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Abstract

In this study, the concept of a dual pair of modal operators is interpreted fol-
lowing the criteria for an algebraic version of necessity and possibility operators
on De Morgan lattices given by Cattaneo, Ciucci and Dubois, 2011. Here, a
representation theorem is introduced which demonstrates that, in this algebraic
model, a dual pair of modal operators can be represented by compositions of two
strong negations, where one of them is stricter than the other. Then, the Pliant
negation operator is utilized to derive dual modal operators. It is demonstrated
that using the generator function of Dombi operators, the composition of two
Pliant negations results in modal operators that have simple forms and easy-
to-use characteristics. Next, we examine how the proposed modal operators are
connected with the drastic necessity and possibility operators. Also, the neces-
sary and sufficient condition for the distributivity of modal operators induced
by compositions of strong negations over strict t-norms and strict t-conorms
is presented. Lastly, a connection between the modal operators and hedges is
highlighted.

Keywords: strong negations, Pliant negation, modal operators, drastic modal
operators, hedges

1. Introduction

Since the modal-like necessity and possibility operators play an important
role in reasoning, these modal operators have a variety of applications in classical
and in continuous-valued logic.

A system called basic logic (BL) was defined in Hájek’s book [1]. Later, a
survey paper was published by Gottwald and Hájek [2] in which they discussed
the state-of-art development of BL. In this logic, the implication is given by
the residual of the t-norm, and the negation operator ∼ is defined by ∼ x :=
x → 0. It should be added that, in the strict operator case, this negation
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operator is not involutive. Hájek [3] studied the fuzzy variant of the well-known
modal logic S5, introduced three kinds of Kripke models and identified the
corresponding deductive systems. Esteva et al. [4] introduced logics with an
involutive negation. In their approach negation is different from the implication-
based negation ”∼”, but it is not related to the residual implication in the
strict monotonous operator case. Cintula et al. [5] presented a survey paper on
propositional fuzzy logics extending SBL (BL plus the axiom schema ϕ∧¬ϕ→ 0)
with an additional involutive negation. With this approach, they improved
the expressive potential of mathematical fuzzy logic. Banerjee and Dubois [6]
used the syntax and axioms from the modal logic KD to establish an epistemic
logic for reasoning about incomplete knowledge. Cattaneo et al. [7] introduced
algebraic models of deviant modal operators based on De Morgan and Kleene
lattices. Modal logic has also been used in rough set theory, where the sets are
approximated by elements of a partition induced by an equivalence relation [8].
A natural choice for rough set logic is S5 (see [9]). Here, the possibility and
necessity modalities can be viewed as upper and lower approximation operators.
Esteva et al. [10] proposed logics that accommodate most of the truth hedge
functions used in the literature. Zadeh [11] introduced a modal logic system
called the finite-state model to highlight the fact that the concept of possibility
has different roles in possibility theory and in modal logic. In a recent paper,
Vidal [12] studied modal logics defined from valued Kripke frames, focusing on
the computability and expressivity of modal logics of transitive Kripke frames
evaluated over certain residuated lattices. Jain et al. [13] presented a new fuzzy
modal logic to model and reason about transition systems involving uncertainty
in behaviours.

It should be added that continuous-valued logic can be studied both from a
logical point of view (axiomatization, completeness, possible extensions, predi-
cat calculi, etc.) and from an algebraic point of view [14]. In the latter case, we
need to solve functional equations to find conjunction, disjunction and negation
operators, which a logical system is founded on. This also means that for a
particular continuous-valued logical system, modal operators are provided.

In this study, we seek to find proper algebraic expressions for modal opera-
tors using some basic considerations. Namely, we interpret a dual pair of modal
operators following the criteria for an algebraic version of necessity and possi-
bility operators on De Morgan lattices given by Cattaneo, Ciucci and Dubois [7]
(also, see [15]). Here, we provide a representation theorem, which demonstrates
that, in our algebraic model, a dual pair of modal operators can be represented
by compositions of two strong negations, where one of them is stricter than the
other. Next, we use the Pliant negation operator to derive dual modal operators
in a very simple way. Also, we show that by using the generator function of
Dombi operators, the composition of two Pliant negations results in modal oper-
ators that have simple forms and easy-to-use characteristics. Next, we describe
how the proposed modal operators are connected with the drastic necessity and
possibility operators. Then, we present the necessary and sufficient condition for
the distributivity of modal operators induced by compositions of strong nega-
tions over strict t-norms and strict t-conorms. Finally, we highlight a connection
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between the modal operators and hedges.
This study is structured as follows. In Section 2, the basic considerations of

negations in continuous-valued logic are described. In Section 3, the basics of
modal logic are briefly reviewed. A representation theorem for modal operators
induced by compositions of strong negations is presented in Section 4. In section
5, it is demonstrated how the composition of two Pliant negations can be used
to derive modal operators. The connection between the modal operators and
the drastic modal operators is studied in Section 6. In Section 7, the necessary
and sufficient condition for the distributivity of modal operators induced by
compositions of strong negations over strict t-norms and strict t-conorms is
presented. A connection between modalities and hedges is presented in Section
8. Lastly, in Section 9, we shall summarize our conclusions.

2. Basic considerations of negations in continuous-valued logic

Definition 1. We say that η : [0, 1] → [0, 1] is a strong negation if and only if
η satisfies the following conditions:

C1: η is bijective and continuous (Bijectivity and continuity)
C2: η(0) = 1, η(1) = 0 (Boundary conditions)
C3: η(x) < η(y) for x > y (Monotonicity)
C4: η(η(x)) = x for any x ∈ [0, 1] (Involution).

Remark 1. Note that the boundary condition C2 can be inferred by using C1
and C3.

There are two representation theorems known for the strong negation given
in Definition 1. Trillas [16] showed that every involutive negation operator
η : [0, 1]→ [0, 1] has the following form:

η(x) = g−1(1− g(x)),

where g : [0, 1] → [0, 1] is a continuous strictly increasing (or decreasing) func-
tion. Note that this generator function corresponds to the nilpotent operators
(see [17] [18] [19]). Here, we will utilize another, parametric form of negation,
which is known as the Dombi negation operator; and it is an element of the
Pliant system [20, 21].

