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Abstract: In the case of capsule‐based dry powder inhalation systems (DPIs), the selection of the 10 

appropriate capsule is important. The use of gelatin, gelatin‐PEG, and HPMC capsules has become 11 

widespread in marketed capsule‐based DPIs. We aimed to perform a stability test according to the 12 

ICH guideline in the above‐mentioned three capsule types. The results of the novel combined 13 

formulated microcomposite were more favorable than those of the carrier‐free formulation for all 14 

capsule types. The use of HPMC capsules results in the greatest stability and thus the best in vitro 15 

aerodynamic results for both DPI powders after 6 months. This can be explained by the fact that 16 

the residual solvent content (RSC) of the capsules differs. Under the applied conditions the RSC of 17 

the HPMC capsule decreased the least and remained within the optimal range, thus becoming less 18 

fragmented, which was reflected in the RSC, structure and morphology of the particles, as well as 19 

in the in vitro aerodynamic results (there was a difference of approximately 10% in the lung depo‐ 20 

sition results). During pharmaceutical dosage form developments, emphasis should be placed in 21 

the case of DPIs on determining which capsule type will be used for specific formulations. 22 
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 26 

1. Introduction 27 

Research on pulmonary drug delivery (PDD) has been carried out in remarkable 28 

numbers in the last two and half decades, and the number of companies and research 29 

groups specializing in this field continues to grow [1]. This is due to the fact that the 30 

lung, as an alternative drug delivery gate, is able to absorb the drug over a large area 31 

according to its anatomical properties through a thin absorption membrane, and due to 32 

its excellent blood supply, a rapid systemic effect (much faster than oral administration) 33 

can be achieved [2]. Thus, PDD is suitable for both local and systemic therapeutic pur‐ 34 

poses [3]. Furthermore, it should be emphasized that it is much more advantageous 35 

compared to oral administration in terms of side effect profile, as the first‐pass effect of 36 

the liver and the enzymatic inactivation of the gastrointestinal tract as metabolic path‐ 37 

ways are avoided by the inhaled drug, requiring a lower therapeutic dose [4,5]. It is 38 

noteworthy that great emphasis is placed on the development of inhaled antibiotic 39 

products as, for example, they can be used effectively in the treatment of cystic fibrosis 40 

[6]. A number of inhaled antibiotics are currently available on the market, such as ami‐ 41 

kacin (Arikayce®, Insmed Incorporated, Bridgewater, New Jersey, USA), aztreonam 42 

(Cayston®, Cayston Gilead Sciences Ireland UC, Carrigtohill, Ireland), colistimethate 43 

sodium (Colobreathe®, Forest Laboratories UK Ltd., Whiddon Valley, UK), levofloxacin 44 

hemihydrate (Quinsair®, Chiesi Farmaceutici S.p.A., Parma, Italy), and tobramycin 45 
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(TOBI®/TOBI® Podhaler®, Novartis International AG, Basel, Switzerland; Bramitob®, 46 

Chiesi Farmaceutici S.p.A., Parma, Italy) [7,8]. In addition, many inhalation products 47 

containing antibiotics (e.g. ciprofloxacin, murepavadin, etc.) are in clinical trials [9,10]. 48 

For PDD, the following main groups can currently be distinguished: Nebulizers, 49 

Pressured metered‐dose inhalers, Soft Mist Inhalers and Dry Powder Inhalers (DPIs) 50 

[11]. The development of the latter can be said to be the most popular of the listed, as 51 

their stability is relatively high compared to liquid‐based systems due to solid powders, 52 

they are propellant‐free to operate, easy to use, etc. [12,13]. For the optimal functioning 53 

of these microcomposites, in addition to the appropriate formulation, it is essential that 54 

patients use the inhalers professionally and master the correct breathing maneuver, and 55 

the development of DPI devices should facilitate the adequate flow of the formulation, 56 

must be compatible with the applied powder, however, that should allow easy applica‐ 57 

tion by the user [14]. A notable proportion of DPI products marketed are capsule‐based 58 

[15], which suggests that remarkable attention should also be paid to the role of DPI 59 

capsules used, but the international literature has only recently begun to address this 60 

issue [16–20] 61 

Capsules used in DPIs have different functions and properties compared to oral 62 

drug administration in terms of therapeutic success [21]. While capsules also play a role 63 

in the liberation of the drug when administered orally, in the case of inhalation therapy, 64 

the capsule wall does not only serve to “package” the formulation, as its composition 65 

and internal surface properties can affect aerosolization and thus the effectiveness of the 66 

therapy. For example, excessive adhesion between the capsule wall and the particles of 67 

the DPI formulation (this may be due to the static nature of the capsule wall and the 68 

roughness of the inner surface) may result in more drug particles remaining in the cap‐ 69 

sule after inhalation [18,22]. Thus, DPI powder particles can be more difficult to aerosol‐ 70 

ize and, in carrier‐based systems, can also adversely affect the dispersion of the mi‐ 71 

cronized drug from large carrier particles [23]. It should be noted that the properties of 72 

