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The Inverse Epsilon Distribution as an Alternative

to Inverse Exponential Distribution with a Survival

Times Data Example∗

Tamás Jónása, Christophe Chesneaub, József Dombic, and
Hassan S. Bakouchd

Abstract

This paper is devoted to a new flexible two-parameter lower-truncated
distribution, which is based on the inversion of the so-called epsilon distribu-
tion. It is called the inverse epsilon distribution. In some senses, it can be
viewed as an alternative to the inverse exponential distribution, which has
many applications in reliability theory and biology. Diverse properties of the
new lower-truncated distribution are derived including relations with existing
distributions, hazard and reliability functions, survival and reverse hazard
rate functions, stochastic ordering, quantile function with related skewness
and kurtosis measures, and moments. A demonstrative survival times data
example is used to show the applicability of the new model.

Keywords: epsilon distribution, inverse exponential distribution, inverse ep-
silon distribution

1 Introduction

The exponential distribution and its generalizations play an important role in many
areas of science, including physics, chemistry, medical sciences and reliability engi-
neering (see e.g. [1, 2, 16, 19]). Dombi et al. [6] introduced the epsilon distribution,
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which may be treated as an alternative to the exponential distribution. Here, we
will briefly review the epsilon distribution and its connection with the exponential
distribution. Dombi et al. [6] defined the epsilon function as follows.

Definition 1. The epsilon function ελ,d(x) : (−d, d)→ (0,∞) is given by

ελ,d(x) =

(
d+ x

d− x

)λ d2
,

where λ ∈ R, λ 6= 0, d ∈ R, d > 0.

The following proposition concerns a key property of the epsilon function.

Proposition 1. For any x ∈ (−d,+d), if d→∞, then

ελ,d(x)→ eλx.

Proof. See the proof of Theorem 1 in [6].

Utilizing the epsilon function given in Definition 1, the continuous random vari-
able X said to have an epsilon distribution with the parameters λ > 0 and d > 0,
if its cumulative distribution function (CDF) is given by

Fλ,d(x) =


0, if x ≤ 0

1− ε−λ,d(x), if 0 < x < d

1, if x ≥ d.

Notation 1. From now on, X ∼ ε(λ, d) will denote that the random variable X
has an epsilon distribution with the parameters λ > 0 and d > 0.

Exploiting Proposition 1, we can state the following proposition.

Proposition 2. Let X ∼ ε(λ, d) and let Y ∼ exp(λ), where λ > 0, d > 0. Then,
for any x ∈ R

lim
d→∞

P (X < x) = P (Y < x).

Proof. By making use of the definitions for the epsilon and the exponential distri-
butions, the proposition immediately follows from Proposition 1.

Based on Proposition 2, we may state that the asymptotic epsilon distribution is
just the exponential distribution. It is worth mentioning that while the hazard
function of an exponentially distributed random variable is constant, the hazard
function of a random variable with an epsilon distribution can exhibit both constant
and increasing shapes. That is, in reliability analyses, the epsilon distribution can
be utilized to describe the distribution of the time to first failure random variable
both in the second and in the third phases of the hazard function.

The reciprocal of a random variable with an exponential distribution is said to be
a random variable with an inverse exponential distribution. The inverse exponential
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distribution, like the exponential distribution, has a wide range of applications (see
e.g. [17]). For example, if a random variable with an exponential distribution
represents the time between failures of a system, then the reciprocal of this random
variable, which has an inverse exponential distribution, describes the frequency of
the system failures over time.

In this study, we will present the inverse epsilon distribution and, by the means
of an illustrative data example, show that it may be viewed as an alternative to the
inverse exponential distribution. The key features of the inverse epsilon distribution
and the main motivations of our study can be summarized as follows:

(a) It is a new, flexible, lower-truncated power-polynomial distribution.

(b) The famous inverse exponential distribution is just the limit of the inverse
epsilon distribution.

(c) The literature lacks of a flexible inverted lower-truncated distributions.

(d) The hazard function of the inverse exponential distribution has a first, in-
creasing part and a second, slowly decreasing part (see [18]). This explains
why in the course of the study of mortality associated with some diseases, the
inverse exponential distribution may be utilized as a life distribution model
(see [12, 5]). Taking into account the asymptotic property of the inverse
epsilon distribution, this latter one can also be utilized in mortality studies.