Definition 2 (Pliant negation). The negation operator ην : [0, 1]→ [0, 1], which
is given by

ην(x) = f−1
(
f2(ν)

f(x)

)
(1)

is called the Pliant negation operator, where ν ∈ (0, 1), f : [0, 1] → [0,∞] is a
continuous, strictly increasing (or decreasing) function and f is the generator
function of a strict monotone t-norm, or t-conorm.
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Remark 2. Note that we interpret f(0) and f(1) by the following limits

f(0) = lim
x→0

f(x), f(1) = lim
x→1

f(x).

Hereafter, η, η1, η2, etc. will denote strong negations and ην , ην1 , ην2 , etc. will
be used to denote Pliant negations.

Proposition 1. The Pliant negation given in Definition 2 is a strong negation.

Proof. For the proof see [20].

Remark 3. It should be added that for any ν ∈ (0, 1), ην(ν) = ν. That is, the
fix point of the Pliant negation ην is its parameter value ν.

Definition 3. We will say that the negation η1 : [0, 1] → [0, 1] is stricter than
the negation η2 : [0, 1]→ [0, 1] if and only if for any x ∈ [0, 1], η1(x) < η2(x).

Example 1. Let fc and fd be the the generator functions of the proba-
bilistic conjunctive and disjunctive operators, respectively. That is, functions
fc, fd : (0, 1)→ (0,∞) are given by

fc(x) = − ln(x) and fd(x) = − ln(1− x).

Let ν ∈ (0, 1). After direct calculation, we get that the Pliant negation operators
ην,c, ην,d : [0, 1]→ [0, 1] induced by function fc and fd are

ην,c(x) = f−1c

(
f2c (ν)

fc(x)

)
= ν

ln(ν)
ln(x) , ην,d(x) = f−1d

(
f2d (ν)

fd(x)

)
= 1− (1− ν)

ln(1−ν)
ln(1−x) .

Example 2. The generator function of the Dombi conjunction and disjunction
operators is the function gα : (0, 1)→ (0,∞) that is given by

gα(x) =

(
1− x
x

)α
, (2)

where α 6= 0. If α > 0, then gα is the generator function of a conjunctive
operator; and if α < 0, then gα is the generator function of a disjunctive operator
(see, e.g. [22]). Now, let ν ∈ (0, 1), α 6= 0 and let f(x) = gα(x) for any
x ∈ (0, 1). Then, the Pliant negation operator ην : [0, 1] → [0, 1] induced by
function f is

ην(x) = f−1
(
f2(ν)

f(x)

)
=

1

1 +
(
1−ν
ν

)2 x
1−x

.

Here, we can see that ην is independent of the parameter α. That is, the Pli-
ant negations induced by the generator functions of conjunctive and disjunctive
Dombi operators coincide. Figure 1 shows typical plots of Pliant negations in-
duced by the generator function of Dombi operators.

From now on, the mapping f : [0, 1] → [0,∞] will always be a continuous,
strictly increasing (or decreasing) generator function of a strict monotone t-
norm, or t-conorm. Later, we will make of use of the following property of the
Pliant negation.
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Figure 1: Pliant negations induced by the generator function of Dombi operators with various
ν parameter values.

Proposition 2. The Pliant negation ην1 is stricter than the Pliant negation
ην2 if and only if ν1 < ν2.

Proof. The proposition immediately follows from the definition of ην .

Later, we will also utilize the concept of drastic negation.

Definition 4 (Drastic negations). We say that the functions ηd,0, ηd,1 : [0, 1]→
[0, 1] are drastic negations if and only if ηd,0 and ηd,1 are given by

ηd,0(x) =

{
1, if x = 0

0, if x 6= 0
and ηd,1(x) =

{
1, if x 6= 1

0, if x = 1.

Note that the drastic negations given in Definition 4 are not strong negations,
but the drastic negations may be viewed as limit cases of Pliant negations.
Namely, the following proposition is valid.

Proposition 3. For any x ∈ [0, 1],

lim
ν→0

ην(x) = ηd,0(x) and lim
ν→1

ην(x) = ηd,1(x).

Proof. Using the definition of ην , the proof is straightforward.

3. Basic considerations of modal logic

3.1. Basics of classical modal logic

Here, we will use the traditional notations ♦ and � for the possibility and
necessity operators of classical modal logic, respectively. Now, let P be a state-
ment. For example, let P be the statement ”It will rain today.”. Then, ♦P and
�P are the statements
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♦P : ”It is possible that it will rain today.”
�P : ”It is necessary that it will rain today.”.

There are two well-known identities of classical modal logic, namely,

¬ (♦P ) ≡ � (¬P ) (3)

and
¬ (�P ) ≡ ♦ (¬P ) , (4)

where ¬ is the negation operator of classical logic. In our example, the identity
in Eq. (3) means that the statements

¬ (♦P ) : ”It is not possible that it will rain today.”
� (¬P ) : ”It is necessary that it not will rain today.”

are equivalent. Also, Eq. (4) means that the statements
¬ (�P ) : ”It is not necessary that it will rain today.”
♦ (¬P ) : ”It is possible that it not will rain today.”

are equivalent as well.

3.2. Algebraic criteria for modal operators in a continuous-valued logic

Following the criteria for an algebraic version of necessity and possibility
operators on De Morgan lattices given in [7], we define the dual pair of necessity
and possibility operators in continuous-valued logic as follows (also, see [15]).
Note that here we will use the classical notations � and ♦.

Definition 5. The functions �,♦ : [0, 1]→ [0, 1] are a dual pair of necessity and
possibility operators, respectively, if and only if � and ♦ satisfy the following
requirements:

N1. �(1) = 1 P1. ♦(0) = 0

N2. �(x) ≤ x P2. x ≤ ♦(x)

N3. x ≤ y implies �(x) ≤ �(y) P3. x ≤ y implies ♦(x) ≤ ♦(y)

N4. η (♦(x)) = � (η(x)) P4. η (�(x)) = ♦(η(x))

[N5. ♦(x) = � (♦(x)) P5. �(x) = ♦ (�(x))]

N5′. � (♦(x)) = x P5′. ♦ (�(x)) = x

for any x ∈ [0, 1], where η : [0, 1]→ [0, 1] is a strong negation operator.