DPI capsules may also play a role in the stability of DPI powders, as their residual sol‐ 73 

vent content (RSC) can affect the structure of formulations – in the case of being amor‐ 74 

phous –, morphology, density, interparticle interactions – between drug‐drug and/or 75 

drug‐carrier particles –, which also affect the aerosolization and dispersion of the for‐ 76 

mulations. The stability of the DPI capsules and the increase in fragility over time may 77 

also modify the aerodynamics of the powders during inhalation. As a result of the fac‐ 78 

tors listed above, the mass median aerodynamic diameter (MMAD) of the samples may 79 

increase and greater deposition is expected in the upper airways, so fine particle fraction 80 

(FPF) may be smaller than expected as if using DPI capsules improved properties 81 

[24,25]. 82 

For DPI capsules, three main types can be distinguished. First of all, the use of gela‐ 83 

tin (GEL) capsules is widespread, which is still one of the most common type of capsule 84 

in capsule‐based inhalers on the market, e.g. in Onbrez® Breezhaler® (Novartis Interna‐ 85 

tional AG, Basel, Switzerland) [26]. However, it should be mentioned that it is incom‐ 86 

patible with certain active ingredients (e.g. hydrolyzing agents) and the relatively high 87 

RSC involves a risk, since based on experience, it becomes brittle below 10% [16]. The 88 

next step was the development of gelatin‐PEG (GEL‐PEG) capsules. Indeed, their use is 89 

not widespread – in a few marketed formulations such capsules can be found, e.g. in 90 

SPIRIVA® HandiHaler® (Boehringer Ingelheim, Ingelheim, Germany) – but for these 91 

capsules, the optimal RSC is already lower (10‐12%), so they are less exposed to frag‐ 92 

mentation than GEL capsules [26]. Another line is hydroxypropyl methylcellulose 93 

(HPMC) DPI capsules, e.g. in TOBITM PodhalerTM (Novartis International AG, Basel, 94 

Switzerland), which are prepared using a gelling agent and a network promoter. These 95 

capsules are chemically inert, resulting in incompatibility with few materials. Moreover, 96 

they have much less optimal RSC (about 3‐7%) than the two capsule types detailed ear‐ 97 

lier, so the risk of fragmentation is even less with this type of DPI capsule [16]. Capsules 98 

made from the above‐mentioned materials are manufactured/marketed as a separate 99 
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portfolio for inhalation, in the development of which manufacturers have recently 100 

placed increasing emphasis on reducing the static charge of the capsule wall and the 101 

adhesion between the powder particles and the capsule wall. Furthermore, it is also im‐ 102 

portant for these capsules to respond well to activation mechanisms such as punching 103 

and cutting and to be subject to more stringent microbiological requirements than orally 104 

administered capsules [27–29]. 105 

In the present work, we aimed to investigate the 6‐month stability test of car‐ 106 

rier‐free and novel combined formulated DPI microcomposites containing ciprofloxacin 107 

hydrochloride (CIP) based on ICH guidelines in three different DPI capsule types (GEL, 108 

GEL‐PEG, HPMC) and to compare the stability of these two formulations under given 109 

conditions. Two of our previously published communications provide the background 110 

for this study. In the prior article, results/findings related to the development of the 111 

above‐mentioned formulations are found [30], while in the second article, stability test 112 

results of the same samples were reported at the conditions of 25 ± 2 °C with 50 ± 5% RH 113 

(room conditions), stored in open containers for 1 month [31]. GEL capsules were used 114 

in both cases. In our current work, as a novelty, we would like to present a comprehen‐ 115 

sive approach to the importance of final pharmaceutical dosage form development for 116 

the above mentioned CIP containing samples. Focusing on the stability of each DPI 117 

capsule type used and their impact on the stability and in vitro aerodynamic properties 118 

of DPI formulations under given conditions. The same formulation may exhibit different 119 

stability and thus aerodynamic properties in different DPI capsule types. 120 

2. Materials and Methods 121 

2.1. Materials 122 

Micronized ciprofloxacin hydrochloride (µCIP) (D (0.5): 5.09 µm) as a fluoroqui‐ 123 

nolone antibiotic active ingredient was applied and donated by Teva Pharmaceutical 124 

Works Ltd. (Debrecen, Hungary). Lactose monohydrate, Inhalac® 70 (IH 70) (D (0.5): 125 

215.00 µm) was gifted by MEGGLE Group (Wasserburg, Germany) and utilized as a car‐ 126 

rier. Magnesium stearate (MgSt) (D (0.5): 6.92 µm) was used to treat the surface of IH 70 127 

[32], which was supplied by Sigma‐Aldrich (Budapest, Hungary). Sodium stearate 128 

(NaSt) (Alfa Aesar, Heysham, United Kingdom) was used as an excipient in the 129 

co‐spray‐drying process. The Coni‐Snap® hard GEL (Capsugel®/Lonza Pharma & Bio‐ 130 

tech, Basel, Switzerland), Ezeefit™ GEL‐PEG (ACG‐Associated Capsules Pvt. Ltd., 131 

Mumbai, India) and Ezeeflo™ HPMC (ACG‐Associated Capsules Pvt. Ltd., Mumbai, 132 

India) capsules were used to store DPI formulations during the stability test. 133 

