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Abstract: The emergence of multidrug and extensively drug-resistant pathogenic bacteria able to
resist to the action of a wide range of antibiotics is becoming a growing problem for public health.
The search for new compounds with the potential to help in the reversion of bacterial resistance
plays an important role in current medicinal chemistry research. Under this scope, bacterial efflux
pumps are responsible for the efflux of antimicrobials, and their inhibition could reverse resistance.
In this study, the multidrug resistance reversing activity of a series of xanthones was investigated.
Firstly, docking studies were performed in the AcrAB-TolC efflux pump and in a homology model
of the NorA pump. Then, the effects of twenty xanthone derivatives on bacterial growth were
evaluated in Staphylococcus aureus 272123 and in the acrA gene-inactivated mutant Salmonella enterica
serovar Typhimurium SL1344 (SE03). Their efflux pump inhibitory properties were assessed using
real-time fluorimetry. Assays concerning the activity of these compounds towards the inhibition of
biofilm formation and quorum sensing have also been performed. Results showed that a halogenated
phenylmethanamine xanthone derivative displayed an interesting profile, as far as efflux pump
inhibition and biofilm formation were concerned. To the best of our knowledge, this is the first report
of xanthones as potential efflux pump inhibitors.

Keywords: xanthones; efflux pump; multidrug resistance; antibacterial activity; biofilm inhibition;
quorum sensing

1. Introduction

Currently, drug resistance is rising to dangerously high levels worldwide and threaten-
ing our ability to treat even common infectious diseases. Resistance to current anti-infective
drug therapies needs to be tackled with additional efforts in industry and scientific research
communities in the discovery of new antimicrobial drugs [1]. Multiple antibiotic resistance
can arise through a series of distinct molecular mechanisms by different ways: modification
of the antibiotic molecule, mutations, modifications and protection of the target, and the
prevention of the access of the drug to the target. One example of the latter mechanism is
an increase in the efflux of antimicrobials, which can happen through the overexpression
of efflux pumps present in the bacterial membrane and lead to multidrug resistance [2].
Efflux pumps are ubiquitous in bacteria and are capable of expelling a multiplicity of
compounds from the inside of the bacterial cell, which results in a decrease, or a total lack
of efficacy in antimicrobial drugs currently used in the therapy [3]. Therefore, efflux pumps
have been regarded as interesting targets for drug development, and many compounds
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have been described as bacterial efflux pump inhibitors [4], with none of them entering
clinical trials up to this date. The mechanisms related to the inhibition of efflux pumps may
involve the disruption of the energy supplies of the pumps, membrane destabilization, in-
teraction with components of the pump, or hindrance [5]. As such, the quest for a selective,
effective, and non-toxic bacterial efflux pump inhibitor is still open and ongoing [6–9].

Xanthones are heterocyclic polyphenolic compounds that can be found in microorgan-
isms, fungi, lichens, and some in higher plants and marine sources, with several naturally
and synthetically occurring derivatives revealing potent antimicrobial activities over the
last few decades [10–12]. In recent works, our group described the synthesis of a series
of novel nature-inspired chlorinated xanthones [13], and further transformations on the
xanthone core in order to achieve a diverse library in terms of molecular function, con-
taining carboxylic acid, ester, methyl, methoxy, phenol, bromo, and amine moieties [14].
The promising results considering their antimicrobial profile, demonstrated mainly by
the halogenated and aminated derivatives [14], prompted us to further characterize their
antibacterial—and particularly to explore multidrug resistance reversing—activities. De-
spite their antimicrobial activity, none of these halogenated compounds presented synergy
with antimicrobials in resistant bacterial strains [13,14]. On the other hand, a series of
hydroxylated xanthones presented synergy with different classes of antimicrobials for
the same strains, emphasizing their potential as “antimicrobial adjuvants”, or even as
compounds with dual antimicrobial/adjuvant activity [15].

Salmonella sp. and Staphylococcus aureus are causative agents of infections regarded
with high concern both in a clinical setting and in the food industry. These bacteria have
not only developed the over-expression of efflux pumps, but also other multiple antibiotic
resistance strategies, such as the formation of biofilms, triggered by quorum sensing (QS).
Therefore, the search for and development of new compounds that can overcome these
mechanisms is urgently necessary [16].

Efflux pumps have also been postulated to be related to other adaptability and vir-
ulence mechanisms. In fact, several studies corroborate the link between efflux pumps
and the formation of biofilm in Gram-negative bacteria. Specifically, it was shown that
the inactivation of genes that code for efflux pumps leads to the formation of defective
biofilm or reduce its formation altogether [17–19]. While this has not yet been proven
for Gram-positive bacteria, it has been shown that efflux pump inhibitors could affect
biofilm formation in some Gram-positive bacteria, suggesting a link between efflux pumps
and biofilm in these bacteria [20]. QS, the controlled expression of specific genes from
bacteria as a response to chemical signals, has a pivotal role in the formation of biofilm
and in the expression of virulence factors. Moreover, QS is related to efflux systems, as
QS molecules are thought to enter and leave the bacterial cell through these efflux struc-
tures [18]. Thus, there is a link between QS and biofilm formation, and compounds effective
in both fronts can be candidates for the use in the coating of surfaces, to avoid biofilm
formation, or in disinfectants.

Based on previous studies, xanthones are a very important group of compounds to
treat microbial infections, being also able to induce apoptosis in tumor cells, inhibit the
proliferation of cancer cells and decrease tumor angiogenesis [21]. As highlighted above,
efflux pump inhibitors might influence the bacterial virulence interfering with the transport
of molecules needed for bacterial communication and biofilm formation. Several xanthone
derivatives have shown interest as antimicrobial agents [13–15]; however, their mode of
action has not been investigated in detail. Herein, in silico and in vitro studies to assess the
potential of a substitutional-diverse library of xanthones to inhibit the efflux of an efflux
pump substrate in Gram-positive and Gram-negative bacteria are described. Their capabil-
ity of inhibiting the formation of biofilm, which can also contribute to resistance, was also
investigated in Gram-positive bacteria, and their ability to inhibit QS was also evaluated
for Chromobacterium violaceum and Serratia marcescens, strains that inherently have efflux
systems of the resistance–nodulation–division (RND) family [17,22,23]. Similar to previous
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studies [16,24], bacteria in which several efflux systems may be present were chosen as a
first screening.

2. Results and Discussion
2.1. Docking Results

A library of 20 xanthones with diverse substituents was investigated based on prelimi-
nary antibacterial activity and synergy studies [13,15,25] against a RND efflux pump model
present in Gram-negative bacteria (AcrAB-TolC) and a homology model of the major facili-
tator superfamily (MFS) efflux pump NorA, prevalent in Gram-positive bacteria. In this
study, the used library of xanthones was obtained in-house. The rationale behind this
was to test not only xanthones, which presented promising results in antibacterial and/or
synergy with antimicrobials, but all the molecular-related xanthones, so that insights into
structure–activity relationships could be drawn.