This paper is structured as follows. In Section 2, we will introduce the inverse
epsilon distribution and describe its key properties including the hazard function,
survival and reverse hazard rate functions, stochastic ordering, quantile function
and moments. Next, in Section 3, we will present a demonstrative example of the
application of the new distribution on survival times data. Lastly, in Section 4, our
main findings are summarized.

2 Theoretical aspects

2.1 Basics on the inverse epsilon distribution

Here, we will present the inverse epsilon distribution and show that it may be
viewed as an alternative to the inverse exponential distribution.

Now, let the random variable X have an epsilon distribution with the param-
eters λ, d > 0; that is, X ∼ ε(λ, d). Next, let Y = 1/X, where X > 0, and let
Gλ,d : R+ → (0, 1) be the CDF of Y . Then, noting that X and Y are continuous
random variables, after direct calculation, we have

Gλ,d(y) = P (Y < y) = P

(
X >

1

y

)
= 1− P

(
X ≤ 1

y

)
= 1− Fλ,d

(
1

y

)
.

Therefore,

Gλ,d(y) =

0, if 0 < y ≤ 1
d(

d+y−1

d−y−1

)−λ d2
, if y > 1

d .
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By taking the derivative of function Gλ,d(x), we get the probability density function
(PDF) gλ,d(x) = G′λ,d(x) of the random variable Y :

gλ,d(y) =

0, if 0 < y ≤ 1
d

λ d2

d2y2−1

(
d+y−1

d−y−1

)−λ d2
, if y > 1

d .

Following this line of thinking, we define the inverse epsilon distribution as follows.

Definition 2. The continuous random variable X > 0 has an inverse epsilon
distribution with the parameters λ > 0 and d > 0, if the PDF fλ,d of X is given by

fλ,d(x) =

0, if 0 < x ≤ 1
d

λ d2

d2x2−1

(
d+x−1

d−x−1

)−λ d2
, if x > 1

d .
(1)

Note that the CDF of the inverse epsilon distribution given in Definition 2 is

Fλ,d(x) =

0, if 0 < x ≤ 1
d(

d+x−1

d−x−1

)−λ d2
, if x > 1

d .
(2)

Notation 2. From now on, X ∼ ε(λ, d) will denote that the random variable X > 0
has an inverse epsilon distribution with the parameters λ > 0 and d > 0.

It is a familiar fact that a continuous random variable X > 0 has an inverse
exponential distribution with the parameter λ > 0, if the PDF fλ(x) and the CDF
Fλ(x) of X are given by

fλ(x) =
λ

x2
e−λ

1
x , Fλ(x) = e−λ

1
x , (3)

respectively.

Notation 3. Hereafter, X ∼ invexp(λ) will denote that the random variable X > 0
has an inverse exponential distribution with the parameter λ > 0.

The following proposition concerns the connection between the inverse expo-
nential and inverse epsilon distributions.

Proposition 3. Let X ∼ ε(λ, d) and let Y ∼ invexp(λ), where λ > 0, d > 0 and
X,Y > 0. Then, for any x > 0

lim
d→∞

P (X < x) = P (Y < x).

Proof. Noting the CDFs of X and Y given in Eq. (2) and Eq. (3), respectively,
and applying Proposition 1, for any x > 0, we can write

lim
d→∞

P (X < x) = lim
d→∞

(
d+ x−1

d− x−1

)−λ d2
= e−λ

1
x = P (Y < x).
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Based on Proposition 3, the inverse exponential distribution may be viewed as the
asymptotic inverse epsilon distribution.

Using the results above, we may state that the interests in the inverse epsilon
distribution is based on the following facts:

(a) It is a new, flexible, lower-truncated power-polynomial distribution.

(b) The famous inverse exponential distribution is just the limit of the inverse
epsilon distribution.

(c) The literature lacks of a flexible inverted lower-truncated distributions.

Some example plots of the CDFs of the inverse epsilon distribution are shown
in Figure 1.
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Figure 1: CDF of the inverse epsilon distribution with three sets of parameters for
(λ, d): (0.6, 1.3), (1.6, 2) and (3, 7).

We observe that the CDF can be more or less concave (for the considered values).

