2; the box mass, P can vary between 0 and 4; n(P,ε) is the number of 

boxes containing P object pixels; Q(P,ε) is the probability calculated by Eq (1); P·Q(P,ε) 
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and P
2
·Q(P,ε) are the first and second moments, while Z

(1)
 and Z

(2)
 are the sum of the first 

and second moments, calculated by Eqs. (2) and (3), respectively. Λ(2) is the lacunarity of 

the dataset for box size ε = 2. 

P n(P,ε) Q(P,ε) P·Q(P,ε) P
2
·Q(P,ε) 

0 5 0.102 0 0 

1 25 0.510 0.510 0.510 

2 16 0.327 0.653 1.306 

3 3 0.061 0.184 0.551 

4 0 0 0 0 

Sum: 49 1 Z
(1)

 = 1.347 Z
(2)

 = 2.367 

Lacunarity:   Λ(2) = 1.305 Ln(Λ) = 0.266 

 

 

2.3. Fixed-grid method (FGM) 

A promising alternative to the above-described algorithm could be the fixed-grid algorithm 

presented here, which is similar to the box-counting method for fractal dimension 

calculations. The box mass is calculated just like in the gliding box method, but in this case, 

the boxes do not overlap, thus the number of boxes and the computational resource 

requirements decrease drastically. This is especially important when extending the 

algorithm to 3D, which is indispensable for the investigation of spatial heterogeneity of real 

3D micro-CT datasets. The schematic illustration of the principle of operation and the 

corresponding pseudo-code for the three-dimensional fixed-grid method is shown in Fig. 
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S1. It is clearly visible that the box-counting part of the algorithm (marked in blue in the 

pseudo-code in Fig. S1) is not altered significantly; the only modification is the declaration 

of a third variable which is assigned to the third dimension. The main difference between 

the two methods is that the statistical analysis is performed based on the masses of the 

aforementioned non-overlapping boxes (marked in red in the pseudo-code of Fig. S1). This 

alteration drastically reduces the number of boxes taken into account. For practical reasons, 

only box sizes that are divisors of the size of the volume of interest (VOI) are allowed, thus 

every voxel is counted at all box sizes. In the example shown in Fig S1., the edge length of 

the VOI is M = 8, which contains 512 voxels. For this VOI the GBM algorithm would use 

N(M,ε) = (M-ε+1)
3
 = 343 ε = 2 sized boxes, while this value is only 64 for the FGM. For 

small datasets the difference in the number of boxes (thus, in the calculation time) is 

negligible, but for large micro-CT datasets the difference is significant. If M = 800 and ε = 

50 then the dataset contains 512 million voxels and the masses of 423,564,751 boxes 

should be counted by the GBM but only 4,096 by the FGM. The downside of FGM is that 

for relatively small datasets the calculated lacunarity values can be inaccurate compared to 

the results of GBM due to the small number of boxes used. This effect is presented in Table 

2: the calculated Λ and ln(Λ) values by the fixed-grid method differ from the data for GBM 

in Table 1, which is caused by the under-sampling, thus by the different distribution of 

n(P,ε) values. For larger datasets, however, the FGM can potentially calculate lacunarity 

with R
2
 = 0.999 accuracy (R

2
 of the linear curve when plotting GBM datapoints as the 

function of FGM datapoints) in less than a minute, whereas the same calculation would 

take days or even weeks by GBM.  
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Table 2. Calculated data (by FGM) for the example shown in Fig. 2: size of the map, M = 

8; size of the box, ε = 2; the box mass, P can vary between 0 and 4; n(P,ε) is the number of 

boxes containing P object pixels; Q(P,ε) is the probability calculated by Eq (1); P·Q(P,ε) 

and P
2
·Q(P,ε) are the first and second moments, while Z

(1)
 and Z

(2)
 are the sum of the first 

and second moments, calculated by Eqs. (2) and (3), respectively. Λ(2) is the lacunarity of 

the dataset for box size ε = 2.  