2.2. Methods 134 

2.2.1. Preparation of the Samples 135 

For the six‐month‐long stability test, we again prepared the formulations which had 136 

been investigated in our previous work [30]. The CIP_0.5NaSt_spd microcomposite was 137 

produced as a carrier‐free DPI system, which was named formulation (1). Furthermore, 138 

formulation (2) was the novel combined formulated microcomposite. The former was 139 

made with co‐spray‐drying from a solution of CIP and NaSt. Firstly, the 1.5 w/v % 140 

aqueous solution applying CIP and the ethanolic solution containing 0.0175 w/v % NaSt 141 

were prepared at 30 °C. Then, the two above‐mentioned solutions were blended in a ra‐ 142 

tio of 70:30. Büchi B‐191 equipment (Mini Spray Dryer, Büchi Labortechnik AG, Flawil, 143 

Switzerland) was utilized for the co‐spray‐drying process with the following parame‐ 144 

ters: inlet heating temperature, 130 °C, outlet heating temperature, 78 °C, aspirator ca‐ 145 

pacity, 75%, pressured airflow, 600 l/min, feed pump rate, 5%. So, formulation (1) con‐ 146 

tained 99.5 w/w % of drug and 0.5 w/ w % of NaSt. Formulation (2) was the combination 147 

of formulation (1) and the surface treated carrier (Figure 1). The surface treatment of IH 148 

70 carrier was performed with 2.0 w/w % of MgSt [33,34] with Turbula blending 149 
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(Turbula System Schatz; Willy A. Bachofen AG Maschinenfabrik, Basel, Switzerland) for 150 

4 h [32]. Then, formulation (1) was mixed with a surface modified carrier in the mass ra‐ 151 

tio of 1:10 [35] with a Turbula blender at 60 rpm for 30 min [36]. Then, knowing their 152 

exact drug content, the appropriate amount of the two prepared formulations – see in 153 

Subsubsection 2.2.2. – was filled into GEL, GEL‐PEG and HPMC capsules and then blis‐ 154 

tered, considering that the applied inhalation dose of CIP is 10 mg, which corresponds to 155 

ten percent of the oral dose of CIP [37]. As a result, the six samples shown in Table 1 156 

were obtained from the two produced formulations. 157 

Table 1. Details of the components of the samples 158 

Compositions of the DPI formulations Applied DPI capsule types 

Samples CIP 

(w/w %) 

NaSt 

(w/w %) 

IH 70 

(w/w %) 

MgSt 

(w/w %) 
GEL GEL-PEG HPMC 

1_GEL 99.50 0.500 – – + – – 

1_GEL‐PEG 99.50 0.500 – – – + – 

1_HPMC 99.50 0.500 – – – – + 

2_GEL 9.045 0.045 88.91 2.000 + – – 

2_GEL‐PEG 9.045 0.045 88.91 2.000 – + – 

2_HPMC 9.045 0.045 88.91 2.000 – – + 

 159 

 160 

Figure 1. Schematic overview of the preparation  161 

2.2.2. Homogeneity and Drug Content Test 162 

After the preparation of formulation (2), homogeneity and drug content investiga‐ 163 

tions were carried out for this microcomposite due to the application of blending ac‐ 164 

tions. The drug content was also tested for formulation (1). The United States Pharma‐ 165 

copeia (USP) required that the tests must be carried out with DPI dosage units [38] taken 166 

from ten random places [39]. These were dissolved in distilled water, and the CIP con‐ 167 

tent was calculated with a UV/VIS spectrophotometer (ATIUNICAM UV/VIS Spectro‐ 168 

photometer, Cambridge, UK) at a wavelength of 276 nm. The linearity of CIP in this me‐ 169 

dium at the above‐mentioned wavelength was determined in advance. The linearity of 170 

the calibration curve was y = 0.0736x. The unit of the slope was mL/µg. 171 

2.2.3. Investigation of the Stability of the Formulations and the Capsules 172 

Stability tests were performed in a Binder KBF 240 (Binder GmbH Tuttlingen, Ger‐ 173 

many) constant‐climate chamber. An electronically controlled APT.line™ line preheat‐ 174 

ing chamber and refrigerating system ensured temperature accuracy and reproducibility 175 

of the results in the temperature range between 10 and 70 °C and the relative humidity 176 

(RH) range between 10 and 80 %. The stability test was carried out at 40 ± 2 °C with 75 ± 177 

5 % RH based on the ICH guideline. The duration of storage of the blistered formula‐ 178 
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tions in different capsule types – 6 samples – was 6 months. Sampling was implemented 179 

after 1 month, 3 months and 6 months. Under the same conditions, the applied capsule 180 

types were stored empty blistered for 6 months for testing. 181 

2.2.4. Light Microscopic Examination 182 

The shape and area of the holes formed by punching the capsules were recorded 183 

with a Leica image analyzer (Leica Q500MC, LEICA Cambridge Ltd., Cambridge, UK) at 184 