The requirements from N1 to N5 are called the N principle, T principle, K
principle, DF♦ principle and N∗ principle, respectively. Also, the requirements
from P1 to P5 are known as the P principle, T principle, K principle, DF�
principle and P ∗ principle, respectively.

Remark 4. Note that in our approach, N5 and P5 will not be used. Instead
of N5 and P5, our demand is the neutrality principle given by N5′ and P5′.
Later, we will show that special cases of � and ♦ meet the criteria N4 and P4
(see Remark 10). Also note that, according to N5′ and P5′, the functions �
and ♦ are inverse functions of each other.

Remark 5. Notice that N4 and P4 may be viewed as continuous-valued gen-
eralizations of the identities of classical modal logic in Eq. (3) and Eq. (4).
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4. Representing modal operators by compositions of strong negations

Now, following the ideas outlined in [14], we will present a representation
theorem which demonstrates that there is an important connection between a
dual pair of modal operators and the composition of two strong negations.

Theorem 1 (Representation). Let � : [0, 1]→ [0, 1] and ♦ : [0, 1]→ [0, 1] be two
continuous functions. Then, � and ♦ are a dual pair of necessity and possibility
operators, respectively, if and only if ♦ and � have the form

♦ = η2 ◦ η1 (5)

� = η1 ◦ η2, (6)

where η1 : [0, 1]→ [0, 1] and η2 : [0, 1]→ [0, 1] are two strong negations such that
η1 is stricter than η2.

Here, we will prove the necessity and sufficiency conditions stated in Theorem
1 by proving Proposition 4 and Proposition 5.

Proposition 4. If � and ♦ are a dual pair of necessity and possibility operators,
respectively, then ♦ and � have the forms given by Eq. (5) and Eq. (6), where
η1 : [0, 1]→ [0, 1] and η2 : [0, 1]→ [0, 1] are two strong negations such that η1 is
stricter than η2.

Proof. Since � and ♦ are a dual pair of necessity and possibility operators,
respectively, � and ♦ satisfy the requirements given in Definition 5. Therefore,
based on N4 and P4, we have

η (♦(x)) = � (η(x)) (7)

η (�(x)) = ♦ (η(x)) (8)

for any x ∈ [0, 1], where η : [0, 1] → [0, 1] is a strong negation operator. Now,
let η1 : [0, 1]→ [0, 1] and η2 : [0, 1]→ [0, 1] be given by

η1(x) = � (η(x)) (9)

η2(x) = η(x) (10)

for any x ∈ [0, 1]. By using N1–N4 and N5′, it can be readily verified that
η1 is a strong negation. Also, by using N2, we have � (η(x)) ≤ η(x) for any
x ∈ [0, 1], which means that η1 is stricter than η. Therefore η1 and η2 are two
strong negations and η1 is stricter than η2. Note that here, η2(x) represents
not(x), while η1(x) can be interpreted as necessarily(not(x)). It also means
that necessarily not is a stricter negation than not. Using Eq. (9) and Eq.
(10), Eq. (7) and Eq. (8) can be written as

η2 (♦(x)) = η1(x) (11)

η2 (�(x)) = ♦ (η2(x)) . (12)
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Now, by applying η2 to both sides of Eq. (11) and Eq. (12), we get

η2 (η2 (♦(x))) = η2 (η1(x)) (13)

and
η2 (η2 (�(x))) = η2 (♦ (η2(x))) (14)

for any x ∈ [0, 1]. Next, by noting that η2 is an involution, from Eq. (13) we
have

♦(x) = η2 (η1(x)) (15)

for any x ∈ [0, 1], which means that ♦ has a form given by Eq. (5). And since
η1(x) represents necessarily(not(x)) and η2(x) represents not(x), Eq. (11) can
be interpreted as not(possibly(x)) = necessarily(not(x)). Now, by taking into
account the fact that η2 is an involution, from Eq. (14) we have

�(x) = η2 (♦ (η2(x))) (16)

for any x ∈ [0, 1]. By using Eq. (11) and the substitution y = η2(x), Eq. (16)
can be written as

�(x) = η2 (♦ (η2(x))) = η2 (♦ (y)) = η1(y) = η1 (η2(x)) , (17)

which means that � has a form given by Eq. (6).

Proposition 5. If the functions � : [0, 1]→ [0, 1] and ♦ : [0, 1]→ [0, 1] have the
forms given by Eq. (5) and Eq. (6), where η1 : [0, 1] → [0, 1] and η2 : [0, 1] →
[0, 1] are two strong negations such that η1 is stricter than η2, then � and ♦ are
a dual pair of necessity and possibility operators, respectively.

Proof. Since ♦ and � have the forms given by Eq. (5) and Eq. (6), respectively,
we have

♦(x) = η2 (η1(x)) (18)

�(x) = η1 (η2(x)) (19)

for any x ∈ [0, 1], where η1 : [0, 1] → [0, 1] and η2 : [0, 1] → [0, 1] are two strong
negations such that η1 is stricter than η2.

In order to demonstrate that � and ♦ are a dual pair of necessity and
possibility operators, respectively, we need to show that � meets the criteria
N1–N4 and N5′ given in Definition 5, and that ♦ satisfies the requirements
P1–P4 and P5′ given in Definition 5.

Proof of N1 and P1. Exploiting the fact that η1 and η2 are two strong negations,
we have

�(1) = η1(η2(1)) = η1(0) = 1

and
♦(0) = η2(η1(0)) = η2(1) = 0.
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Proof of N2 and P2. Noting that η1 is a stricter negation than η2, we have

η1(x) ≤ η2(x) (20)

for any x ∈ [0, 1]. By applying η1 to both sides of Eq. (20) and noting that η1
is strictly decreasing and involutive, we get

x ≥ η1(η2(x)) = �(x)

for any x ∈ [0, 1]. Similarly, by applying η2 to both sides of Eq. (20), we get

η2(η1(x)) ≥ x,

which means that ♦(x) ≥ x for any x ∈ [0, 1].

Proof of N3 and P3. Let x ≤ y, x, y ∈ [0, 1]. By taking into account the fact
that η1 and η2 are two strong negations, if x ≤ y, then

η1(η2(x)) ≤ η1(η2(y)) and η2(η1(x)) ≤ η2(η1(y)),

which means that
�(x) ≤ �(y) and ♦(x) ≤ ♦(y),

respectively. Moreover, based on a similar consideration, since η1 and η2 are
two strong negations, x < y implies that

�(x) < �(y) and ♦(x) < ♦(y).