P n(P,ε) Q(P,ε) P·Q(P,ε) P
2
·Q(P,ε) 

0 4 0.250 0 0 

1 5 0.313 0.313 0.313 

2 4 0.250 0.500 1.000 

3 3 0.188 0.563 1.688 

4 0 0 0 0 

Sum: 16 1 Z
(1)

 = 1.375 Z
(2)

 = 3 

Lacunarity:   Λ(2) = 1.587 Ln(Λ) = 0.462 

 

 

Lacunarity was calculated for the model 3D micro-CT datasets both by the gliding box and 

the fixed-grid methods using a self-developed software (Lac3D), which is developed in an 

open-source software [56][57]. Results below were all obtained by Lac3D, which is made 

freely available to the community at http://nanoct.hu/szte/lac3d. The calculations were 

performed both with a normal performance PC (with Intel
®

 Core
TM

 i3-2348M @ 2.3 GHz 
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processor) and with a high-performance one (with Intel® Xeon® E5-2640 v4 @ 2.4 GHz 

processor).  
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3. Results and discussion 

 

3.1. Comparison of the methods 

The 2D verification of Lac3D is provided in the Supplementary section of this article (see 

Fig. S2). Henceforward, only three-dimensional calculations are described; the accuracy 

and calculation time of the methods (GBM and FGM) are compared for the real-life 

examples: two 3D micro-CT datasets, one with quasi-homogeneous phase distribution (Fig. 

1. A-C), the other with highly heterogeneous pore structure (Fig. 1. D-F). It has to be noted, 

that due to the aforementioned restrictions in box sizes for FGM the calculated box sizes do 

not always coincide for the two methods. 

3.1.1. Homogeneous system 

Fig. 3. A-C depicts the ln(Λ) vs. ln(ε) curves of the homogeneous patterns for M = 50, 150, 

and 300 VOI sizes, respectively. It has to be noted, that the solid lines connecting the data 

points were added for easier viewing and are not fitted to the data. It can be established that 

the value of ln(Λ) becomes nearly zero at low ln(ε) = 3.218 value (ε = 25). Furthermore, 

this value does not change significantly for bigger VOIs, indicating the homogeneity of the 

texture. Another important finding is that the results of the traditional GBM and our FGM 

estimation are in good agreement (R
2
 ≥ 0.998) even for small VOIs. 

The calculation times for gradually increasing VOIs are shown in Fig. 3.D. The GBM 

calculation times for increasing box sizes can be described with a symmetrical bell curve, 

the maximum of which is when the box size is half of the size of the VOI. Also, the 
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calculation time increases drastically with increasing VOI size. For M = 150 the calculation 

time of the full range is a little over an hour, while if the edge length of the VOI is doubled 

the total calculation time jumps up to 69 hours. Following this trend, the calculation time of 

even bigger (thus more representative) VOIs would be extremely long, hence the 

application of this method is not practical for large 3D datasets. This issue will be 

addressed in the next section, and the information obtainable from calculations for only a 

narrower range of box sizes (ε = 2-35 and ε = 2-55) will be discussed. 

In conclusion, it was found that the value of lacunarity stabilizes relatively fast, thus the 

fixed-grid algorithm gives a good approximation of the GBM results for small VOI sizes. 

For homogeneous textures, the FGM can routinely be used in 3D lacunarity calculations, 

since it provides reliable data in significantly less time than the gliding box algorithm.  
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Figure 3. Ln(Λ) vs. ln (ε) curves for the rock core samples homogeneously distributed sand 

grain texture at different VOI sizes obtained by gliding box (blue lines with dots) and fixed-

grid (red circles) methods: (A) 50x50x50, (B) 150x150x150, and (C) 300x300x300. (D) 

shows the typical GBM calculation times of each point and the total time corresponding to 
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(B) and (C). Note that FGM calculation times are not shown in part (D) because they are 

not commensurate with the long timescales of GBM.  