2.2 Hazard function

By making use of the PDF and CDF of the inverse exponential distribution, we get
that its hazard function hλ : (0,∞)→ (0,∞) is

hλ(x) =
fλ(x)

1− Fλ(x)
=

λ
x2 e−λ

1
x

1− e−λ
1
x

,
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where λ > 0.
Using the PDF and the CDF of the inverse epsilon distribution with the pa-

rameters λ, d > 0, the hazard function hλ,d : (0,∞) → [0,∞) of this distribution
is

hλ,d(x) =
fλ,d(x)

1− Fλ,d(x)
=


0, if 0 < x ≤ 1

d

λ
d2

d2x2−1

(
d+x−1

d−x−1

)−λ d
2

1−
(
d+x−1

d−x−1

)−λ d
2

, if x > 1
d .

Proposition 4. Let X ∼ ε(λ, d) and let Y ∼ invexp(λ), where λ > 0, d > 0 and
X,Y > 0. Furthermore let hλ,d : (0,∞) → [0,∞) and hλ : (0,∞) → (0,∞) be the
hazard functions of X and Y , respectively. Then, for any x > 0

lim
d→∞

hλ,d(x) = hλ(x).

Proof. This proposition immediately follows from Proposition 1.

The first derivative of the hazard function hλ,d(x) is

dhλ,d(x)

dx
= −

λd4
(

(2x− λ)
(
dx+1
dx−1

)λd
2 − 2x

)
(dx− 1)

2
(dx+ 1)

2

((
dx+1
dx−1

)λd
2 − 1

)2 .

Using the first derivative of hλ,d(x), one can see that

• if 0 < λd ≤ 2, then hλ,d(x) is strictly decreasing in the interval
(
1
d ,∞

)
• if λd > 2, then in the interval

(
1
d ,∞

)
, hλ,d(x) is first increasing, and then

decreasing; that is, hλ,d(x) has a local maxima.

Figure 2 shows example plots of hazard functions of the inverse exponential distri-
bution and the inverse epsilon distribution.

It is an acknowledged fact that in the course of the study of mortality associated
with some diseases, the hazard function has a first, increasing part and a second,
slowly decreasing part [18]. We can see that the hazard function of the inverse
exponential distribution (see the left upper plot in Figure 2) exhibits such a shape.
This is why the inverse exponential distribution may be utilized as a life distribution
model (see [12, 5]).

Now, by taking into account the above mentioned characteristics of the hazard
function of the inverse epsilon distribution, we can draw the following practical
conclusions.

• The hazard function of the inverse epsilon distribution with the parameters
λ, d > 0 may be viewed as an alternative to the hazard function of the inverse
exponential distribution, if the value of parameter d is sufficiently large. If
d→∞, then the two hazard functions coincide.
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Figure 2: Example plots of hazard functions of the inverse exponential distribution
and the inverse epsilon distribution.

• If λd > 2, then the shape of the hazard function of the inverse epsilon distri-
bution is very similar to that of the hazard function of the inverse exponential
distribution. In this case, the hazard function is first increasing and then it
is slowly decreasing (see the upper plots in Figure 2).

• If 0 < λd ≤ 2, then the hazard function of the inverse epsilon distribution is
strictly decreasing in the interval

(
1
d ,∞

)
(see the lower plot in Figure 2).

Therefore, the inverse epsilon distribution can be used to model life time data
that have either first monotonically increasing and then decreasing hazard rates,
or monotonically decreasing hazard rates.
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2.3 Survival and reverse hazard rate functions

The following functions are of interest, mainly in hazard and reliability analysis.
The survival function of the inverse epsilon distribution is obtained as

Sλ,d(x) = 1− Fλ,d(x) =

1, if 0 < x ≤ 1
d

1−
(
d+x−1

d−x−1

)−λ d2
, if x > 1

d .

The reversed hazard rate function of the inverse epsilon distribution is given by

rλ,d(x) =
fλ,d(x)

Fλ,d(x)
=

{
0, if 0 < x ≤ 1

d

λ d2

d2x2−1 , if x > 1
d .

The cumulative hazard rate function is expressed as

Hλ,d(x) = − ln(Sλ,d(x)) =

0, if 0 < x ≤ 1
d

− ln

[
1−

(
d+x−1

d−x−1

)−λ d2 ]
, if x > 1

d ,

where the logarithmic term can be decomposed as

− ln

[
1−

(
d+ x−1

d− x−1

)−λ d2 ]
= − ln

[(
d− x−1

)−λ d2 − (d+ x−1
)−λ d2 ]

− λd
2

ln(d− x−1).