Thus, docking studies were performed in the crystal structure of the AcrB (4DX5),
AcrA (2F1M) and TolC (1EK9) portions of the AcrAB-TolC efflux system. For AcrB and
AcrA, these studies were performed in two different sites: the substrate-binding site
(SBS) and the hydrophobic trap (HT) for AcrB, and the helical hairpin (HH) and the
lipoyl domain (LD) for AcrA [26]. For TolC, only the lysine residues that interact with
the 3,3′-dithiobis(sulfosuccinimidyl proprionate) (DTSSP) bifunctional crosslinker [26],
were considered. For the NorA homology model, the sites used for docking of the com-
pounds were the binding core region (BCR) and the cytoplasmic side (CS), as described
in [27]. The results are present in Table 1.

From the docking scores obtained, it can be predicted that the compounds will have
increased affinity towards the substrate binding site of the AcrB portion, and less affinity
for the hydrophobic trap. The AcrA portion is, in general, the second site with the least
favorable docking scores, only better than the hydrophobic trap of AcrB. From these results,
a highest affinity towards the AcrB portion can be noted, then for TolC and, lastly, for AcrA.
For NorA, an even distribution among compounds is observed with higher affinity towards
the binding core region and the cytoplasmic side, hypothesizing that some compounds,
such as compounds 1–6, 14, 18, and 19, can act as substrates of the pump, and others,
namely compounds 8–10, 12, 13, 15–17, and 20 can just block the extracellular efflux by
hindering the binding of substrates at a cytoplasmic level. Compounds 7 and 11 revealed
similar affinities for both sites. Since these compounds presented docking scores similar to
those of compounds already described as inhibitors for the target efflux pumps, in vitro
studies were undertaken for this series. It is noteworthy that the controls also showed a
better predicted affinity towards the AcrB portion. Recently, reserpine was described as an
AcrB inhibitor [28], and the docking study suggested the SBS as one of the binding sites for
reserpine. Taking into account the docking results, we chose to study the efflux modulation
of a model without the AcrA portion, as this was predicted to be the portion to which the
compounds presented the least affinity.

2.2. Antibacterial Activity

The compounds were tested for their ability to inhibit bacterial growth in vitro. Re-
sults showed that, for the tested strains Salmonella enterica serovar Typhimurium 21 SL1344
(SE03) and Staphylococcus aureus (S. aureus) 272123, none of the investigated compounds
displayed antibacterial activity, all showing minimum inhibitory concentrations (MIC)
above 100 µM (results not shown). In contrast, compounds 1, 2, 11–14, and 18–20 exhibited
activity for susceptible and resistant bacteria different than the ones present in this study,
both Gram-positive and Gram-negative, in previous studies [14,15].
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Table 1. Structures of the xanthone derivatives and docking results for the compounds.
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2.3. Efflux Pump Inhibition Assay

Compounds 1–20 were assessed for their capability of modulating ethidium bromide
(EB) accumulation on two resistant strains. S. aureus 272123 is a clinical strain and was
used to compare the activity of xanthones with natural compounds already tested in the
same system; herein, the mepA and norA genes were studied, and the norA expression level
did not change [24,29]. These studies suggested that NorA may not be the main pump
responsible for efflux in this strain. However, norA is a core gene of the S. aureus as a
species, which means that the NorA pump occurs in all S. aureus strains [30].

Salmonella enterica serovar Typhimurium SE03, was used as a Gram-negative bac-
terium. This strain has a deletion of the acrA gene, which was predicted with the least
affinity for the compounds. The aim of these studies was to perform a first screening
of these compounds and their ability to modulate the efflux of EB. All the compounds
were tested at the concentration of 50 µM, as none of them showed antibacterial activity
at this concentration. The relative fluorescence index (RFI) was calculated based on the
means of relative fluorescence units, depicted in Table 2. Reserpine and carbonyl cyanide
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3-chlorophenylhydrazone (CCCP) were used as positives control for S. aureus 272123 and
SE03, respectively, at the sub-MIC concentration of 25 µM.

Table 2. Relative fluorescence index of tested derivatives. Compounds were tested in the same
conditions, on different assays (five for S. aureus and six for SE03), and the superscript numbers are
relative to the positive control obtained in each assay.

RFI ± SD

Compound S. aureus 272123 SE03

1 −0.36 ± 0.03 1 −0.01 ± 0.05 6

2 −0.69 ± 0.02 2 −0.57 ± 0.02 7

3 −0.05 ± 0.06 3 0.23 ± 0.04 8

4 0.13 ± 0.08 2 2.90 ± 0.71 7

5 0.16 ± 0.08 2 1.74 ± 0.22 7

6 −0.91 ± 0.01 4 −0.91 ± 0.01 9

7 −0.92 ± 0.00 5 −0.87 ± 0.02 10

8 0.15 ± 0.25 4 0.05 ± 0.11 9

9 −0.04 ± 0.26 4 0.05 ± 0.09 9

10 0.18 ± 0.20 5 0.24 ± 0.05 10

11 −0.10 ± 0.06 1 0.28 ± 0.09 6

12 0.11 ± 0.30 4 1.75 ± 1.57 9

13 0.53 ± 0.20 5 1.16 ± 0.64 10

14 −0.28 ± 0.06 2 0.02 ± 0.02 7

15 0.08 ± 0.07 4 0.13 ± 0.09 9

16 5.49 ± 8.04 5 0.13 ± 0.15 10

17 −0.34 ± 0.02 5 −0.29 ± 0.08 10

18 −0.01 ± 0.04 3 0.04 ± 0.04 8

19 0.02 ± 0.02 3 2.86 ± 0.14 8

20 1.08 ± 0.82 4 2.09 ± 0.05 11

Reserpine

1 0.31 ± 0.07
2 0.45 ± 0.04
3 0.84 ± 0.13
4 0.35 ± 0.14
5 0.16 ± 0.05

—

CCCP —

6 0.23 ± 0.04
7 0.37 ± 0.04
8 0.33 ± 0.09
9 0.40 ± 0.03

10 0.27 ± 0.14
11 0.50 ± 0.11

1–11 The value of the positive control in each different assay. SD: standard deviation.

From the analysis of Table 2, it can be noted that compounds 4, 5, 10–13, 16, 19,
and 20 can increase the fluorescence in comparison to the positive control, which can be
attributed to the inhibition of the efflux of EB in the tested bacteria but can also be due to the
fluorescence emitted by the compound itself. As such, for these compounds, 4, 5, 12, 13 and
16, an assay was performed to clarify this matter. In this assay, the compound was tested
alone in PBS against a solution of EB, and a solution of EB and the compound together.
If the compound presents an irregular fluorescence pattern, or if the fluorescence of the
compound with EB is higher than the fluorescence of EB alone, no conclusions can be drawn,
as this is a limitation of the assay. The analysis of the curves of the variation of fluorescence
over the course of the assay (Supplementary Data, Figures S1–S20) showed that compound
13 presented a descending curve, so it was excluded from further assays. Compound 5
displayed an erratic curve in combination with EB (Supplementary Data, Figures S21–S25),
and its results from this assay were not considered. The other tested compounds showed no
fluorescence interference in combination with EB. The fact that some compounds presented
at least one negative value regarding this assay, implies that the fluorescence of these
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compounds is lower than that of the control. Therefore, these compounds were deemed as
ineffective for the strain where the negative value was obtained.