Proof of N4 and P4. Let �−1 denote the inverse of the strictly increasing
function � and let η : [0, 1]→ [0, 1] be given by

η(x) = �−1 (η1(x)) (21)

for any x ∈ [0, 1]. Since �−1(x) = η2(η1(x)) for any x ∈ [0, 1], and by noting
that η1 is an involution, from Eq. (21) we also have

η(x) = η2 (η1 (η1(x))) = η2(x) (22)

for any x ∈ [0, 1]. Hence, η is a strong negation. By applying � to both sides
of Eq. (21) we get

� (η(x)) = η1(x), (23)

for any x ∈ [0, 1]. Next, by using Eq. (22) and Eq. (23), Eq. (18) can be
written as

♦(x) = η (� (η(x))) . (24)

By applying η to both sides of Eq. (24) and noting that η is an involution, we
get

η (♦(x)) = η (η (� (η(x)))) = � (η(x)) , (25)
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for any x ∈ [0, 1], which is identical to N4. Also, by noting again that η is an
involution, using the substitution y = η(x) and Eq. (25), we can write

�(x) = � (η (η(x))) = � (η(y)) = η (♦(y)) = η (♦ (η(x))) .

Now, applying η to both sides of the last equation and noting that η is an
involution, we get

η (�(x)) = ♦ (η(x))

for any x ∈ [0, 1], which is identical to P4.

Proof of N5′ and P5′. Noting that η1 and η2 are involutive functions, from Eq.
(18) and Eq. (19) we have

�(♦(x)) = η1(η2(η2(η1(x)))) = x

and
♦(�(x)) = η2(η1(η1(η2(x)))) = x

for any x ∈ [0, 1], which means that N5′ and P5′ hold.

5. Modal operators represented by compositions of two Pliant nega-
tions

Here, we will show how the compositions of two Pliant negations can be used
to derive modal operators and describe the properties of these modal operators.

Definition 6. The function Mν1,ν2 : [0, 1]→ [0, 1] is given by

Mν1,ν2 = ην1 ◦ ην2 ,

where ν1, ν2 ∈ (0, 1) and ην1 and ην2 are two Pliant negation operators given by
Definition 2.

Remark 6. It immediately follows from the definition of ην in Eq. (1) that if
ν1 = ν2, then Mν1,ν2 is the identity function.

Proposition 6. Let ν1, ν2 ∈ (0, 1). The functions Mν1,ν2 and Mν2,ν1 , both
given by Definition 6, can be written as

Mν1,ν2(x) = f−1
(
f2(ν1)

f2(ν2)
f(x)

)
(26)

and

Mν2,ν1(x) = f−1
(
f2(ν2)

f2(ν1)
f(x)

)
(27)

for any x ∈ [0, 1], and

(a) If ν1 < ν2, then Mν1,ν2 and Mν2,ν1 are a dual pair of necessity and possi-
bility operators, respectively
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(b) If ν1 > ν2, then Mν1,ν2 and Mν2,ν1 are a dual pair of possibility and
necessity operators, respectively

(c) If ν1 = ν2, then Mν1,ν2 and Mν2,ν1 are both the identity function, and at
the same time, they are a dual pair of necessity (possibility) and possibility
(necessity) operators, respectively.

Proof. Using the definitions of Mν1,ν2 and Mν2,ν1 (see Definition 6), and the
definition of the Pliant negation operator ην in Definition 2, after direct cal-
culation we get Eq. (26) and Eq. (27). By noting Proposition 1, Proposition
2 and Theorem 1, we immediately have (a) and (b). Next, if ν1 = ν2, then
Mν1,ν2(x) = Mν2,ν1(x) = x for any x ∈ [0, 1]. In this case Mν1,ν2 and Mν2,ν1

trivially satisfy the requirements N1–N4, N5′, P1–P4 and P5′ for a dual pair of
necessity (possibility) and possibility (necessity) operators in Definition 5.

Remark 7. Based on Proposition 6, we can call Mν1,ν2 and Mν2,ν1 a dual pair
of modal operators.

Proposition 7. Let ν1, ν2 ∈ (0, 1) and let Mν1,ν2 and Mν2,ν1 be a a dual pair
of modal operators. Then, there exists a unique ν ∈ (0, 1) such that for any
x ∈ [0, 1], either

Mν1,ν2(x) = Mν(x), Mν2,ν1(x) = Mν(x), (28)

or
Mν1,ν2(x) = Mν(x), Mν2,ν1(x) = Mν(x) (29)

holds, where Mν ,Mν : [0, 1]→ [0, 1] and Mν , Mν are given by

Mν(x) = f−1
(
f(x)

f2(ν)

)
, Mν(x) = f−1

(
f2(ν)f(x)

)
. (30)

Proof. Based on Proposition 6, for any x ∈ [0, 1], we have

Mν1,ν2(x) = f−1
(
f2(ν1)

f2(ν2)
f(x)

)
(31)

and

Mν2,ν1(x) = f−1
(
f2(ν2)

f2(ν1)
f(x)

)
. (32)

Now, by noting that f : [0, 1] → [0,∞] is a continuous and strictly monotone
function, we see that there exists a unique ν ∈ (0, 1) such that either

f(ν1)

f(ν2)
=

1

f(ν)
and

f(ν2)

f(ν1)
= f(ν),

or
f(ν1)

f(ν2)
= f(ν) and

f(ν2)

f(ν1)
=

1

f(ν)
.

Therefore, by using the equation pair in Eq. (30), we have either the equation
pair in Eq. (28), or the equation pair in Eq. (29).
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Proposition 8. Let ν ∈ (0, 1) and let Mν : [0, 1]→ [0, 1] and Mν : [0, 1]→ [0, 1]
be given by

Mν(x) = f−1
(
f(x)

f2(ν)

)
, Mν(x) = f−1

(
f2(ν)f(x)

)
.

Then,

(a) if f is strictly decreasing and f(ν) ≤ 1, then Mν and Mν are a dual pair
of necessity and possibility operators, respectively

(b) if f is strictly decreasing and f(ν) ≥ 1, then Mν and Mν are a dual pair
of possibility and necessity operators, respectively

(c) if f is strictly increasing and f(ν) ≤ 1, then Mν and Mν are a dual pair
of possibility and necessity operators, respectively

(d) if f is strictly increasing and f(ν) ≥ 1, then Mν and Mν are a dual pair
of necessity and possibility operators, respectively.