 

3.1.2. Heterogeneous system 

Fig. 4 shows four representative volumes of interests for the calculations in the 3D volume-

rendered micro-CT images of the heterogeneous pore structure in a concrete cube. These 

are cubiform volumes with an edge length of M = 200, 400, 600, and 800 voxels (they 

represent 8, 64, 216, and 512 million binary points, respectively, in three dimensions). The 

volume showed in Fig. 4.D indicates the positions of smaller VOIs within the largest one. 

 

 

 

Figure 4. 3D volume-rendered micro-CT images of the heterogeneous pore structure in the 

concrete cube; representative selected volume of interests (VOIs) for the calculations:  

cubiform volumes with an edge length of (A) 200, (B) 400, (C) 600 and (D) 800 voxels (8, 
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64, 216 and 512 million B/W points, respectively, in 3-dimension). Volume (D) shows the 

positions of smaller VOIs within the largest one.  

 

The lacunarity curves calculated by GBM and FGM for the M = 50, 100, 200, 300, 400, 

and 500 voxels sized VOIs can be seen in Fig. 5. The GBM lacunarity curves were only 

calculated for a smaller range of box sizes (ε = 2-55) in this case, due to the very long 

computational time (see Fig. 3); the tendency and the accuracy of FGM calculation 

compared to GBM, however, is obvious even for this limited range. It can be seen in Fig. 

5.A-B that there are significant differences in the results of the two methods (R
2
 = 0.991) 

for small VOI sizes (M = 50 and 100). This can be a result of under-sampling, which is 

mainly problematic for small VOI sizes, and considerably less significant for homogeneous 

systems, which is in direct relation with the statistical nature of lacunarity (see Tables 1 and 

2). However, with increasing M values the accordance of the two methods improves (Fig. 

5.C-F). For small VOIs the lacunarity curve cuts off (i.e. Λ ≈ 1) at around ln(ε) = 3.912 (ε = 

50), while for the larger volumes this value is closer to ln(ε) = 5 (ε = 150), which is more 

realistic for heterogeneous structures. With the increase in volume, the dataset becomes 

more representative of the whole structure at the penalty of drastically increasing 

computational time. The total computational time for the homogeneous structure with 

GBM for the M = 300 voxels VOI was 69 hours for the full range of box sizes. The total 

calculation time for a narrower range of box sizes (ε = 2-55) for the same volume size (Fig. 

5.D) was 4.4 hours, while the same narrow range for an M = 500 voxels volume (Fig. 5.F) 
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was almost 26 hours. In contrast, the total computational time with FGM for the full range 

of boxes of the same volumes was only 10 and 25 seconds, respectively.  

 

 

 

Figure 5. Ln(Λ) vs. ln (ε) curves for the concrete cube samples heterogeneously distributed 

pore structure at different VOI sizes obtained by gliding box (blue lines with dots) and 

fixed-grid (red circles) methods: (A) 50x50x50, (B) 100x100x100, (C) 200x200x200, (D) 

300x300x300, (E) 400x400x400 and (F) 500x500x500. The curves are calculated with the 

gliding box method only for ε = 2, 3, 4, 5, 15, 25, 35, 45 and 55 box size values.  
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For even larger VOIs (M = 600, 700, and 800) the GBM calculation was only performed 

for an even narrower range of boxes (ε = 2-35). As shown in Fig. 6 the match between the 

results obtained by the two methods is excellent (R
2
 = 0.999) for this region, which leads to 

the conclusion that the FGM gives reliable results for the whole range. The total GBM 

calculation times for M = 800, ε = 2-35 and M = 500, ε = 2-55 were almost the same, ca. 26 

hours. For the further regions of the lacunarity curves (ε > 35) the FGM provides reliable 

information relatively fast (t < 1 min), which, compared to the GBM, is negligible. 