4x magnification. 10 replicates per capsule type were performed each time. 185 

2.2.5. Thermoanalytical Test 186 

The Mettler Toledo STARe (Mettler Inc., Schwerzenbach, Switzerland) was used to 187 

determine the RSC of capsule wall types and DPI powders. For thermogravimetry 188 

measurements, 3‐5 mg of sample per capsule was weighed into 40 µl aluminum cruci‐ 189 

bles, and the temperature dependence of the mass change of the samples was observed 190 

between 25‐350 °C at a heating rate of 10 °C / min under nitrogen gas flow. The weight 191 

loss up to 110 °C was due to the water leaving the sample. 192 

2.2.6. X‐ray Powder Diffraction (XRPD) 193 

The XRPD diffractograms – the raw CIP, NaSt, and the carrier‐free formulation 194 

during the stability test in the different DPI capsule types – were determined by a 195 

BRUKER D8 Advance X‐ray powder diffractometer (Bruker AXS GmbH, Karlsruhe, 196 

Germany) with Cu K λI radiation (λ=1.5406 Å) and a VÅNTEC‐1 detector. The powders 197 

were scanned at 40 kV and 40 mA, with an angular range of 3° to 40° 2θ, at a step time of 198 

0.1 s and a step size of 0.01°. 199 

2.2.7. Particle Size Distribution 200 

Laser diffraction (Malvern Mastersizer Scirocco 2000, Malvern Instruments Ltd., 201 

Worcestershire, UK) was applied to determine the particle size distribution of the mi‐ 202 

crocomposites. Approximately 0.5 g of the sample was placed into a feeder tray. The dry 203 

analysis method was used, so the air was the dispersion medium for the examined par‐ 204 

ticles. The dispersion air pressure was set to 2.0 bars to determine whether particle attri‐ 205 

tion had occurred. Three parallel investigations were performed. The D (0.1), D (0.5), 206 

and D (0.9) values were determined after the measurements as particle size distribution. 207 

2.2.8. Scanning Electron Microscopy (SEM) 208 

The examination of the morphology of the DPI microcomposites was carried out by 209 

scanning electron microscopy (SEM) (Hitachi S4700, Hitachi Scientific Ltd., Tokyo, Ja‐ 210 

pan). For the induction of electric conductivity on the surface of the samples, a sputter 211 

coater was used (Bio‐Rad SC 502, VG Microtech, Uckfield, UK). The air pressure used 212 

was 1.3–13.0 MPa. The formulations were coated with gold‐palladium (90 s) under an 213 

argon atmosphere using a gold sputter module in a high vacuum evaporator. 214 

2.2.9. In vitro Aerodynamic Investigation 215 

The in vitro aerodynamic behavior of the DPI samples was examined with an An‐ 216 

dersen Cascade Impactor (ACI) (Copley Scientific Ltd., Nottingham, UK) because the 217 

ACI is authorized for this purpose in the European Pharmacopoeia, the USP, and the 218 

Chinese Pharmacopoeia as well [40]. The plates of the ACI were soaked with a Span® 80 219 

and cyclohexane mixture (1 : 99) and then allowed to dry. A mass flow meter (Flow Me‐ 220 

ter Model DFM 2000, Copley Scientific Ltd., Nottingham, UK) with a vacuum pump 221 

(High‐capacity Pump Model HCP5, Critical Flow Controller Model TPK, Copley Scien‐ 222 

tific Ltd., Nottingham, UK) were used to set the appropriate flow rate (28.3 ± 1 L/min), 223 

which was applied during the in vitro aerodynamic test. During the in vitro test, three 224 

capsules [41] from a given sample were used in one measurement and the Breezhaler® 225 

(Novartis, Basel, Switzerland) inhaler was utilized. An inhalation time of 4s was applied 226 

twice for each capsule used. After each test, the inhalator, the DPI capsules used, parts of 227 

the ACI (the mouthpiece, the throat, the eight plates (0‐7), the filter used) were washed 228 

with distilled water. The amount of the drug deposited on these items was determined 229 
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with an ultraviolet‐visible spectrophotometer (ATI‐UNICAM UV/VIS Spectrophotome‐ 230 

ter, Cambridge, UK) at a wavelength of 276 nm. The linearity of the API calibration 231 

curve in distilled water was y=0.0736x at 276 nm (unit of the slope: mL/µg). With the 232 

above data known, it is possible to calculate the terms which characterize the in vitro 233 

aerodynamic properties of the samples: fine particle fraction (FPF), mass median aero‐ 234 

dynamic diameter (MMAD), emitted fraction (EF). EF is the percentage of drug detected 235 

from the impactor (from the mouthpiece to the filter) – which is equal to the emitted 236 

dose (ED) – relative to the total amount of the API recovered [42]. In the KaleidaGraph 237 

4.0 program (Synergy Software, Reading, PA, USA) the cumulative percentage less than 238 

the size range versus the effective cut‐off diameter (ACI, 28.3 L / min flow rate [40]) was 239 

plotted on the log probability scale. If the abscissa data for the ordinate values of 5 µm 240 

and 3 µm are known, the mass with a diameter of less than 5 µm and 3 µm can be de‐ 241 

termined. The percentage ratios of these amounts to ED are FPF <5 µm and FPF <3 µm 242 

[43]. The expression of FPF <3 µm is not yet very common in the international literature, 243 

[44,45] since in the deep lung – in the sub‐tracheal area – especially the particles below 3 244 

µm are deposited [46]. The mass median aerodynamic diameter (MMAD) is the diame‐ 245 

ter at which 50% of the particles of an aerosol by mass are larger and 50% are smaller 246 