Five compounds, 4, 11, 12, 19, and 20, were able to increase the intracellular fluo-
rescence, attributed to EB, in SE03, while three compounds, 10, 16, and 20 could do the
same in the S. aureus strain tested. For SE03, it can be noted that, in xanthones which
were exclusively substituted with hydroxyls, only compound 4 displayed notable activity.
This can lead to the conclusion that a hydroxylation in each aromatic ring is required,
and even in these specific positions (C-1 and C-7), or at least in the same plane as the
ketone. It should be mentioned that compound 4 is a natural product, whose isolation from
plants has been described [31,32], and had already demonstrated synergy with antibiotics
in Gram-positive and Gram-negative bacteria. Previous results [14] demonstrated that this
compound was not active against an extended-spectrum β-lactamase producing strain,
emphasizing its selectivity for this particular resistance mechanism.

The introduction of bulkier groups at C-1 led to efflux pump inhibition, as can be seen
in the case of 11, 12, 19, and 20. The presence of methoxyl groups at positions C-3 and C-4
does not seem detrimental for activity, as noted from compounds 8 and 15. The presence
of a methoxyl at position C-6 could be a hindrance for the inhibition of efflux pumps,
as none of the compounds with this substituent at this position demonstrated activity in
SE03. In the case of compounds 18–20, which are closely related, the fluorine-substituted
phenylmethanamine substituent in compound 19 can be highlighted as beneficial, in op-
position to a chlorine substitution (18). Another noteworthy feature is the presence of a
methyl group between the amine and the aromatic ring, as is the case of compound 20,
gifting it with activity. This could reflect a different binding mode from compound 19,
as it presents a chlorine instead of a fluorine and still retains activity. Since the method
characterizing the activity of EPIs is working on a real-time basis recording a fluorescent
bulk signal, the first step is always the general inhibition of potential efflux systems in
bacteria. After this initial screening step, the different mutants lacking efflux pumps genes
and strains with overexpressed efflux systems can be investigated. The aim of the present
paper was to show the possible targets of xanthones within the bacterial cells, and further
investigations with overexpressed pumps are needed.

The tested compounds were visualized in PyMol for the SBS of AcrB. It was ob-
served that all the compounds were predicted to bind in approximately the same region
(Figure 1A). Compounds 4 and 20 were analyzed in further detail, concerning the residues
they interact with. Compound 4 (Figure 1B) can establish a dipole interaction between the
carbonyl at C-9 and a carbonyl in Thr-87. The oxygen in the ether moiety forms a hydrogen
interaction with a NH2 present in Gln-176, and the hydroxyls at C-1 and C-7 interact with
Arg-620 and Gly619, respectively.

Compound 19 (Figure 1C) presents the same interactions, apart from the one with
Gly-619. The carbonyl at C-9 can form a dipole interaction with a carbonyl in Thr-87 and a
hydrogen interaction with a NH2 in Arg-620. Furthermore, both the oxygen in the ether
moiety and the methoxyl group at C-4 interact with an amide in Gln-176.

The methoxyl groups at C-6 seem to play an important role against S. aureus 272123,
as compounds 10 and 16 presented these groups not only at this position, but also at
positions C-3 and C-4. It also seems that a bulky group at C-1 is an obstacle for the
activity, as the trimethoxylated aldehyde 16 presents activity, but a methyl ester does not.
The exception to this is compound 20, which presented one of the best docking scores for
the NorA homology model, in the cytoplasmic side. The fact that compound 18 is not an
efflux pump inhibitor leads to the conclusion that, once again, the methylene between the
amine and the aromatic ring is crucial for this activity.
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The data obtained herein do not allow one to establish which efflux pump is being
inhibited, only that the efflux of EB is being stopped. Further studies are needed to
unequivocally attribute the activity of these compounds to the AcrAB-TolC or NorA efflux
pumps, to corroborate docking predictions.

Nonetheless, previous results suggest that these compounds may not act at the level of
membrane permeabilization. In fact, these compounds did not show activity in the bacteria
used in this study or in other bacteria strains used in previous studies [13,14]. Moreover,
when tested against strains that had acquired resistance to antibiotics, many of them did not
show synergy with antibiotics [15]. To discharge unspecific effects, the xanthones that were
chosen for further assays, 4, 5, 11, 12, 16, 19, and 20, were screened in SWISSADME [33],
and none of the hit compounds showed alerts for pan-assay interference compounds
(results not shown). Additionally, some of the oxygenated xanthones presented herein
already displayed modulation on P-glycoprotein, a mammalian efflux pump from the ATP-
binding cassette family [34]. Despite the fact that no xanthones have yet been described as
bacterial efflux pumps, several other related compounds, such as acridones, thioxanthenes,
and phenothiazines, have been reported as bacterial ATP-binding cassette and/or MFS
inhibitors [35,36]. Phenothiazines were additionally found to interfere with the energy
source of the pump [36], which can also be a possible mechanism for xanthones and the
decrease in the EB efflux observed. Taking into consideration the results obtained in the
efflux pump inhibition assay, compounds 4, 5, 11, 12, 16, 19, and 20, with favorable results,
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were selected for deeper studies into other resistance mechanisms, namely biofilm and
QS inhibition.

2.4. Inhibition of Biofilm Formation

Biofilm-mediated tolerance depends on multiple factors, such as slow growth, re-
duced penetration due to the production of extracellular polysaccharides, and efficient
efflux mechanisms [37]. In fact, it has been demonstrated that efflux pumps can influence
the transport of QS signal molecules and extracellular polymeric substances in biofilms.
Efflux pumps may also regulate the expression of genes involved in biofilm formation.
Furthermore, efflux pumps have a crucial role to remove toxic molecules, metabolites,
and antibiotics, and they can influence the adhesion and aggregation of bacterial cells to
solid surfaces (Figure 2) [38].
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Figure 2. Influence of efflux pumps in biofilm formation mechanisms (adapted from [38]).

Xanthones 4, 5, 11, 12, 16, 19, and 20, the compounds that presented activity in efflux
pumps, were evaluated on their effect on biofilm formation of sensitive and resistant
S. aureus strains, the first being a reference strain, to compare to the clinical isolate in
the EB accumulation assay with overexpressed efflux systems. Compounds 4, 5, 11, 12,
and 19 displayed EB efflux inhibition only in SE03. However, these compounds showed
good results in the previous assay, and in order to deepen the insights into their full
potential, it was decided to test them in following assays, as they could also interfere in
other mechanisms of biofilm formation, adhesion, or degradation. The biofilm inhibition,
presented in percentages (%), was calculated based on the mean of absorbance units.
Reserpine was used as the control in both strains, as it has been shown to inhibit not only
the formation of biofilm in S. aureus strains [39], but also bacterial efflux activity [40–42].
The results obtained concerning the biofilm inhibition assay are presented in Table 3.