Proof. Here, we will prove case (a), the proofs for the other three cases being
similar to that of case (a). Let ν1 ∈ (0, 1) have an arbitrary fixed value and let
ν2 be given by

ν2 = f−1 (f(ν1)f(ν)) . (33)

Then, by noting the properties of the generator function f , from Eq. (33), we
have that ν2 ∈ (0, 1). Also, applying f to both sides of Eq. (33), after direct
calculation, we get

1

f2(ν)
=
f2(ν1)

f2(ν2)
, (34)

and so

Mν(x) = f−1
(

1

f2(ν)
f(x)

)
= f−1

(
f2(ν1)

f2(ν2)
f(x)

)
for any x ∈ [0, 1]. Next, by noting the fact that f(ν) ≤ 1 and the fact that
f is strictly decreasing, from Eq. (34), we have ν1 ≤ ν2. Therefore, based on
Proposition 6, Mν and Mν are a dual pair of necessity and possibility operators,
respectively.

Remark 8. When Mν and Mν are a dual pair of necessity and possibility
operators, respectively, we will use the notations

�ν = Mν , and ♦ν = Mν .

Also, when Mν and Mν are a dual pair of possibility and necessity operators,
respectively, we will use the notations

♦ν = Mν , and �ν = Mν .

Example 3. Let fc and fd be the the generator functions of the probabilistic
conjunctive and disjunctive operators, respectively. That is,

fc(x) = − ln(x) and fd(x) = − ln(1− x)

12



for any x ∈ (0, 1). Let ν ∈ (0, 1). Then, by using Eq. (30), after direct
calculation, we get that the dual pair of modal operators Mν,c : (0, 1) → (0, 1)

and Mν,c : (0, 1)→ (0, 1) induced by the generator function fc are

Mν,c(x) = f−1c

(
fc(x)

f2c (ν)

)
= x

1
ln2(ν)

Mν,c(x) = f−1c
(
f2c (ν)fc(x)

)
= xln

2(ν).

Since fc is strictly decreasing, based on Proposition 8, we have that

(a) If fc(ν) ≥ 1, which means that ν ≤ e−1, then Mν,c and Mν,c are a dual
pair of possibility and necessity operators, respectively; i.e. Mν,c = ♦ν and

Mν,c = �ν
(b) If fc(ν) ≤ 1, which means that ν ≥ e−1, then Mν,c and Mν,c are a dual

pair of necessity and possibility operators, respectively; i.e. Mν,c = �ν
and Mν,c = ♦ν .

Similarly, by using Eq. (30), the dual pair of modal operators Mν,d : (0, 1)→
(0, 1) and Mν,d : (0, 1)→ (0, 1) induced by the generator function fd are

Mν,d(x) = f−1d

(
fd(x)

f2d (ν)

)
= 1− (1− x)

1
ln2(1−ν)

Mν,d(x) = f−1d
(
f2d (ν)fd(x)

)
= 1− (1− x)ln

2(ν).

As fd is strictly increasing, by noting Proposition 8, we have that

(a) If fd(ν) ≤ 1, which means that ν ≤ 1−e−1, then Mν,d and Mν,d are a dual
pair of possibility and necessity operators, respectively; i.e. Mν,d = ♦ν and

Mν,d = �ν
(b) If fd(ν) ≥ 1, which means that ν ≥ 1−e−1, then Mν,d and Mν,d are a dual

pair of necessity and possibility operators, respectively; i.e. Mν,d = �ν and

Mν,d = ♦ν .

Example 4. Now, let ν ∈ (0, 1), α 6= 0 and let f be the generator function of
the Dombi conjunction and disjunction operators given in Eq. (2). That is,

f(x) = gα(x) =

(
1− x
x

)α
for any x ∈ (0, 1). Then, after direct calculation, we get that the dual pair of
modal operators Mν : (0, 1) → (0, 1) and Mν : (0, 1) → (0, 1) induced by the
generator function f are

Mν(x) = f−1
(
f(x)

f2(ν)

)
=

1

1 +
(

ν
1−ν

)2
1−x
x

(35)

and

Mν(x) = f−1
(
f2(ν)f(x)

)
=

1

1 +
(
1−ν
ν

)2 1−x
x

. (36)

Notice that Mν and Mν are independent of α.

13



(a) If α > 0, then f is strictly decreasing and, based on Proposition 8, we
have that:

(a1) If f(ν) ≥ 1, which means that ν ≤ 0.5, then Mν and Mν are a dual
pair of possibility and necessity operators, respectively; i.e. Mν = ♦ν
and Mν = �ν

(a2) If f(ν) ≤ 1, which means that ν ≥ 0.5, then Mν and Mν are a dual
pair of necessity and possibility operators, respectively; i.e. Mν = �ν
and Mν = ♦ν .

(b) If α < 0, then f is strictly increasing and, by using Proposition 8, we have
that:

(b1) If f(ν) ≤ 1, which means that ν ≤ 0.5, then Mν and Mν are a dual
pair of possibility and necessity operators, respectively; i.e. Mν = ♦ν
and Mν = �ν

(b2) If f(ν) ≥ 1, which means that ν ≥ 0.5, then Mν and Mν are a dual
pair of necessity and possibility operators, respectively; i.e. Mν = �ν
and Mν = ♦ν .

Therefore, the findings in (a) and (b) can be summarized as follows:

• If ν ≤ 0.5, then Mν and Mν are a dual pair of possibility and necessity
operators, respectively, i.e. Mν = ♦ν and Mν = �ν

• If ν ≥ 0.5, then Mν and Mν are a dual pair of necessity and possibility
operators, respectively, i.e. Mν = �ν and Mν = ♦ν .

Figure 2 shows example plots of functions Mν and Mν .
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Figure 2: Dual pairs of modal operators induced by compositions of two Pliant negations with
various ν parameter values when f is the generator function of Dombi operators.