[47]. This is determined as the ordinate value for the 50% abscissa value. It should be 247 

emphasized that the number of DPI capsules used per measurement must also be taken 248 

into account in the calculations. 249 

2.2.10. Statistical Analyses 250 

Statistical analyses were carried out applying t‐test calculations at a significance 251 

level of 0.05 and with a one‐tailed hypothesis using the Social Science Statistics, which is 252 

available online [48]. All described data indicate ± SD of three parallel measurements (n 253 

= 3). 254 

3. Results and Discussion 255 

3.1. Blend Uniformity and Drug Content 256 

For DPIs, blending uniformity should be between 85 and 115% according to the 257 

USP criterion and the relative standard deviation (SD) for 10 dosage units should be 258 

≤6%. There is also a stricter 90‐110% requirement in the industry [38]. The novel com‐ 259 

bined carrier‐based formulation (2) is also in line with the latter as SD <5% was obtained 260 

(94.17 ± 3.34%), so homogeneity can be assumed [49]. Before the start of the stability pe‐ 261 

riod, the DPI capsules were filled with powders in the knowledge of specific drug con‐ 262 

tent. In the case of formulation (1), this value was 98.41 ± 1.07%, even in the case of for‐ 263 

mulation (2) is 8.518 ± 0.302%. 264 

3.2. Stability of the Capsules  265 

Based on Table 2, it can be said that GEL and GEL‐PEG capsules started to break 266 

even after 1 month. This was especially true for GEL capsules, which formed irregularly 267 

shaped holes. The edges of the holes dropped on GEL‐PEG capsules were also fractured, 268 

although these types of capsules became less brittle during the stability test compared to 269 

those containing purely GEL, thus further supporting the viability of the use of PEG. In 270 

the case of HPMC capsules, no remarkable change was observed in the shape of the 271 

perforated area, and as for the tests, the holes remained approximately regular in terms 272 

of their flexibility even after 6 months. 273 
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Table 2. Light microscopic images of the punctured ends of the applied DPI capsules 274 

Capsule type Before storage 1 month 3 months 6 months 

GEL 

    

GEL‐PEG 

    

HPMC 

    

The area of the capsule puncture and the degree of fragmentation during punching 275 

increased the most overtime for GEL and GEL‐PEG capsules, respectively (Table 2). The 276 

initial values of the hole areas (Table 3) for these DPI capsules increased more than 1.5 277 

times after 6 months. There was less area increase for HPMC capsules. The RSC of the 278 

capsule walls was also determined after 1, 3 and 6 months of the stability test (Table 3). 279 

It was found that the RSC of GEL capsules dropped below the optimal range (13‐16 %) 280 

after the first month, and according to the three‐month results, this was also the case for 281 

GEL‐PEG capsules (optimal range: 10‐12 %), while for HPMC capsules the measured 282 

values remained within the optimal 3‐8 % range 6 months later. 283 

Table 3. RSC of capsule walls and areas of holes formed during punching 284 

Capsule type Time RSC (%) Area of capsule puncture (mm2) 

Before storage 15.26 ± 0.18 0.60 ± 0.16 

1 month 10.31 ± 0.21 0.74 ± 0.11 

3 months 7.23 ± 0.28 1.01 ± 0.28 
GEL 

6 months 6.68 ± 0.12 1.14 ± 0.38 

Before storage 11.87 ± 0.09 0.54 ± 0.10 

1 month 10.68 ± 0.32 0.84 ± 0.12 

3 months 8.74 ± 0.15 0.89 ± 0.14 
GEL‐PEG 

6 months 7.12 ± 0.12 0.92 ± 0.07 

Before storage 5.98 ± 0.11 0.79 ± 0.05 

1 month 5.45 ± 0.09 0.79 ± 0.04 

3 months 4.84 ± 0.13 0.86 ± 0.08 
HPMC 

6 months 4.62 ± 0.02 0.88 ± 0.03 
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3.3. Residual Solvent Content of the Samples 285 

The RSC of the samples plays an important role in stability, since in the case of in‐ 286 

creasing values, recrystallization of the amorphous drug particles, and thus also a struc‐ 287 

tural and morphological change, can be expected. Furthermore, it can contribute to the 288 

unfavorable change of interparticle interactions, therefore it can affect the aerosolization 289 

and dispersion of the particles, and thus also the lung deposition results. Based on the 290 

results of the RSC of the samples determined during the stability test (Table 4), it can be 291 

stated that, in general, the values of formulation (1) increased more remarkably in all 292 

three DPI capsule types than those of formulation (2). In the latter case, the initial RSC 293 

value of around 5% corresponds to the value already published for alpha‐lactose mon‐ 294 

ohydrate [50], as it is present in almost 90% of the formulation, however, the effect of 295 

MgSt moisture resistance is reflected in the values [51]. Furthermore, for both micro‐ 296 

composites, it was observed that the lowest RSC value was measurable in the HPMC 297 

capsule after 6 months, which is related to that described in Subsection 3.2. It was found 298 

that this type of DPI capsule had the smallest decrease in RSC during the stability test, 299 

thus less moisture could be transferred to DPI powders. 300 

Table 4. RSC values of DPI powders during the stability test 301 

 RSC (%) 