From the results obtained, it can be observed that compounds are overall more ef-
fective against S. aureus 272123 than the ATCC strain, with only two compounds, 19 and
20, being effective against the latter. Concerning S. aureus 272123, and although only
compounds 4, 19, and 20 showed higher biofilm inhibition values than reserpine, it can be
observed that all the compounds can disrupt this phenomenon to some extent. The most
active compound in S. aureus 272123 was compound 4, with over 94% of biofilm formation
inhibition compared to the control. This compound did not show a higher RFI than reser-
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pine in the efflux pump assay, leading to the conclusion that a correlation between both
assays is difficult to establish for this series of compounds.

Table 3. Percentage of biofilm inhibition of the selected compounds. The compounds were tested in
the same conditions, on two different assays for each strain, and the superscript numbers are relative
to the positive control obtained in each assay.

Inhibition of Biofilm Formation (%) ± SD

Compound S. aureus ATCC 29213 S. aureus 272123

4 0 1 94.21 ± 1.31 3

5 0 1 61.62 ± 16.51 3

11 0 1 39.95 ± 7.66 3

12 0 1 6.27 ± 1.41 3

16 0 2 58.98 ± 12.00 4

19 97.45 ± 0.62 2 65.03 ± 9.86 4

20 90.76 ± 1.62 2 77.17 ± 4.45 4

Reserpine
1 2.49 ± 1.99

2 22.29 ± 10.88

3 77.62 ± 10.44
4 63.42 ± 2.63

1–4 The value of the positive control in each different assay. SD: standard deviation.

The biofilm produced by the ATCC strain was not as influenced by these compounds,
except for compounds 19 and 20; both compounds inhibited over 90% of biofilm formation
in this strain. These are the only two compounds tested that possess a halogen in their
structure, that could be an important feature for this activity. It is also worth mentioning
that compound 20 presented EB inhibition in S. aureus 272123, which suggests a possible
relationship between efflux pump inhibition and biofilm formation. Further studies are,
however, needed to confirm this structure–activity relationship.

2.5. Quorum Sensing Assay

The sensor strain Chromobacterium violaceum CV026 and the acyl-homoserine lactones
(AHLs) producer strain Sphingomonas paucimobilis Ezf 10-17 (EZF) were inoculated as
parallel lines, and the AHL producers, Chromobacterium violaceum wild type 85 (wt85) and
Serratia marcescens AS-1 were inoculated as a single line. The interaction between the strains
and compounds 4, 5, 11, 12, 16, 19, and 20 were evaluated as the reduction in pigment
production in millimeters (mm) (Table 4), with promethazine (PMZ) being used as the
positive control.

Table 4. Results of the quorum sensing inhibition assay.

Quorum Sensing Inhibition (mm) ± SD

Compound S. marcescens EZF + CV026 wt85

4 0 0 0
5 0 0 0
11 0 0 0
12 0 30 ± 0.5 0
16 0 42 ± 0.8 0
19 0 0 0
20 0 0 0

PMZ 18 ± 0.8 40 ± 0.1 41 ± 0.5
SD: standard deviation.

From the analysis of the table, it can be noted that only compounds 12 and 16 inhibited
QS in EZF + CV026, evidenced by the discoloration in CV026, which produces a purple
pigment due to the QS-dependent expression of the genes that encode the pigment violacein
when complemented with an inducing concentration of AHL molecules. Furthermore,
compound 12 was an effective efflux pump inhibitor in Gram-negative bacteria; for this
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reason, this derivative could be a possible candidate for further investigations as an efflux
pump inhibitor and QS inhibitor.

2.6. Cytotoxicity Assay

In order to apply efflux pump inhibitors to treat patients, several issues should be
addressed. Here, three important aspects are highlighted: first, a suitable efflux pump
inhibitor must not be antibacterial, because it can lead to resistance; second, the molecule
should be selective and not target any eukaryotic efflux pumps; third, it should not be
toxic to eukaryotic cells [43]. To assess the toxicity of the best compounds, 4, 12, 16, 19,
and 20, presenting favorable results in the efflux pump inhibition assay plus on biofilm
inhibition and/or QS inhibition assays, a simple toxicity test was carried out on normal
mouse fibroblast cells (NIH/3T3). The IC50 of the tested compounds is present in Table 5.

Table 5. Cytotoxicity (IC50) of the tested compounds.

Compound IC50 (µM) ± SD

4 >100
12 54.59 ± 5.30
16 26.93 ± 5.87
19 >100
20 35.12 ± 4.86

Doxorubicin 12.05 ± 0.81

The halogenated xanthone 12 and the formylxanthone 16 presented moderate cy-
totoxicity for the tested cell line. As for the hydroxylated xanthone 4, no cytotoxicity
was observed. The 1-amine halogenated structurally related derivatives 19 and 20 pre-
sented very distinct cytotoxicity results, despite behaving similarly in the bacterial studies
performed. It can thus be hypothesized that the cytotoxicity from 20 can arise from the chlo-
rine. Aromatic fluorines have attractive features in terms of medicinal chemistry, as these
substituents can improve metabolic stability, and decrease the basicity, leading to better
bioavailability [44]. Aromatic chlorines have proven, on the other hand, to display toxic-
ity [45]. Overall, it can be noted that the most promising derivatives 19 and 20, presenting
efflux pump inhibition, anti-QS and anti-biofilm properties showed no (IC50: >100 µM)
and moderate (IC50: 35.12 ± 4.86 µM) toxicity, respectively.

3. Materials and Methods
3.1. Compounds

Xanthones 1–3 [46], 4 [47], 5 [46,47], 6–7 [14], 8–10 [13], 11 [46,47], 12–20 [14] were
synthesized as described. The compounds were dissolved in dimethyl sulfoxide (DMSO),
for a stock solution of 10 mM to be obtained.

3.2. Culture Media and Chemicals

The culture media used in the experiments were the following: cation-adjusted
Mueller–Hinton broth (MHB II; Sigma-Aldrich, St. Louis, MO, USA and Biokar Diag-
nostics, Allone, Beauvais, France), Luria–Bertani broth (LB-B; Sigma, St. Louis, MO, USA),
Tryptic Soy broth (TSB; Scharlau Chemie S. A., Barcelona, Spain), and Tryptic Soy agar (TSA;
Biokar Diagnostics, Allone, Beauvais, France) were purchased. The modified Luria–Bertani
agar (LB*-A), used for the quorum sensing (QS) inhibition assays, was prepared in-house,
according to the formula: 1.0 g of yeast extract (Merck, Darmstadt, Germany), 10.0 g of
tryptone (Biolab, Budapest, Hungary), 10.0 g of NaCl (Molar Chemicals, Halásztelek,
Hungary), 1.0 g of K2HPO4 (Biolab, Budapest, Hungary), 0.3 g of MgSO4·7H2O (Reanal,
Budapest, Hungary), 5 mL of Fe-EDTA stock solution and 20.0 g of bacteriological agar
(Molar Chemicals, Halásztelek, Hungary) per 1 L of media. S. aureus ATCC 29213 was pur-
chased from ATCC and the mouse embryonic fibroblast cell line (NIH/3T3) was purchased
from Sigma.
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DMSO, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), sodium do-
decyl sulfate (SDS), phosphate-buffered saline (PBS; pH 7.4), EB, reserpine, CCCP, PMZ and
crystal violet (CV) were purchased from Sigma-Aldrich Chemie GmbH (Steinheim, Germany).
Doxorubicin (2 mg/mL) was purchased from Teva Pharmaceuticals, Budapest, Hungary.