Further details on these functions can be found in [11].

2.4 Stochastic ordering

The following stochastic ordering result on the inverse epsilon distribution holds.

Proposition 5. Let Fλ,d be the CDF of the inverse epsilon distribution as defined
by (2). Then, for d2 ≥ d1 > 0 and any x > 0, we have

Fλ,d2(x) ≥ Fλ,d1(x);

and for any λ2 ≥ λ1 > 0 and any x > 0, we have

Fλ1,d(x) ≥ Fλ2,d(x).

Proof. For x < 1/d2, the CDFs are equal to 0. For x ∈ [1/d2, 1/d1), since
Fλ,d1(x) = 0, the inequality is clear too. Now, for x > 1/d1 > 1/d2, by using
the following inequality:

1

2
ln

(
1 + x

x− 1

)
<

x

x2 − 1
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for x > 1, we get

∂

∂d
Fλ,d(x) = λ

(
d+ x−1

d− x−1

)−λ d2 [ dx

d2x2 − 1
− 1

2
ln

(
1 + dx

dx− 1

)]
> 0,

implying that Fλ,d(x) is increasing with respect to d.
For λ2 ≥ λ1, we have

Fλ1,d(x) ≥ Fλ2,d(x).

Indeed, the function Fλ,d(x) is decreasing with respect to λ: we have

∂

∂λ
Fλ,d(x) = −d

2

(
d+ x−1

d− x−1

)−λ d2
ln

(
d+ x−1

d− x−1

)
< 0.

Under the conditions of Proposition 5, we see that X1 ∼ ε(λ1, d) first order
stochastically dominates X2 ∼ ε(λ2, d).

2.5 Quantile function

The quantile function of the inverse epsilon distribution is obtained by inverting
Fλ,d(x). After some developments, we arrive at

Qλ,d(u) =
1

d

(
u−

2
dλ + 1

u−
2
dλ − 1

)
=

1

d

(
1 + u

2
dλ

1− u 2
dλ

)
, u ∈ (0, 1).

This function is of importance because it allows us to define the main quartiles
of the inverse epsilon distribution, as the first quartile: Qλ,d(1/4), the median:
Qλ,d(1/2) and the third quartile: Qλ,d(3/4). Also, it can be served to generate
values from the inverse epsilon distribution.

We should also add that we can use Qλ,d(u) to define measures of skewness and
kurtosis as the Bowley skewness and Moors kurtosis are given by

Bλ,d =
Qλ,d(1/4)− 2Qλ,d(1/2) +Qλ,d(3/4)

Qλ,d(3/4)−Qλ,d(1/4)

and

Mλ,d =
Qλ,d(7/8)−Qλ,d(5/8) +Qλ,d(3/8)−Qλ,d(1/8)

Qλ,d(6/8)−Qλ,d(2/8)
.

These measures provide alternative definitions to the skewness and kurtosis mea-
sures defined with moments. For more details on these alternative definitions see
[8] and [13].

Figure 3 shows the plots of Bowley skewness and Moors kurtosis as functions of
the parameters λ and d. The graphics for Bλ,d and Mλ,d are useful to determine
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Figure 3: Plots of Bowley skewness and Moors kurtosis

the ability of the inverse epsilon distribution in skewness and kurtosis. This is very
interesting for the inverse epsilon distribution because it does not admit mean (and
obviously raw moments of superior order). This aspect is developed in the next
section.

Also, upon differentiation of Qλ,d(u) according to u, the quantile density func-
tion is defined by

qλ,d(u) =
4

λd2
u

2
dλ−1(

1− u 2
dλ

)2 , u ∈ (0, 1).

This function is of interest since it appears in several statistical tools. For further
details see [10].

2.6 Moments

Let us now investigate the moments of X ∼ ε(λ, d). Then, assuming that it exists,
the mean of Xr is defined by

µ′r = E(Xr) =

∫ +∞

1/d

xrfλ,d(x)dx =

∫ +∞

1/d

xrλ
d2

d2x2 − 1

(
d+ x−1

d− x−1

)−λ d2
dx.
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Proposition 6. The mean of Xr exists if and only if r ∈ (−λd/2, 1), and it is
given as

µ′r =
λ

dr
B

(
1− r, λd

2
+ 1

)
2F1

(
λd

2
+ 1, 1− r; 1− r +

λd

2
;−1

)
,

where B(a, b) and 2F1(a, b; c;x) are the classical beta and Gauss hypergeometric
functions, respectively.