 Before storage 

Formulation (1)  3.76 ± 0.07  

Formulation (2)  4.61 ± 0.12  

 1 month 3 months 6 months 

1_GEL 3.99 ± 0.06 4.62 ± 0.08 5.21 ± 0.08 

1_GEL‐PEG 3.92 ± 0.03 4.48 ± 0.06 5.03 ± 0.09 

1_HPMC 3.85 ± 0.10 4.26 ± 0.13 4.72 ± 0.04 

2_GEL 4.93 ± 0.11 5.13 ± 0.09 5.64 ± 0.13 

2_GEL‐PEG 4.85 ± 0.06 5.04 ± 0.03 5.45 ± 0.06 

2_HPMC 4.76 ± 0.07 4.91 ± 0.06 5.16 ± 0.04 

3.4. Structural Investigations 302 

By performing the XRPD examination, it became possible to study the structure of 303 

the produced samples before storage and at sampling times for the duration of the sta‐ 304 

bility test. If the XRPD pattern of the raw drug and NaSt is known, conclusions can be 305 

drawn regarding the stability of the samples, furthermore, in the case of microcompo‐ 306 

sites, the dominance of the crystalline or amorphous form affects morphology, so in vitro 307 

aerodynamic results can be predicted. In the present study, the XRPD diffractograms of 308 

the samples of the carrier‐free DPI formulation (1) stored in different capsules are illus‐ 309 

trated (Figure 2) ‐ since the pattern of the carrier particles in the case of formulation (2) 310 

dominates ‐ during the sampling times of the stability study. For the raw CIP; 8.23, 9.25, 311 

19.22, 26.39, and 29.16 2Teta‐degree, even for NaSt, 4.0, 6.0 2Teta‐degree characteristic 312 

peaks were observed, with crystalline property predominating. The fresh formulation 313 

(1) clearly has a predominantly amorphous structural property before storage. After one 314 

month, there was no remarkable difference between the XRPD diffractograms of the 315 

formulation stored in the different capsules, with some recrystallization seen. After six 316 

months, it can be seen that the microcomposites stored in HPMC capsules recrystallized 317 

less than those stored in GEL and GEL‐PEG capsules. This shows that the particles re‐ 318 

mained more stable or morphologically less variable during storage in HPMC capsules, 319 

which predicts a remarkable difference in in vitro aerodynamic results between the dif‐ 320 

ferent samples stored in the capsule type. 321 

 322 

Törölt: 17



Pharmaceutics 2021, 13, x FOR PEER REVIEW 9 of 17 
 

 

Formázott: Betűtípus: 8

pt

 323 

Figure 2. XRPD patterns of raw CIP, and formulation 1. during the stability test 324 

3.5. Particle Size Analysis and Scanning Electron Microscopy (SEM) of the Samples 325 

Detection of changes in the particle size distribution of DPI samples during the sta‐ 326 

bility study is essential, along with the study of morphological properties. It is important 327 

for the success of inhalation therapy that the average particle size be between 1 and 5 328 

microns (maximum 10 microns), as several studies have highlighted the fact that most 329 

individual particles below 1 micron are exhaled [52], while particles above 5 microns are 330 

probably deposited in the upper airways. For formulation (1), D [0.1] and D [0.9] also fell 331 

within the optimal range mentioned above throughout the 6‐month stability study for 332 

all three capsule types (Table 5). The results obtained did not differ remarkably between 333 

the capsule types, the average particle size increased slightly better in the GEL capsule 334 

type compared to the others. In terms of SEM images, they approximately correlated 335 

with the results obtained by laser light scattering. As regards morphology, it can be 336 

stated that there is a remarkable difference between the samples stored in different cap‐ 337 

sule types. After 1 month, recrystallization can be detected in the GEL capsule, which 338 

correlates well with our previous stability study (performed under different conditions) 339 

[31]. The formulation in this type of capsule appears to be increasingly prone to ag‐ 340 

glomeration as the stability test progresses. In the case of the GEL‐PEG capsule type, re‐ 341 

crystallization starts later, so the sample remains stable in this. For HPMC capsules, the 342 

particles appear to be the most stable after 6 months. 343 
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Table 5. Particle size distribution and morphology of the carrier‐free samples during the stability 344 

test 345 

Formulation 1  

Before 

storage 
 

 

 

    
D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 
   

    1.167 ± 0.07 2.167 ± 0.10 3.715 ± 0.12    

Samples 1_GEL 1_GEL‐PEG 1_HPMC 

   

D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 

D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 

D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 

1 month 

1.232 ± 0.08 2.264 ± 0.11 4.022 ± 0.11 1.313 ± 0.02 2.231 ± 0.03 3.788 ± 0.15 1.247 ± 0.08 2.230 ± 0.10 3.804 ± 0.13 

   

D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 

D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 

D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 

3 months 

1.244 ± 0.03 2.828 ± 0.14 4.468 ± 0.13 1.210.± 0.03 2.769 ± 0.12 4.662 ± 0.18 1.442 ± 0.06 2.711 ± 0.07 4.454 ± 0.14 

   

D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 

D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 

D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 

6 months 

1.329 ± 0.06 3.615 ± 0.17 7.929 ± 0.21 1.262 ± 0.11 3.452 ± 0.05 6.731 ± 0.13 1.358 ± 0.02 3.460 ± 0.15 6.371 ± 0.09 