 

 

 

Figure 6. Ln(Λ) vs. ln (ε) curves for the concrete cube samples heterogeneously distributed 

pore texture at different VOI sizes obtained by gliding box (blue lines with dots) and fixed-

grid (red circles) methods: (A) 600x600x600, (B) 700x700x700, (C) 800x800x800. The 

curves are calculated with the gliding box method only for ε = 2, 3, 4, 5, 15, 25, and 35 box 

size values.  
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The shape of the lacunarity curve contains valuable information regarding the heterogeneity 

of the structures (Fig. 7). For homogeneous textures, the curve is rapidly decreasing, while 

with increasing heterogeneity the curve flattens. For homogeneous systems, the ln(Λ) value 

becomes nearly zero at relatively small ε values (ε = 15), whereas for heterogeneous 

systems this happens at larger box sizes (ε = 150). The heterogeneity of two different 

patterns can be compared by their ln(Λ) values at the same box sizes, or by the ε values 

where their lacunarity curve cuts off to ln(Λ) ≈ 0, also show their differences. 

 

 

 

Figure 7. Comparison of ln(Λ) vs. ln (ε) curves of the rock core samples homogeneously 

distributed sand grain texture (red) and the concrete cube samples heterogeneously 

distributed pore texture (blue) at different VOI sizes obtained by gliding box (lines with 

dots) and fixed-grid (circles and squares, respectively) methods: (A) 50x50x50, (B) 

300x300x300, (C) 600x600x600.  
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3.2. Calculation time 

The total calculation time is a cardinal aspect of accurate and detailed lacunarity calculation 

(see Figs. S3 and S4). Table 3. contains the most important data regarding the calculations 

for VOIs of M = 100, 200 … 800 voxels. The values of almost every parameter (the 

number of data points, RAM usage, the number of boxes, and calculation times) rapidly 

increase with the volume sizes. From the number of boxes and the operations/box the total 

computational time can be calculated for a given range and step size (see in detail in Figs. 

S5-S7). Table 3. shows calculated values for the total time of GBM (for ε = 2-55), which 

are in good agreement with the real computational times shown on Fig. 5. It is also visible, 

that the results of the FGM are in good agreement with the GBM results from M = 200 

voxels VOI sizes (R
2
 = 0.998-0.999), while the total calculation time stays under a minute 

even for an M = 800 voxels VOI. These results validate the use of FGM for lacunarity 

calculations of real micro-CT datasets. Summarizing, we advise using the GBM for small, 

heterogeneous datasets since the difference in calculation time is not substantial in this 

case, and using the FGM in all other cases (i.e. small homogeneous datasets and all large 

datasets). 

 

Table 3. Comparison of the number of voxels, the RAM usage, the total number of boxes 

at ε = 50 in case of FGM and GBM methods, the total calculation times for GBM in a 

narrow range of box sizes (2-55) and FGM in the full range of ε values, and the goodness 

of fit at different VOI sizes. 
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      Box 50  

Total time 

2-55 * 

Total time 

full range 

Goodness 

of fit ** 

VOI Points RAM (MB) *** FGM GBM t (h), GBM  t (s), FGM R2 

100 1 000 000 105 8 132 651 0.04 1 0.991 

200 8 000 000 115 64 3 442 951 1.00 2 0.999 

300 27 000 000 140 216 15 813 251 4.48 10 0.998 

400 64 000 000 175 512 43 243 551 12.11 17 0.999 

500 125 000 000 240 1 000 91 733 851 25.56 25 0.999 

600 216 000 000 330 1 728 167 284 151 48.96 32 0.999 

700 343 000 000 470 2 744 275 894 451 80.56 41 0.998 

800 512 000 000 645 4 096 423 564 751 123.47 47 0.999 

* Box size steps: 2,3,4,5,15,25,35,45,55.   

** R2 of the linear curve when plotting GBM datapoints as the function of FGM datapoints. 

*** With the memory usage of the calculating software (~ 100 MB) - during the calculations, this can expand to four times the value. 