Note that if ν = 0.5, then Mν(x) = Mν(x) = x for any x ∈ (0, 1).
It should be added that

Mν(ν) = 1− ν and Mν(1− ν) = ν.
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This means that when f is the generator function of Dombi operators, then one
of the dual modal operators induced by compositions of two Pliant negations
intersects the line 1− x at x = ν and the other one intersects the line 1− x at
x = 1− ν.

Remark 9. We should emphasize that a dual pair of modal operators �ν and
♦ν induced by compositions of two Pliant negations using the generator function
of Dombi operators are very simple and easy-to-use. Namely,

(a) If ν ≥ 0.5, then

�ν(x) =
1

1 +
(

ν
1−ν

)2
1−x
x

and ♦ν(x) =
1

1 +
(
1−ν
ν

)2 1−x
x

(b) If ν ≤ 0.5, then

♦ν(x) =
1

1 +
(

ν
1−ν

)2
1−x
x

and �ν(x) =
1

1 +
(
1−ν
ν

)2 1−x
x

,

where x, ν ∈ (0, 1).
It follows from Proposition 8 that the modal operators Mν1 and Mν2 , both

induced by a composition of two Pliant negations using the generator function
of Dombi operators, are a dual pair of modal operators if and only if

ν1 + ν2 = 1.

6. Drastic modal operators

In this section, we will describe how the drastic modal operators are con-
nected with the modal operators induced by compositions of two Pliant nega-
tions. The drastic modal operators are defined as follows.

Definition 7 (Drastic modal operators). We say that the functions
�1,♦0 : [0, 1]→ [0, 1] are drastic necessity and possibility operators, respectively,
if and only if �1 and ♦0 are given by

�1(x) =

{
1, if x = 1

0, if x 6= 1
and ♦0(x) =

{
1, if x 6= 0

0, if x = 0.

Figure 3 shows the plots of drastic modal operators �1 and ♦0.
Note that �1 and ♦0 are known as the Baas-Monteiro ∆ operator and its

dual ∇, respectively. ∆ and ∇ are definable by an involution and strict negation
[2].

The following proposition provides a connection between the drastic negation
operators and the drastic modal operators.
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Figure 3: Plots of drastic modal operators.

Proposition 9. The drastic modal operators �1 and ♦0 given in Definition 7
can be written as

�1 = ηd,0 ◦ ηd,1 and ♦0 = ηd,1 ◦ ηd,0,

where ηd,0 and ηd,1 are the drastic negation operators given by Definition 4.

Proof. By direct calculation, we have

�1(x) = ηd,0 (ηd,1(x)) and ♦0(x) = ηd,1 (ηd,0(x))

for any x ∈ [0, 1].

Proposition 9 tells us that an appropriate composition of two drastic negations
results in a drastic modal operator. Since the drastic negations may be viewed
as limits of Pliant negations, we can state the following connection between the
Pliant negation operator and the drastic modal operators.

Proposition 10. The drastic modal operators �1 and ♦0 given in Definition 7
can be written as

�1 = η
ν
◦ ην and ♦0 = ην ◦ ην ,

where
η
ν

= lim
ν→0

ην and ην = lim
ν→1

ην ,

and ην is the Pliant negation operator given by Definition 2.

Proof. This proposition immediately follows from Proposition 3 and Proposition
9.

The following proposition tells us that the drastic modal operators may be
viewed as limit cases of modal operators that are induced by a composition of
two Pliant negations.
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Proposition 11. Let ν ∈ (0, 1) and let Mν : [0, 1] → [0, 1] and Mν : [0, 1] →
[0, 1] be given by

Mν(x) = f−1
(
f(x)

f2(ν)

)
, Mν(x) = f−1

(
f2(ν)f(x)

)
.

Let �ν and ♦ν be a dual pair of necessity and possibility operators, respectively,
interpreted according to Remark 8. Then, for the drastic modal operators �1

and ♦0, which are given by Definition 7, the following are valid:

(a) If f is strictly decreasing, then

lim
ν→1

Mν(x) = lim
ν→1

�ν(x) = �1(x)

and
lim
ν→0

Mν(x) = lim
ν→0

♦ν(x) = ♦0(x)

(b) If f is strictly increasing, then

lim
ν→1

Mν(x) = lim
ν→1

�ν(x) = �1(x)

and
lim
ν→0

Mν(x) = lim
ν→0

♦ν(x) = ♦0(x)

for any x ∈ (0, 1).

Proof. By noting the definitions of Mν and Mν , and by making use of Proposi-
tion 8, Remark 8 and the definitions of the drastic modal operators in Definition
7, the proofs are straightforward.

Here, we will list some properties of the dual modal operators related to
compositions of these operators.

Proposition 12. Let �ν ,♦ν be a dual pair of necessity and possibility operators,
respectively, both induced by a composition of two Pliant negations, as described
in Proposition 8 and Remark 8, where ν ∈ (0, 1). Also, let �1 and ♦0 be a
drastic necessity operator and a drastic possibility operator, respectively, given
by Definition 7. Then the following are valid:

(a) �1 ◦ ♦ν = �1

(b) �ν ◦ ♦0 = ♦0

(c) ♦0 ◦�ν = ♦0

(d) ♦ν ◦�1 = �1

(e) �1 ◦ ♦0 = ♦0

(f) ♦0 ◦�1 = �1.

Proof. By using Proposition 8, Remark 8 and the definitions of the drastic modal
operators in Definition 7, the proofs can be obtained via direct calculations.

Remark 10. It is worth adding that (b) and (e) in Proposition 12 correspond
to N5 in Definition 5. Also, (d) and (f) in Proposition 12 correspond to P5 in
Definition 5.
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7. Distributivity of modal operations over strict t-norms and strict
t-conorms

It is a well-known fact that a strict t-norm c : [0, 1]2 → [0, 1] has the form

c(x, y) = f−1c (fc(x) + fc(y)) , (37)

where fc : [0, 1]→ [0,∞] is a strictly decreasing continuous function with fc(1) =
0 and limx→0 fc(x) =∞. Also, a strict t-conorm d : [0, 1]2 → [0, 1] has the form

d(x, y) = f−1d (fd(x) + fd(y)) , (38)

where fd : [0, 1]→ [0,∞] is a strictly increasing continuous function with fd(0) =
0 and limx→1 fd(x) =∞. Here, fc and fd are called the generator functions of
the strict t-norm c and the strict t-conorm d, respectively [22]. Note that the
functions fc and fd are determined up to a multiplicative constant.