For formulation (2), the six‐month stability study showed that, based on morpho‐ 346 

logical and particle size analysis (Table 6), the sample stored in the HPMC capsule type 347 

remained the most stable, with the least aggregation or crystallization appearing. In Ta‐ 348 

ble 6, the sample‐specific values of D [0.1], D [0.5] and D [0.9] are given, from which the 349 

above findings for the products can also be made. However, for more accurate analysis, 350 

since the samples contained formulation (1) on the IH70_MgSt surface‐treated carrier 351 

particles, the D [0.5] values of the drug particles and the surface‐modified carrier parti‐ 352 

cles were also taken into account using bimodal distribution curves. Based on these, the 353 

value of the drug particle [0.5] increased from 2.28 µm before storage to 6.129 µm when 354 

stored in GEL capsules, 3.004 µm in PEG‐GEL capsules, and 2.712 µm even in HPMC 355 
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capsules. In the case of the surface‐treated carrier, the following values were deter‐ 356 

mined: in GEL: 189.313 µm; in PEG‐GEL: 176.520 µm and in HPMC capsule: 171.635 µm. 357 

Thus, the values measured at the samples were refined for specific components, the 358 

same tendencies can be established. Furthermore, comparing formulation (1) and the 359 

change in the size of the same D [0.5] in the formulation (2), we can see that the change 360 

in average size in the novel combined formulated composite was smaller than in the car‐ 361 

rier‐free samples. Therefore, higher FPF values for in vitro lung deposition are still ex‐ 362 

pected for formulation (2) compared to the formulation (1), which predicts greater sta‐ 363 

bility of the former (in the HPMC capsule type). The results detailed in this Subsection 364 

are closely related to changes in the RSC of DPI capsules and powders during the 365 

stability study. 366 

Table 6. Particle size distribution and morphology of the novel combined carrier‐based sam‐ 367 

ples during the stability test 368 

Formulation 2  

   

 

   

   
D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 
   

Before 

storage 

   3.675 ± 0.12 130.459 ± 0.18 235.25 ± 1.15    

Samples 2_GEL 2_GEL‐PEG 2_HPMC 

   

D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 

D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 

D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 

1 month 

14.389 

± 0.23 

160.591 

± 1.09 

317.334 

± 1.76 

9.128 

± 0.21 

158.867 

± 0.54 

280.981 

± 1.18 

3.913 

± 0.11 

155.349 

± 0.71 

273.114 

± 1.42 

   

D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 

D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 

D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 

3 months 

29.426 

 ± 0.19 

168.583 

± 0.71 

305.176 

± 1.81 

22.836 

± 0.13 

166.571 

± 0.86 

303.715 

± 0.96 

22.315 

 ± 0.31 

164.727 

± 0.38 

291.028 

± 1.23 
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 369 

   

D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 

D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 

D (0.1) 

(µm) 

D (0.5) 

(µm) 

D (0.9) 

(µm) 

6 months 

27.381 

± 0.08 

172.772 

± 0.36 

331.195 

± 1.39 

29.003 

± 0.15 

170.503 

± 0.37 

328.693 

± 1.41 

26.122 

± 0.18 

168.635 

± 0.89 

305.315 

± 1.72 

3.6. In vitro Aerodynamic Assessment 370 

Based on the RSC, structure and particle size analysis as well as the SEM images, it 371 

can be said that the formulations stored in HPMC capsules (1, 2) remained the most sta‐ 372 

ble considering the physical properties. For both formulations, in vitro aerodynamic tests 373 

performed (Tables 7 and 8) before storage show that the capsule types did not affect FPF 374 

values, in both cases the initial FPF values of samples 3‐3 were nearly identical. The 375 

MMAD values at each measurement point correlated with FPF values over the entire 376 

study period. For EF, the initial values showed that in case (1) the drug dripped out of 377 

the HPMC capsule better, in case (2) it drifted easily out of all capsule types due to the 378 

nature of the formulation. Regarding the FPF values of the 6‐month stability study, it 379 

can be stated that both formulations tested had the lowest results in the GEL capsules, 380 

this was followed by the results of GEL‐PEG capsules, and the FPF values decreased the 381 

least when using HPMC capsules. The EF values were also the most favorable after 6 382 

months for HPMC capsules, and for sample (1), using this capsule only, the sample 383 

meets the prescribed range of 85‐115%. For EF, it was also observed that the SD was 384 

higher for samples 1_GEL and 2_GEL compared to the other samples. This is explained 385 

by the results presented in Section 3.2, i.e. the area of capsule puncture measured in the 386 

case of the GEL capsule and its SD, and the SEM images of GEL capsules also serve as 387 

support. 388 

Table 7. Aerodynamic properties of the carrier‐free formulations 389 

Samples Time 
FPF (%) 

< 5 μm 

MMAD 

(μm) 

EF 

(%) 