3.3. Docking Studies

The crystal structure of the AcrB (PDB: 4DX5) [48], AcrA (PDB: 2F1M) [49], and TolC
(PDB: 1EK9) [50] portions of the AcrAB-TolC bacterial efflux system, downloaded from the
protein databank (PDB) [51], were used for this study. The known AcrAB-TolC inhibitors
D13-9001, doxorubicin, MBX-3132, minocycline, and phenyl-arginyl-β-naphthylamide,
along with the tested compounds were drawn with ChemDraw (PerkinElmer Informatics)
and minimized using ArgusLab. Docking was carried out using AutoDock Vina (Scripps,
CA, USA) [52], in the sites described in [26,53]. The NorA efflux pump does not have an
available crystal structure, and a homology model was prepared. The model was generated
using the Swiss Model server [54] and the sequence deposited in Uniprot (Q5HHX4) [55],
using the EmrD pump from Escherichia coli (PDB: 2GFP) as the homolog, as described
in [27]. The top nine poses were collected for each molecule and the lowest docking score
value was associated with the most favorable binding conformation. PyMol (Schrödinger)
was used for molecular visualization [56].

3.4. Bacterial Strains

As Gram-positive bacteria, Staphylococcus aureus American Type Culture Collection
(ATCC) 29213 and methicillin and ofloxacin-resistant Staphylococcus aureus 272123 clinical
isolate were used. As Gram-negative bacteria, the acrA gene-inactivated mutant Salmonella
enterica serovar Typhimurium SL1344 (SE03) was investigated in this study.

For the QS tests, all the bacteria used were Gram-negative. The bacteria used were
Chromobacterium violaceum wild type 85 (wt85), characterized by the AHL signal molecule-
mediated production of the purple violacein pigment, capable of endogenous QS-signal
molecule production (N-hexanoyl-L-HSL), C. violaceum CV026 (CV026), a Tn5 transposase-
mutant, AHL-signal molecule indicator strain (produces purple violacein pigment in
the presence of AHL), which is incapable of endogenous QS-signal molecule-production,
but useful in the detection of external stimuli, Sphingomonas paucimobilis Ezf 10-17 (EZF),
AHL-producing-strain (used with C. violaceum CV026), and Serratia marcescens AS-1, char-
acterized by the AHL signal molecule-mediated production of the orange–red pigment
prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosin), capable of endogenous QS-signal
molecule production (N-hexanoyl-L-HSL), were applied [57].

3.5. Antibacterial Assay

The antibacterial activity was assessed through the MIC of the compounds. This was
determined with the microdilution method, in a 96-well plate, according to the Clinical
and Laboratory Standard Institute (CLSI) guidelines [58]. The media used was MHB II.
The concentrations tested ranged from 100 µM to 0.195 µM. The MIC was determined
by visual inspection. DMSO was used as a solvent for the compounds and was used in
subinhibitory concentrations (1% v/v).

3.6. Efflux Pump Inhibition Assay

Compounds 1–20 were evaluated for their ability to inhibit efflux pumps in SE03 and
S. aureus 272123 strains, through the real-time fluorimetry, monitoring the intracellular
accumulation of EB, an efflux pump substrate. This was determined by the automated
method using a CLARIOstar Plus plate reader (BMG Labtech, Ortenberg, Germany).
Reserpine and CCCP were applied at 25 µM as positive controls, and the solvent DMSO
was applied at 1% v/v. The bacterial strains were incubated in an appropriate culture
media (TSB—S. aureus 272123; LB-B—SE03) at 37 ◦C until they reached an optical density
(OD) between 0.4 and 0.6 at λ = 600 nm. The culture was centrifuged at 13,000× g for 3 min,
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and the pellet washed and resuspended with PBS. The suspension was centrifuged again
in the same conditions and resuspended in PBS. The compounds were applied at 50 µM
in a solution of a non-toxic concentration of EB (1 µg/mL) in PBS. Then, 50 µL of this
solution were transferred into a 96-well black microtiter plate (Greiner Bio-One Hungary
Kft, Mosonmagyaróvár, Fertősor, Hungary), and 50 µL of bacterial suspension (OD600
0.4–0.6) were added to each well. The plates were placed into the CLARIOstar plate reader,
and the fluorescence was monitored at excitation and emission wavelengths of 530 nm and
600 nm every minute for one hour on a real-time basis. From the real-time data, the activity
of the compounds, namely the RFI of the last time point (minute 60) of the EB accumulation
assay, was calculated according to the following formula:

RFI =
RFtreated − RFuntreated

RFuntreated
(1)

where RFtreated is the relative fluorescence (RF) at the last time point of EB accumulation
curve in the presence of the compound, and RFuntreated is the RF at the last time point of the
EB accumulation curve of the untreated control, having only the solvent (DMSO) control.
The accumulation curves were designed using Microsoft Excel®.

3.7. Inhibition of Biofilm Formation

The derivatives 4, 5, 11, 12, 16, 19, and 20 were tested for their ability to decrease
the formation of biofilm. The bacterial strains used were the Gram-positive S. aureus
ATCC 25923 and S. aureus 272123. The detection of the biofilm formation was possible
with the use of the dye crystal violet (CV; 0.1% v/v). The initial inoculum was incubated
in TSB overnight, and then diluted to an OD600 of 0.1. Then, the bacterial suspension
was added to 96-well microtiter plates and the compounds were added at half the MIC.
If the MIC was >100 µM, the compound would be added at the concentration of 100 µM.
The final volume in each well was 200 µL. Reserpine was used as the positive control,
as it was the same compound used in the efflux pump inhibition assay and it has shown
activity in the inhibition of biofilm formation in S. aureus strains [39]. The plates were
incubated at 30 ◦C for 48 h, with gentle stirring (100 rpm). After this incubation period,
the TSB medium was discarded, and the plates were washed with tap water to remove
unattached cells. Afterwards, 200 µL of a 0.1% v/v CV solution were added to the wells
and incubated for 15 min at room temperature. Then, the CV solution was removed from
the wells, and the plates were washed again with tap water, and 200 µL of a 70% ethanolic
solution were added to the wells. The biofilm formation was determined by measuring the
OD600 using a Multiscan EX ELISA plate reader (Thermo Labsystems, Cheshire, WA, USA).
The anti-biofilm effect of the compounds was expressed as the percentage (%) of decrease
in biofilm formation.