The following theorem concerns the distributivity property of modal opera-
tors given in Eq. (5) (or in Eq. (6)) over strict t-norms and strict t-conorms.

Theorem 2 (Distributivity). Let the modal operator M : [0, 1]→ [0, 1] be given
by M = η1 ◦ η2, where η1 : [0, 1] → [0, 1] and η2 : [0, 1] → [0, 1] are two strong
negations such that one of them is stricter than the other. Let c : [0, 1]2 →
[0, 1] be a strict t-norm with the generator function fc : [0, 1] → [0,∞] and let
d : [0, 1]2 → [0, 1] be a strict t-conorm with the generator function fd : [0, 1] →
[0,∞]. Then, the modal operator M is distributive over the strict t-norm c and
over the strict t-conorm d if and only if

fc(x)fd(x) = 1 (39)

for any x ∈ [0, 1].

Proof. The distributivity of M over c and d means that

M (c(x, y)) = c (M(x),M(y)) (40)

and
M (d(x, y)) = d (M(x),M(y)) (41)

hold for any (x, y) ∈ [0, 1]2.
Let M1 = η1,1 ◦ η1,2 and M2 = η2,1 ◦ η2,2 such that M1(x) 6= M2(x) for

any x ∈ (0, 1), where η1,1 : [0, 1] → [0, 1] and η1,2 : [0, 1] → [0, 1] are two strong
negations such that one of them is stricter than the other; and η2,1 : [0, 1]→ [0, 1]
and η2,2 : [0, 1] → [0, 1] are also two strong negations such that one of them
is stricter than the other. Based on Theorem 1, M1 and M2 are two modal
operators, and so, they are two strictly increasing bijective functions.

Let c1(x, y) and c2(x, y) be given by

c1(x, y) = M−11 (c (M1(x),M1(y))) (42)

c2(x, y) = M−12 (c (M2(x),M2(y))) , (43)
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where (x, y) ∈ [0, 1]2. Using the definitions of M1 and M2, we have that

M−11 (x) = η1,2 (η1,1(x)) and M−12 (x) = η2,2 (η2,1(x))

for any x ∈ [0, 1], and noting the fact that c is a strict t-norm, c1(x, y) and
c2(x, y) can be written as

c1(x, y) = M−11

(
f−1c (fc (M1(x)) + fc (M1(y)))

)
c2(x, y) = M−12

(
f−1c (fc (M2(x)) + fc (M2(y)))

)
.

Let x′ and y′ be given by

x′ = fc (M1(x)) and y′ = fc (M1(y)) ,

where x, y ∈ [0, 1]. From these two equations we have

fc (M2(x)) = fc
(
M2

(
M−11

(
f−1c (x′)

)))
fc (M2(y)) = fc

(
M2

(
M−11

(
f−1c (y′)

)))
.

(44)

Suppose that
c1(x, y) = c2(x, y),

from which we also have

fc (M2 (c1(x, y))) = fc (M2 (c2(x, y))) . (45)

Using Eq. (42), Eq. (43) and Eq. (44), we have

fc (M2 (c1(x, y))) = fc
(
M2

(
M−11

(
f−1c (x′ + y′)

)))
(46)

and
fc (M2 (c2(x, y))) =

= fc
(
M2

(
M−11

(
f−1c (x′)

)))
+ fc

(
M2

(
M−11

(
f−1c (y′)

)))
.

(47)

Next, noting Eq. (46) and Eq. (47), Eq. (45) can be written as

fc
(
t
(
f−1c (x′ + y′)

))
= fc

(
t
(
f−1c (x′)

))
+ fc

(
t
(
f−1c (y′)

))
, (48)

where the function t : [0, 1] → [0, 1] is given by t(x) = M2

(
M−11 (x)

)
. Based

on the properties of M1 and M2, function t is strictly increasing, t(0) = 0 and
t(1) = 1. Also, t(x) 6= x for any x ∈ (0, 1). This is because if t(x) = x held
for at least one x ∈ (0, 1), then we would have M2

(
M−11 (x)

)
= x, from which

M1(x) = M2(x), and it would contradict the assumption that M1(x) 6= M2(x)
for any x ∈ (0, 1).
Now, let the function Fc : [0,∞]→ [0,∞] be given by

Fc(x) = fc
(
t
(
f−1c (x)

))
. (49)

Then, Eq. (48) has the form

Fc(x+ y) = Fc(x) + Fc(y), (50)
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which is the well-known Cauchy functional equation. The solution of the func-
tional equation in Eq. (50) is

Fc(x) = acx,

where ac is a constant with an arbitrary value. Therefore, by noting Eq. (49),
we have

fc
(
t
(
f−1c (x)

))
= acx, (51)

where x ∈ [0,∞], and by applying the substitution x = fc(z) we get

fc (t(z)) = acfc(z), (52)

where z ∈ [0, 1].
Similar considerations lead to

fd (t(z)) = adfd(z), (53)

where z ∈ [0, 1] and ad is a constant with an arbitrary value. Suppose that
ac, ad 6= 0. Now, multiplying Eq. (52) by Eq. (53) and letting fc(x)fd(x) =
g(x), where g : [0, 1]→ [0, 1], we have

g (t(x)) = acadg(x), (54)

where x ∈ [0, 1]. Since t is a strictly increasing function, t(x) 6= x for any
x ∈ (0, 1), and ac and ad are constants, the solution of Eq. (54) is

g(x) = k,

where k is a constant and ad = 1
ac

. Noting that g(x) = fc(x)fd(x), we have

fc(x)fd(x) = k

for any x ∈ [0, 1], and since the generator function is determined up to a multi-
plicative constant, we can get Eq. (39).