Before storage 53.42 ± 1.23 3.98 ± 0.15 77.04 ± 1.03 

1 month 31.87 ± 0.11 4.43 ± 0.14 85.75 ± 0.16 

3 months 29.94 ± 0.25 4.86 ± 0.17 86.14 ± 0.81 
1_GEL 

6 months 28.83 ± 0.65 5.02 ± 0.22 87.70 ± 0.64 

Before storage 54.13 ± 0.89 3.81 ± 0.06 72.72 ± 0.76 

1 month 42.25 ± 0.38 4.31 ± 0.21 86.54 ± 0.54 

3 months 36.31 ± 0.43 4.62 ± 0.15 86.85 ± 0.85 
1_GEL‐PEG 

6 months 31.67 ± 0.07 4.93 ± 0.12 87.80 ± 0.73 

Before storage 53.97 ± 1.08 3.78 ± 0.26 86.44 ± 0.99 

1 month 44.71 ± 0.94 4.16 ± 0.14 86.96 ± 0.36 

3 months 39.18 ± 0.27 4.32 ± 0.08 87.55 ± 0.49 
1_HPMC 

6 months 38.59 ± 0.44 4.40 ± 0.11 90.16 ± 0.34 

 390 
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The results of formulations (1) and (2), when considered, correlate with the results 391 

of our previous publications for pre‐storage values. It can be stated that the novel com‐ 392 

bined carrier‐based formulation – 2 – achieved better in vitro aerodynamic results under 393 

the aforementioned storage conditions – in all capsule types – than the carrier‐free for‐ 394 

mulation – 1 –, which corresponds to the results of the 1‐month stability test previously 395 

performed at room temperature [31]. 396 

Table 8. Aerodynamic properties of the novel combined carrier‐based samples 397 

Samples Time 
FPF (%) 

< 5 μm 

MMAD 

(μm) 

EF 

(%) 

Before storage 62.91 ± 1.02 3.51 ± 0.09 90.31 ± 0.95 

1 month 43.89 ± 1.28 3.84 ± 0.13 91.15 ± 0.12 

3 months 35.03 ± 0.23 3.93 ± 0.07 91.27 ± 0.36 
2_GEL 

6 months 31.71 ± 0.64 4.10 ± 0.16 92.89 ± 0.41 

Before storage 62.53 ± 0.48 3.45 ± 0.12 90.21 ± 0.83 

1 month 46.11 ± 1.32 3.72 ± 0.05 89.75 ± 0.45 

3 months 38.66 ± 0.96 3.87 ± 0.09 91.39 ± 0.21 
2_GEL‐PEG 

6 months 36.26 ± 0.39 4.03 ± 0.13 92.56 ± 0.66 

Before storage 63.15 ± 0.41 3.47 ± 0.08 89.55 ± 0.26 

1 month 53.29 ± 0.72 3.68 ± 0.21 91.42 ± 0.52 

3 months 45.23 ± 1.12 3.84 ± 0.04 94.39 ± 0.74 
2_HPMC 

6 months 43.40 ± 0.57 3.91 ± 0.15 96.98 ± 0.63 

4. Conclusions 398 

In this study we introduced the importance of final formulation‐development by 399 

studying the effect of capsule types on the stability and aerodynamic properties of DPI. 400 

The same formulation have different stability and thus aerodynamic properties in dif‐ 401 

ferent DPI capsule types. The RSC and light microscopic results of the DPI capsules 402 

supported the claim that GEL and GEL‐PEG‐type capsules begin to break when the RSC 403 

falls below the optimal range. Due to their fragmentation, the resulting holes became ir‐ 404 

regularly shaped and large. Although more formulations came out of these larger, ir‐ 405 

regularly shaped holes, resulting in increased EF values, the de‐aggregation of the parti‐ 406 

cles was less efficient, which in turn reduced FPF values. However, HPMC capsules re‐ 407 

tained their elasticity after 6 months, pieces of the capsule wall did not break during 408 

punching, and the holes remained in regular shape. RSC and XRPD analysis confirmed, 409 

and the SEM images also showed that DPI powders stored in GEL and GEL‐PEG cap‐ 410 

sules formed irregularly shaped particles during the stability study due to the onset of 411 

recrystallization (it is assumed that moisture was transferred to DPI powders). The al‐ 412 

tered habit was aerodynamically disadvantageous, which may have been one of the 413 

reasons for the decrease in FPF values. The morphological change was least observed 414 

with the formulations stored in HPMC capsules, and FPF values decreased to a lesser 415 

extent. Overall, initial, almost identical aerosolization values after 6 months were the 416 

most favorable for HPMC capsules for both investigated DPI formulations. This was 417 

probably due to the RSC of the capsules, the size and shape of the perforated area, and 418 

the altered habit of the DPI powder. The results of the novel combined formulated 419 

composite were more favorable after the stability test than those of the carrier‐free for‐ 420 

mulation for all DPI capsule types.  421 

Thus, it may be worthwhile focusing on testing DPI formulations in different cap‐ 422 

sules during pulmonary dosage form development, as the same formulation may have 423 

different stability and thus aerodynamic properties in different DPI capsule types. The 424 

prepared DPI formulation of a carrier‐free and novel combined carrier‐based systems 425 

using CIP could present an effective new possibility in the therapy of lung diseases (di‐ 426 
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rect and indirect treatment of pathophysiological processes such as cystic fibrosis and 427 

chronic bronchitis) instead of the per os applied antibiotic formulation. 428 
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