Proof. When x → 1/d, we have fλ,d(x) ∼ λd22−λ
d
2−1(xd − 1)λ

d
2−1 so, by the

Riemann integrability, the integral converge in 0 if and only if 1 − λd/2 − r < 1,
hence r > −λd/2. Also, when x → +∞, we have fλ,d(x) ∼ λxr−2 so, by the
Riemann integrability, the integral converge in +∞ if and only if 2− r > 1, hence
r < 1. That is, µ′r exists if and only if r ∈ (−λd/2, 1). Following the lines of [15]
with the use of Y ∼ ε(λ, d) and the change of variable y = x/d, we have

µ′r = E(Y −r) = λd2
∫ d

0

x−r

d2 − x2

(
d+ x

d− x

)−λ d2
dx

=
λ

dr

∫ 1

0

y−r(1− y)λ
d
2−1(1 + y)−λ

d
2−1dy.

The desired result involving the beta and Gauss hypergeometric functions is an
immediate application of Eq. 3.197.3 of [9].

In particular, from Proposition 6, we see that the mean of X doesn’t exist.
Some inverse raw moments of X exists, depending on the large values for λ and d.

Remark 1. Alternatively, by applying the change of variable x = Qλ,d(u) and use
he general binomial theorem, one can also express µ′r as

µ′r =

∫ 1

0

[Qλ,d(u)]rdu =
1

dr

∫ 1

0

(
1 + u

2
dλ

1− u 2
dλ

)r
du

=
1

dr

∫ 1

0

[
+∞∑
k=0

(
r

k

)
uk

2
dλ

][
+∞∑
`=0

(
−r
`

)
(−1)`u`

2
dλ

]
du

=
1

dr

+∞∑
k,`=0

(
r

k

)(
−r
`

)
(−1)`

1

2(k + `)/(dλ) + 1
,

from which an acceptable approximation can be given by substituting +∞ by any
large integer. If λ or d are sufficiently large, the negative moments of X can be
investigated for moments analysis.

The incomplete moments of X exists when r ≥ 0; the rth incomplete moment
of Xr at t > 1/d is given by

µ′r(t) = E(Xr1{X≤t}) =

∫ t

1/d

xrfλ,d(x)dx =

∫ t

1/d

xrλ
d2

d2x2 − 1

(
d+ x−1

d− x−1

)−λ d2
dx
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or, equivalently,

µ′r(t) =

∫ Fλ,d(t)

0

[Qλ,d(u)]rdu =
1

dr

∫ (
d+t−1

d−t−1

)−λ d
2

0

(
1 + u

2
dλ

1− u 2
dλ

)r
du.

To our knowledge, there is no close form µ′r(t). For known parameters (including
t), we can have a numerical value of it. As a complementary approach, a series
expansion of µ′r(t) is possible through the application of the generalized binomial
series expansion. Following this approach, we get

µ′r(t) =
1

dr

+∞∑
k,`=0

(
r

k

)(
−r
`

)
(−1)`

1

2(k + `)/(dλ) + 1

(
d+ t−1

d− t−1

)−(k+`)−λ d2
.

From the incomplete moments, one can define applied curves, functions or indexes
of interest, such as the Lorenz curves, Gini index and mean residual life or others.
See, for instance, [3].

3 A demonstrative survival times data example

Oguntunde et al. [14] used the following data of survival times (in days) of a
group of patients suffering from head and neck cancer diseases and treated using a
combination of radiotherapy and chemotherapy (see [7]):
12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26,
74.47, 81.43, 84, 92, 94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179,
194, 195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 725, 817, 1776.

Oguntunde et al. [14] modeled these survival times using the exponential inverse
exponential (EIE) distribution that has the following PDF and CDF, respectively,

fθ,α(x) = α
θ

x2
e−

θ
x

1(
1 + e−

θ
x

)2 e
−α e

− θ
x

1−e
− θ
x (4)

Fθ,α(x) = 1− e
−α e

− θ
x

1−e
− θ
x , (5)

where x, α, θ > 0. The values of the maximum likelihood estimations θ̂ and α̂
for the parameters θ and α, respectively, the maximum value of the log-likelihood
function, the value of the Akaike information criterion (AIC) and the value of the
Bayesian information criterion (BIC) are shown in Table 1.