 

3.4. Archetypal materials science examples 

The applicability of our fixed-grid calculation method for real-life problems was 

demonstrated by conducting lacunarity calculations on archetypal material patterns from 

quasi-homogeneous to heterogeneous. Fig. 8.A-E illustrate the chosen VOIs of five 

different samples, with VOI sizes ranging from M = 400 to 600 voxels: A is the pore 

structure of a limestone sample, B is the ordered fibers of a piece of timber, C is a mortar 

sample’s pore structure, D is the framework of an Al foam and E is the fracture network of 

an andesite rock sample. Fig. 8.F shows the corresponding normalized lacunarity curves. 
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Fig. 8.A-E are ordered according to increasing heterogeneity, which is obvious even by 

simply observing the structures. Nevertheless, the lacunarity function offers an excellent 

way to quantify the differences: the lacunarity values at ln(ε) = 3.219 (ε = 25) are ln(Λ) = 

0.058, 0.149, 0.529, 0.597 and 0.755, respectively. Other than that, the ε values where ln(Λ) 

becomes nearly zero are good descriptors of the heterogeneity, because they exhibit an 

increasing trend with the heterogeneity. This approach is applicable if the dataset does not 

contain hidden patterns, thus the lacunarity curve is a strictly monotonically decreasing one. 

In Fig. 8.F the result of GBM are represented by solid lines, while the results of FGM are 

represented by points; it is clearly visible that the values from the two methods are in good 

agreement with each other. It is important to note that further conclusions regarding the 

structure or properties of these samples cannot be drawn from these lacunarity curves, since 

the samples were scanned at different pixel resolutions. This section, however, gives the 

reader an overview of the appearance of structures with different heterogeneity and a great 

demonstration of the changes in the shape of the lacunarity curves with changing 

heterogeneity. 
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Figure 8. Representative VOIs from 3D micro-CT datasets of five different samples: A is 

the pore structure of a limestone sample, B is the ordered fibers of a piece of timber, C is a 

mortar sample’s pore structure, D is the framework of an Al foam and E is the fracture 

network of an andesite rock sample. F shows the corresponding lacunarity curves 

calculated by gliding box (solid lines with dots) and fixed-grid (points) methods.  
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4. Conclusions 

We successfully utilized a fixed-grid method (FGM) to calculate the micro-CT based 

lacunarity (Λ) curves of several materials and compared the results to the widely used 

gliding box method (GBM). The greatest advantage of FGM is that it uses fewer boxes for 

the lacunarity calculations, resulting in a considerably faster calculation. The gain is so 

significant (from up to hundreds of hours to seconds) that it makes lacunarity calculations 

feasible on large 3D micro-CT datasets that were previously considered to be 

computationally inaccessible. The trade-off with FGM is that fewer data points can lead to 

decreased accuracy. However, we have proven here that while this effect is prominent for 

small volume of interests, it becomes negligible for large ones. The accuracy increases 

from an R
2
 value of 0.991 to 0.999 with increasing volume size and homogeneity, therefore, 

FGM can routinely be used for lacunarity calculations for large 3D datasets (cubic volume 

of interests from an edge length of 200 voxels) with great accuracy and short calculation 

time. We suggest that lacunarity calculations should be added to the routine micro-CT 

analysis toolbox.  For smaller datasets, the traditional GBM should be used to calculate 

lacunarity, while for large 3D micro-CT datasets the use of the described FGM is advised. 

We make the Lac3D software developed for the latter calculation openly available in the 

electronic Supplementary Information and encourage micro-CT users to utilize the extra 

information gained from lacunarity in their own projects. Furthermore, fixed-grid lacunarity 

calculation and Lac3D software are useful not only for the micro-CT community but for all 

kinds of 3D imaging applications (e.g. FIB-SEM, MRI, confocal microscopy), even beyond 

materials science. 
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