8. Modal operators and hedges

A linguistic hedge or modifier is a unary operation that changes the meaning
of a linguistic term (see [23–25]). Let X be the domain of discourse and let A be
a continuous linguistic term for the input variable x ∈ X with the membership
function µA : X → [0, 1]. Then As, which is given by the membership function

µAs(x) = (µA(x))
p

(55)

for any x ∈ X, is interpreted as a modified version of A, where p > 0. Here, p
denotes the linguistic hedge value.
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In Example 3, we showed that the modal operators induced by compositions
of two Pliant negations using the generator function fc(x) = − ln(x) of the
probabilistic strict t-norms are

Mν,c(x) = x
1

ln2(ν) and Mν,c(x) = xln
2(ν),

where x, ν ∈ (0, 1). We can readily see that applying these modal operators to
the membership function µA, we get

Mν,c(µA(x)) = (µA(x))
1

ln2(ν) and Mν,c(µA(x)) = (µA(x))ln
2(ν),

which, with p = 1
ln2(ν)

and p = ln2(ν), respectively, have the form of a hedge

given by Eq. (55).
The following example demonstrates that the application of a modal op-

erator, which is induced by a composition of two Pliant negations using the
generator function of Dombi operators, to the membership function of a fuzzy
set may be viewed as a hedge as well.

Example 5. Let the membership function of the fuzzy set ”tall person” be given

by the sigmoid function σ
(λ)
a : (−∞,∞)→ (0, 1):

σ(λ)
a (x) =

1

1 + e−λ(x−a)
,

where λ = 0.5 and a = 180. Here, x is in centimeters and σ
(λ)
a (x) represents the

truth value of the soft inequality x > 180. If someone is much taller than 180cm,
then he or she has a high membership value in the fuzzy set ”tall person”; and
conversely, if a person is much shorter than 180cm, then this person has a low
membership value in the fuzzy set ”tall person”.

Let ν ∈ [0.5, 1) and let �ν and ♦ν be a dual pair of modal operators induced
by compositions of two Pliant negations using the generator function of Dombi
operators (see Example 4). That is, �ν and ♦ν given by Eq. (35) and Eq. (36)
are as follows:

�ν(x) =
1

1 +
(

ν
1−ν

)2
1−x
x

and ♦ν(x) =
1

1 +
(
1−ν
ν

)2 1−x
x

.

By applying �ν and ♦ν to σ
(λ)
a , we get the membership functions �ν ◦ σ(λ)

a and

♦ν ◦ σ(λ)
a of the fuzzy sets ”necessarily tall person” and ”possibly tall person”,

respectively. After a direct calculation, we get

�ν
(
σ(λ)
a (x)

)
=

1

1 + e−λ(x−(a+ 2
λ ln( ν

1−ν )))
= σ

(λ)

a+ 2
λ ln( ν

1−ν )
(x)

and

♦ν
(
σ(λ)
a (x)

)
=

1

1 + e−λ(x−(a+ 2
λ ln( 1−ν

ν )))
= σ

(λ)

a+ 2
λ ln( 1−ν

ν )
(x).
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We can see that both �ν ◦ σ(λ)
a and ♦ν ◦ σ(λ)

a are sigmoid functions. It means

that the modal operators �ν and ♦ν shift the membership function σ
(λ)
a along

the horizontal axis upwards and downwards, respectively.
Figure 4 shows typical plots of the membership functions of fuzzy sets ”nec-

essarily tall person” and ”possibly tall person”, which have been derived by ap-
plying the modal operators �ν and ♦ν , respectively, to the membership functions
of fuzzy set ”tall person”.
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Figure 4: Effects of applications of modal operators to the sigmoid membership function of
fuzzy set ”tall person”.

Remark 11. We can see that in Example 5, the modal operators �ν and ♦ν
play the role of modifier operators. Even though these operators are not power
functions, and so they do not have the form of a traditional hedge given in Eq.
(55), their application to the membership function of a fuzzy set results in fuzzy
hedges.

8.1. A note on distributivity

Here, we would like to highlight the importance of distributivity. For ex-
ample, let the truth values of the statements ”x is young.” and ”x is tall.” be
given by the membership function values µy(x) and µt(x), respectively. Then,
c(µy(x), µt(x)) can be interpreted as the truth value of the statement ”x is young
and tall.”. Now, by applying the possibility operator ♦ to c(µy(x), µt(x)), we get
♦(c(µy(x), µt(x))), which can be interpreted as the truth value of the statement
”It is possible that x is young and tall.”. Next, by assuming the distributivity of
♦ over c, we have c(♦(µy(x)),♦(µt(x))), which can be interpreted as the truth
value of the statement ”x is possibly young and possibly tall.”. Notice that in
the first case, the modal operator ♦ is applied to a connective, while in the sec-
ond case, ♦ is applied to two continuous valued logical statements. This means
that in the second case, the modal operator modifies the truth values of two
statements, and then these modified values are connected by a conjunction op-
eration. Therefore, ♦ may be viewed as a linguistic hedge, and the distributivity
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of ♦ over c means that the linguistic terms ”It is possible that x is young and
tall.” and ”x is possibly young and possibly tall.” have the same truth values.
That is, owing to the distributivity, we can express the same meaning by using
two different, but logically equivalent linguistic terms.

Remark 12. Let α > 0 and let gα be the generator function of the Dombi
operators given in Eq. (2). Then, fc = gα is the generator function of a strict
t-norm and fd = g−α is the generator function of a strict t-conorm. Since

fc(x)fd(x) = gα(x)g−α(x) = 1

for any x ∈ (0, 1), based on Theorem 2, the modal operators induced by compo-
sitions of two Pliant negations using the generator function of Dombi operators
are distributive over the strict t-norm and strict t-conorm induced by the gen-
erator functions fc and fd, respectively.

9. Conclusions

The main findings of our study can be summarized as follows.

(a) In this study, we interpreted a dual pair of modal operators following the
criteria for an algebraic version of necessity and possibility operators on
De Morgan lattices given by Cattaneo, Ciucci and Dubois [7] (also, see
[15]).

(b) Here, we provided a representation theorem, which demonstrates that, in
our algebraic model, a dual pair of modal operators can be represented by
compositions of two strong negations, where one of them is stricter than
the other.

(c) Also, we used the Pliant negation operator to derive dual modal operators
in a very simple way.

(d) Next, we showed that by using the generator function of Dombi operators,
the composition of two Pliant negations results in modal operators that
have simple forms and easy-to-use characteristics.

(e) Here, we described how the proposed modal operators are connected with
the drastic necessity and possibility operators.

(f) Also, we presented the necessary and sufficient condition for the distribu-
tivity of modal operators induced by compositions of two strong negations
over strict t-norms and strict t-conorms.

(g) Lastly, we highlighted a connection between the modal operators and
hedges.
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