3.8. Quorum Sensing Assay

The QS inhibitory effect of the compounds was examined on the EZF and the sensor
CV026 strains, on the wt85 strain, and on S. marcescens, for 4, 5, 11, 12, 16, 19, and 20.
The method used was the parallel inoculation method, where pair combinations of the
used sensor strain CV026 and the N-acyl-homoserine lactone (AHL)-producing strain
EZF were inoculated directly onto the LB*-A agar surface in parallel, at an approximate
distance of 5 mm from each other. S. marcescens AS-1 and wt85 were inoculated as a single
line. Filter paper disks (7 mm in diameter) were placed on the center of the inoculated
line(s) and impregnated with 8 µL of a solution of 10 mM of the compounds. PMZ was
used as the positive control, as previous results have demonstrated its activity as a QS
inhibitor [59]. The agar plates were incubated at room temperature (20 ◦C) for 24–48 h.
The QS inhibition was accessed visually, through the inhibition of pigment production.
The discolored, but intact, bacterial colonies were measured with a ruler [16,59].
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3.9. Cytotoxicity Assay

Mouse fibroblasts (NIH/3T3, ATCC CRL-1658TM) were cultivated in DMEM (Gibco 52100-
039) and supplemented with 10% heat-inactivated fetal bovine serum (Biowest, VWR
International Kft, Debrecen, Hungary), 2 mM of L-glutamine, 1 mM Na pyruvate, 100 U/L
and 10 mg/L penicillin/streptomycin mixture (Sigma-Aldrich Chemie GmbH, Steinheim,
Germany), respectively, and 0.1% nystatin (8.3 g/L in ethylene glycol). The adherent cells
were detached using a combination of 0.25% Trypsin–Versene (EDTA) solution for 5 min
at 37 ◦C. Before each cytotoxicity assay using this cell line, cells were seeded in untreated
96-well flat-bottom microtiter plates, following a 4-h incubation period in a humidified
atmosphere (5% CO2, 95% air) at 37 ◦C [60].

The cytotoxicity of 4, 12, 16, 19, and 20 was assessed in NIH/3T3 cells. The com-
pounds were added to the cells distributed into 96-well flat bottom microtiter plates at
concentrations of 1 × 104 and initially incubated for 24 h, after which a solution of MTT
in PBS was added to each well and incubated for another 4 h. The concentrations used
were the same as in the MIC assay. After this, 100 µL of SDS (10% in a 0.01 M HCl solu-
tion) were added to each well and incubated overnight at 37 ◦C. Doxorubicin was used
as the positive control. Cell growth was determined in quadruplicate by measuring OD
at λ = 540 nm (reference 630 nm) in a Multiscan EX ELISA reader (Thermo Labsystems,
Cheshire, WA, USA). The percentage of inhibition of cell growth was determined according
to the equation:

100−
( ODsample −ODmedium control

ODcell control −ODmedium control

)
× 100 (2)

The results were expressed as the mean± standard deviation (SD), and the IC50 values
were obtained by best fitting the dose-dependent inhibition curves in GraphPad Prism 5.03
for Windows software.

4. Conclusions

In the present study, various efflux pump-related aspects of bacterial resistance have
been investigated. Since it is the first report on xanthones as potential EPIs, the general
activity of the compounds and the interplay with different virulence and resistance de-
terminants were investigated (bacterial communication, biofilm formation, efflux pump
inhibition). The results herein disclosed the potential of xanthone derivatives to circumvent
antimicrobial resistance mechanisms. Although none of the tested compounds displayed
antibacterial activity for both tested strains, in the range of concentrations used, com-
pounds 4, 10, 11, 12, 16, 19, and 20 were effective at decreasing the efflux of EB in the tested
strains, which can translate to the inhibition of efflux pumps. These results are corroborated
by the docking studies performed, that showed that these compounds present good scores
for this target. Concerning the biofilm formation assay, compounds 4, 5, 11 and 12 are more
active in S. aureus 272123 than in the ATCC, even though only 4 presents an inhibition
of biofilm formation superior to the positive control. Compounds 19 and 20 were more
effective than reserpine at inhibiting this phenomenon in both tested strains, an effect more
noted with the ATCC strain. In fact, these compounds were also able to decrease biomass in
the ATCC strain, with results of 97% and 91%, respectively. Noteworthy is also the fact both
these compounds, 19 and 20, presented promising results on the inhibition of efflux pumps.
Concerning QS, two compounds, 12 and 16, were able to inhibit this virulence mechanism
in the combination of EZF and CV026. Finally, two derivatives, 4 and 19, arise as hit
compounds, for their overall results against bacteria resistance and virulent mechanisms
and their lack of cytotoxicity, with potential to be used as safe antibiotic adjuvants in the
treatment of skin infections.

The overall results show xanthone derivatives are effective in inhibiting efflux pumps,
but also present efficacy against other resistance mechanisms with different hits found
in different experiments. To the best of our knowledge, this is the first time xanthone
derivatives have been described as bacterial efflux pump inhibitors. Future studies may
bring insight into the synergy possibilities of hit compound 19 with other halogenated
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xanthones herein described, such as compound 18, whose antibacterial activity has been
described for Gram-negative bacteria, but displayed no activity as a bacterial efflux pump
inhibitor. Even though their results in the docking studies suggest they could interact
with efflux structures, the underlying mechanisms must also be studied in a deeper extent,
to overcome limitations of the real-time EB accumulation assay. Genetic assays, for instance,
are warranted to unequivocally attribute the activity of these compounds to a specific efflux
pump, such as AcrAB-TolC or NorA, since they may act through different mechanisms or
inhibit different efflux systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics10050600/s1, Figure S1: Fluorescence curves for the EB accumulation assay for com-
pound 1, Figure S2: Fluorescence curves for the EB accumulation assay for compound 2, Figure S3:
Fluorescence curves for the EB accumulation assay for compound 3, Figure S4: Fluorescence curves
for the EB accumulation assay for compound 4, Figure S5: Fluorescence curves for the EB accu-
mulation assay for compound 5, Figure S6: Fluorescence curves for the EB accumulation assay
for compound 6, Figure S7: Fluorescence curves for the EB accumulation assay for compound 7,
Figure S8: Fluorescence curves for the EB accumulation assay for compound 8, Figure S9: Fluores-
cence curves for the EB accumulation assay for compound 9, Figure S10: Fluorescence curves for the
EB accumulation assay for compound 10, Figure S11: Fluorescence curves for the EB accumulation
assay for compound 11, Figure S12: Fluorescence curves for the EB accumulation assay for compound
12, Figure S13: Fluorescence curves for the EB accumulation assay for compound 13, Figure S14:
Fluorescence curves for the EB accumulation assay for compound 14, Figure S15: Fluorescence
curves for the EB accumulation assay for compound 15, Figure S16: Fluorescence curves for the EB
accumulation assay for compound 16, Figure S17: Fluorescence curves for the EB accumulation assay
for compound 17, Figure S18: Fluorescence curves for the EB accumulation assay for compound
18, Figure S19: Fluorescence curves for the EB accumulation assay for compound 19, Figure S20:
Fluorescence curves for the EB accumulation assay for compound 20, Figure S21: Fluorescence curves
for compound 4, Figure S22: Fluorescence curves for compound 5, Figure S23: Fluorescence curves
for compound 12, Figure S24: Fluorescence curves for compound 13, Figure S25: Fluorescence curves
for compound 16.
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Abbreviations