For this data set, Table 1 shows the maximum likelihood estimation results for
the inverse exponential (IE) distribution as well.

Here, we computed the maximum likelihood estimations of the parameters for
the inverse epsilon distribution as follows. Let the random variable X be the
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Table 1: Estimation results

Distribution Parameters Log-likelihood AIC BIC

EIE θ̂ = 33.4469 α̂ = 0.1609 -280.4043 564.8086 568.3770

IE λ̂ = 76.7000 -279.5773 561.1546 562.9389

Inverse epsilon λ̂ = 76.7000 d̂ = 11.9953 -279.5773 563.1547 566.7231

survival time of patients, X ∼ ε(λ, d), and let x1, x2, . . . , xn be independent obser-
vations on X. Then, the likelihood function L : (0,∞)2 → (0,∞) for the sample
x1, x2, . . . , xn is given by

L(λ, d;x1, x2, . . . , xn) =

n∏
i=1

λ d2

d2x2i − 1

(
d+ x−1i
d− x−1i

)−λ d2 ,

where d > 1
mini=1,2,...,n (xi)

. The log-likelihood function l = ln ◦L is given by

l(λ, d;x1, x2, . . . , xn) = n ln(λ) +

n∑
i=1

ln

(
d2

d2x2i − 1

)
− λd

2

n∑
i=1

ln

(
d+ x−1i
d− x−1i

)
,

where d > 1
mini=1,2,...,n (xi)

. We used the GLOBAL method, which is a stochastic

global optimization procedure introduced by Csendes et al. [4], to find the maxima

of the log-likelihood function. The estimations of λ and d, respectively, λ̂ and d̂,
and the maximal value of the log-likelihood function are shown in Table 1.

Based on the maximum likelihood estimation results, we can summarize our
findings as follows.

(a) For the studied survival times, the inverse epsilon distribution gives better
maximal log-likelihood value and better AIC and BIC values than the ex-
ponential inverse exponential distribution. At the same time, the PDF and
the CDF of the inverse exponential distribution have much simpler formulas
(see Eq. (1) and Eq. (2)) than those of the exponential inverse exponential
distribution (see Eq. (4) and Eq. (5)).

(b) The inverse epsilon distribution and the inverse exponential distribution result
the same maximal log-likelihood value. That is, in line with the finding of
Proposition 3, these two distributions coincide if d→∞. Notice that in our
case, these two distributions may be viewed as being identical already for
d = 11.9953.

(c) The inverse epsilon distribution has two parameters (λ and d), while the
inverse exponential distribution has only one parameter (λ). Therefore, as in
our case these two distributions result the same maximal log-likelihood value,
the AIC and BIC values for the inverse exponential distribution (561.1546 and
562.9389, respectively) are lower than those for the inverse epsilon distribution
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(563.1547 and 566.7231, respectively). It should be added that by fixing the
value of parameter d at a large value (e.g. d = 100), the inverse epsilon
distribution may be treated as a one-parameter distribution, which coincides
with the inverse exponential distribution.

(d) The PDFs and the CDFs of the exponential distribution and the exponential
inverse exponential distribution contain exponential terms, while the PDF
and the CDF of the inverse epsilon distribution do not contain any exponential
term.

Figure 4 shows the plots of the empirical CDF, EIE CDF, inverse exponential
CDF and inverse epsilon CDF with the parameter values listed in Table 1.
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Figure 4: Empirical CDF, EIE CDF, Inverse exponential CDF and Inverse epsilon
CDF

4 Conclusions

In this paper, we study the possibilities offered by a new two-parameter lower-
truncated distribution constructed from the inversion of the so-called epsilon dis-
tribution. Here, diverse motivations for this new distribution are provided. We
have studied in depth the shapes of the probability density and hazard rate func-
tions, determined the quantile function and discussed the moments. The theory
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is illustrated by a complete graphical analysis. Through the maximum likelihood
approach, the new model is derived and an application with real data is also given.

We further plan to use the inverse epsilon distribution in an applied regression
setting, and to investigate some of its natural generalizations through standard
schemes (Marshall-Olkin, transmuted, type I half-logistic, etc).
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