AHL Acyl-homoserine-lactone
ATCC American Type Culture Collection
BCR Binding core region
CCCP Carbonyl cyanide 3-chlorophenylhydrazone
CS Cytoplasmic side
CV026 Chromobacterium violaceum CV026
CV Crystal violet
DMSO Dimethyl sulfoxide
DTSSP 3,3′-dithiobis(sulfosuccinimidyl propionate)
EB Ethidium bromide
EZF Sphingomonas paucimobilis EZF 10-17
HH Helical hairpin
HT Hydrophobic trap
IC50 Half-maximal inhibitory concentration
LB-A Luria–Bertani agar
LB-B Luria–Bertani broth
LD Lipoyl domain
MFS Major facilitator superfamily
MHB II Cation-adjusted Mueller–Hinton broth
MIC Minimum inhibitory concentration
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
OD Optical density
PBS Phosphate-buffered saline
PMZ Prometazine
RF Relative fluorescence
RFI Relative fluorescence index
RND Resistance-nodulation-division
SBS Substrate-binding site
SD Standard deviation
SE03 Salmonella enterica serovar Typhimurium with the acrA gene deleted
TSA Tryptic Soy agar
TSB Tryptic Soy broth
QS Quorum sensing
wt85 Chromobacterium violaceum wild type 85
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27. Zárate, S.G.; Morales, P.; Świderek, K.; Bolanos-Garcia, V.M.; Bastida, A. A Molecular Modeling Approach to Identify Novel
Inhibitors of the Major Facilitator Superfamily of Efflux Pump Transporters. Antibiotics 2019, 8, 25. [CrossRef]

28. Shaheen, A.; Afridi, W.A.; Mahboob, S.; Sana, M.; Zeeshan, N.; Ismat, F.; Mirza, O.; Iqbal, M.; Rahman, M. Reserpine Is the New
Addition into the Repertoire of AcrB Efflux Pump Inhibitors. Mol. Biol. Mosk 2019, 53, 674–684. [CrossRef] [PubMed]

29. Kincses, A.; Varga, B.; Csonka, Á.; Sancha, S.; Mulhovo, S.; Madureira, A.M.; Ferreira, M.-J.U.; Spengler, G. Bioactive compounds
from the African medicinal plant Cleistochlamys kirkii as resistance modifiers in bacteria. Phytother. Res. 2018, 32, 1039–1046.
[CrossRef] [PubMed]

30. Costa, S.S.; Sobkowiak, B.; Parreira, R.; Edgeworth, J.D.; Viveiros, M.; Clark, T.G.; Couto, I. Genetic Diversity of norA, Coding for
a Main Efflux Pump of Staphylococcus aureus. Front. Genet. 2019, 9, 710. [CrossRef]

31. Nagem, T.J.; Oliveira, F.F.d. Xanthones and other constituents of Vismia parviflora. J. Braz. Chem. Soc. 1997, 8, 505–508. [CrossRef]
32. Kato, L.; De Oliveira, C.M.A.; Vencato, I.; Lauriucci, C. Crystal structure of 1,7-dihydroxyxanthone from Weddellina squamulosa

Tul. J. Chem. Crystallogr. 2005, 35, 23–26. [CrossRef]
33. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal

chemistry friendliness of small molecules. Sci. Rep. 2017, 7, srep42717. [CrossRef] [PubMed]

http://doi.org/10.2174/1389200221999210104204718
http://doi.org/10.3390/molecules24020243
http://doi.org/10.3390/molecules26020431
http://doi.org/10.1016/j.ijantimicag.2010.10.020
http://doi.org/10.3390/molecules23102617
http://doi.org/10.3390/molecules25102405
http://doi.org/10.1089/mdr.2014.0162
http://doi.org/10.3390/microorganisms8040566
http://www.ncbi.nlm.nih.gov/pubmed/32326407
http://doi.org/10.1128/AEM.01310-08
http://www.ncbi.nlm.nih.gov/pubmed/18836028
http://doi.org/10.4161/viru.23724
http://www.ncbi.nlm.nih.gov/pubmed/23380871
http://doi.org/10.1039/C7RA03859C
http://doi.org/10.3390/molecules22101698
http://doi.org/10.1134/S0026261714010093
http://doi.org/10.1128/AEM.00908-19
http://doi.org/10.1002/ptr.6294
http://www.ncbi.nlm.nih.gov/pubmed/30672036
http://doi.org/10.1039/D0QO00659A
http://doi.org/10.1038/s41467-019-10512-6
http://www.ncbi.nlm.nih.gov/pubmed/31201302
http://doi.org/10.3390/antibiotics8010025
http://doi.org/10.1134/S0026893319040113
http://www.ncbi.nlm.nih.gov/pubmed/31397441
http://doi.org/10.1002/ptr.6042
http://www.ncbi.nlm.nih.gov/pubmed/29464798
http://doi.org/10.3389/fgene.2018.00710
http://doi.org/10.1590/S0103-50531997000500011
http://doi.org/10.1007/s10870-005-1149-4
http://doi.org/10.1038/srep42717
http://www.ncbi.nlm.nih.gov/pubmed/28256516


Antibiotics 2021, 10, 600 17 of 17

34. Silva, V.; Gil-Martins, E.; Rocha-Pereira, C.; Lemos, A.; Palmeira, A.; Puthongking, P.; Sousa, E.; Bastos, M.D.L.; Remião, F.; Silva, R.
Oxygenated xanthones as P-glycoprotein modulators at the intestinal barrier: In vitro and docking studies. Med. Chem. Res. 2020,
29, 1041–1057. [CrossRef]

35. Gibbons, S.; Oluwatuyi, M.; Kaatz, G.W. A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus. J. Antimicrob. Chemother.
2003, 51, 13–17. [CrossRef]

36. Kaatz, G.W.; Moudgal, V.V.; Seo, S.M.; Kristiansen, J.E. Phenothiazines and Thioxanthenes Inhibit Multidrug Efflux Pump Activity
in Staphylococcus aureus. Antimicrob. Agents Chemother. 2003, 47, 719–726. [CrossRef] [PubMed]

37. Singh, S.; Singh, S.K.; Chowdhury, I.; Singh, R. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial
Agents. Open Microbiol. J. 2017, 11, 53–62. [CrossRef]

38. Alav, I.; Sutton, J.M.; Rahman, K.M. Role of bacterial efflux pumps in biofilm formation. J. Antimicrob. Chemother. 2018,
73, 2003–2020. [CrossRef]

39. Parai, D.; Banerjee, M.; Dey, P.; Mukherjee, S.K. Reserpine attenuates biofilm formation and virulence of Staphylococcus aureus.
Microb. Pathog. 2020, 138, 103790. [CrossRef] [PubMed]

40. Zhang, Y.; Zhang, J.; Cui, P.; Zhang, Y.; Zhang, W. Identification of Novel Efflux Proteins Rv0191, Rv3756c, Rv3008, and Rv1667c
Involved in Pyrazinamide Resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2017, 61. [CrossRef]

41. Tariq, A.; Sana, M.; Shaheen, A.; Ismat, F.; Mahboob, S.; Rauf, W.; Mirza, O.; Iqbal, M.; Rahman, M. Restraining the multidrug
efflux transporter STY4874 of Salmonella Typhi by reserpine and plant extracts. Lett. Appl. Microbiol. 2019, 69, 161–167. [CrossRef]

42. Romanova, N.A.; Wolffs, P.F.G.; Brovko, L.Y.; Griffiths, M.W. Role of Efflux Pumps in Adaptation and Resistance of Listeria
monocytogenes to Benzalkonium Chloride. Appl. Environ. Microbiol. 2006, 72, 3498–3503. [CrossRef] [PubMed]

43. Pathania, R.; Sharma, A.; Gupta, V.K. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J. Med. Res.
2019, 149, 129–145. [CrossRef] [PubMed]

44. Hagmann, W.K. The Many Roles for Fluorine in Medicinal Chemistry. J. Med. Chem. 2008, 51, 4359–4369. [CrossRef]
45. Greenlee, W.F.; Osborne, R.; Dold, K.M.; Hudson, L.G.; Toscano, W.A. Toxicity of chlorinated aromatic compounds in animals and

humans: In vitro approaches to toxic mechanisms and risk assessment. Environ. Heal. Perspect. 1985, 60, 69–76. [CrossRef]
46. Pedro, M.; Cerqueira, F.; Sousa, M.E.; Nascimento, M.S.J.; Pinto, M. Xanthones as inhibitors of growth of human cancer cell lines

and Their effects on the proliferation of human lymphocytes In Vitro. Bioorg. Med. Chem. 2002, 10, 3725–3730. [CrossRef]
47. Pinto, E.; Afonso, C.; Duarte, S.; Vale-Silva, L.; Costa, E.; Sousa, E.; Pinto, M. Antifungal Activity of Xanthones: Evaluation of

their Effect on Ergosterol Biosynthesis by High-performance Liquid Chromatography. Chem. Biol. Drug Des. 2011, 77, 212–222.
[CrossRef]

48. Eicher, T.; Cha, H.-J.; Seeger, M.A.; Brandstatter, L.; El-Delik, J.; Bohnert, J.A.; Kern, W.V.; Verrey, F.; Grutter, M.G.;
Diederichs, K.; et al. Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are
separated by a switch-loop. Proc. Natl. Acad. Sci. USA 2012, 109, 5687–5692. [CrossRef] [PubMed]

49. Mikolosko, J.; Bobyk, K.; Zgurskaya, H.I.; Ghosh, P. Conformational Flexibility in the Multidrug Efflux System Protein AcrA.
Structure 2006, 14, 577–587. [CrossRef]

50. Koronakis, V.; Sharff, A.; Koronakis, E.; Luisi, B.F.; Hughes, C. Crystal structure of the bacterial membrane protein TolC central to
multidrug efflux and protein export. Nat. Cell Biol. 2000, 405, 914–919. [CrossRef]

51. Sussman, J.L.; Lin, D.; Jiang, J.; Manning, N.O.; Prilusky, J.; Ritter, O.; Abola, E.E. Protein Data Bank (PDB): Database of Three-
Dimensional Structural Information of Biological Macromolecules. Acta Crystallogr. Sect. D Biol. Crystallogr. 1998, 54, 1078–1084.
[CrossRef]

52. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient opti-
mization, and multithreading. J. Comput. Chem. 2009, 31, 455–461. [CrossRef] [PubMed]

53. Aron, Z.; Opperman, T.J. The hydrophobic trap—the Achilles heel of RND efflux pumps. Res. Microbiol. 2018, 169, 393–400.
[CrossRef] [PubMed]

54. Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; Beer, T.A.P.D.; Rempfer, C.;
Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018,
46, W296–W303. [CrossRef] [PubMed]

55. The UniProt Consortium UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169. [CrossRef]
56. Seeliger, D.; De Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Mol. Des.

2010, 24, 417–422. [CrossRef]
57. Gajdács, M.; Spengler, G. Standard operating procedure (SOP) for disk diffusion-based quorum sensing inhibition assays.

Acta Pharm. Hung. 2020, 89, 117–125. [CrossRef]
58. CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 11th ed.; Clinical and Laboratory

Standards Institute: Wayne, PA, USA, 2018.
59. Gajdács, M.; Spengler, G. The Role of Drug Repurposing in the Development of Novel Antimicrobial Drugs: Non-Antibiotic

Pharmacological Agents as Quorum Sensing-Inhibitors. Antibiotics 2019, 8, 270. [CrossRef]
60. Ferreira, R.J.; Kincses, A.; Gajdács, M.; Spengler, G.; Dos Santos, D.J.V.A.; Molnár, J.; Ferreira, M.-J.U. Terpenoids from Euphorbia

pedroi as Multidrug-Resistance Reversers. J. Nat. Prod. 2018, 81, 2032–2040. [CrossRef]

http://doi.org/10.1007/s00044-020-02544-1
http://doi.org/10.1093/jac/dkg044
http://doi.org/10.1128/AAC.47.2.719-726.2003
http://www.ncbi.nlm.nih.gov/pubmed/12543683
http://doi.org/10.2174/1874285801711010053
http://doi.org/10.1093/jac/dky042
http://doi.org/10.1016/j.micpath.2019.103790
http://www.ncbi.nlm.nih.gov/pubmed/31605761
http://doi.org/10.1128/AAC.00940-17
http://doi.org/10.1111/lam.13196
http://doi.org/10.1128/AEM.72.5.3498-3503.2006
http://www.ncbi.nlm.nih.gov/pubmed/16672496
http://doi.org/10.4103/ijmr.IJMR_2079_17
http://www.ncbi.nlm.nih.gov/pubmed/31219077
http://doi.org/10.1021/jm800219f
http://doi.org/10.1289/ehp.856069
http://doi.org/10.1016/S0968-0896(02)00379-6
http://doi.org/10.1111/j.1747-0285.2010.01072.x
http://doi.org/10.1073/pnas.1114944109
http://www.ncbi.nlm.nih.gov/pubmed/22451937
http://doi.org/10.1016/j.str.2005.11.015
http://doi.org/10.1038/35016007
http://doi.org/10.1107/S0907444998009378
http://doi.org/10.1002/jcc.21334
http://www.ncbi.nlm.nih.gov/pubmed/19499576
http://doi.org/10.1016/j.resmic.2017.11.001
http://www.ncbi.nlm.nih.gov/pubmed/29146106
http://doi.org/10.1093/nar/gky427
http://www.ncbi.nlm.nih.gov/pubmed/29788355
http://doi.org/10.1093/nar/gkw1099
http://doi.org/10.1007/s10822-010-9352-6
http://doi.org/10.33892/aph.2019.89.117-125
http://doi.org/10.3390/antibiotics8040270
http://doi.org/10.1021/acs.jnatprod.8b00326

	Introduction 
	Results and Discussion 
	Docking Results 
	Antibacterial Activity 
	Efflux Pump Inhibition Assay 
	Inhibition of Biofilm Formation 
	Quorum Sensing Assay 
	Cytotoxicity Assay 

	Materials and Methods 
	Compounds 
	Culture Media and Chemicals 
	Docking Studies 
	Bacterial Strains 
	Antibacterial Assay 
	Efflux Pump Inhibition Assay 
	Inhibition of Biofilm Formation 
	Quorum Sensing Assay 
	Cytotoxicity Assay 

	Conclusions 
	References

