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Abstract
The purpose of this study was to examine the role of dopaminergic mediation in the hypothalamic-pituitary-adrenal (HPA) response challenged by ether stress. First 
the effects of the D1 selective (SCH-23390) and the D2 selective (haloperidol) dopamine antagonists on ether stress evoked corticosterone responses were tested. 
The activation of the HPA axis was assessed by measuring plasma corticosterone levels. Low doses of haloperidol (25 nmol/kg, intraperitoneally) failed to affect 
either basal or stimulated corticosterone secretion, while SCH-23390 elicited moderate inhibition of stimulated release. However, to our surprise higher doses of 
haloperidol (250 nmol/kg) raised basal secretion and even potentiated the HPA response evoked by ether stress. Therefore to elucidate the role of D2 mediation, the 
intrinsic activity of the D2 antagonist was tested in further experiments. Haloperidol (from 25 nmol/kg to 2.5 mmol/kg) alone elicited a dose-dependent activation of 
the HPA system reflected by both corticosterone and ACTH serum levels. This D2-antagonist-evoked HPA activation could be prevented by pre-administration of 
the CRH antagonist, α-helical CRH9-41. These findings provide unequivocal evidence that D2 receptor can exert inhibitory control over the HPA axis.
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Introduction 
Although dopaminergic neurons interconnect several brain centers 

and modulate a plethora of functions, the activities and disorders of 
three specific systems represent the most important physiologic and 
pathophysiologic phenomena in monoaminergic neurotransmission 
[1,2]. The nigrostriatal, mesocorticolimbic and hypothalamic-
tuberoinfundibular neural networks predominantly manage inherited, 
instinctive, neuroendocrine programs (extrapyramidal modules, 
holokinetic movements, postural reflexes, and hormonal responses), 
but the modulation and fine-tuning provided by them also have impact 
even on the most intricate and flexible cognitive processes [3,4].

The complexity of these neural circuits is further multiplied 
by an arsenal of dopaminergic receptors [5,6], which explains the 
complex pathology of these systems (schizophrenia, attention-deficit 
hyperactivity disorder, Parkinson’s disease, Parkinson’s dementia, 
Lewy body dementia (LBD), various endocrine disorders), and 
the unpredictable effects and side effects (toxicity and withdrawal 
symptoms) of dopaminergic pharmacological agents [5-8]. Further, 
it is well known that, in both endogenous monoaminergic and 
addictive disorders, the pathological activity of the HPA system can 
be observed. Most commonly it is represented by either an over-
activation or a decreased resilience of the HPA system reflected by 
resistance to dexamethasone suppression [9]. However, the role of 
different dopaminergic pathways and receptor classes in the control of 
the HPA axis is poorly understood. The only aspect, upon which even 
recent publications agree, is the stimulus dependent role of various 
dopaminergic pathways in the transmission of the stress response [10]. 

First, Jezova reported [11] that non-selective dopaminergic 

agonists (apomorphine, pergolide) evoked significant elevations in 
ACTH secretion in the rat. According to them, this response could be 
completely abolished by preadministration of the selective D2 inverse 
agonist, haloperidol [11]. Moreover, Hennig et al. [12], demonstrated 
that the human cortisol response to heat stress can be prevented by 
haloperidol pretreatment.

The next major contribution to the field of dopaminergic control 
of the HPA axis was the clarification of the central stimulatory activity 
of cocaine [13-16]. The cocaine-elicited HPA response [13-19] is now 
generally considered to represent dopaminergic activation [20-21] of 
corticotropin-releasing hormone (CRH) secretion [16]. However, the 
specific roles of the D1-like (D1 and D5) and the D2-like families (D2, D3 
and D4) of pre- and postsynaptic dopamine receptors in these processes 
has not yet been clarified. Further, Goebel et al. even reported clear-
cut evidence of the central stimulatory action of the D2 antagonist, 
haloperidol, on corticosterone secretion [23]. This finding is in 
sharp contrast with that of Jezova [11] and is in complete agreement 
with several clinical symptoms of dopaminergic deficit. In major 
depression, bipolar disease, Parkinson’s dementia and, especially, in 
LBD (LBD completely eradicates the dopaminergic cells in the nervous 
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system) cessation of the circadian rhythm of the HPA axis and overall 
hypercortisolism are almost unequivocal universal findings [24-27]. 
Goebel tried to explain this contradiction with a peripheral stimulatory 
action of prolactin on the adrenal gland [23], however we surmised a 
dose and challenge dependent role of dopamine in the regulation of the 
stress response.

Our earlier publications have clearly demonstrated the stressor 
specificity of the HPA response [28,29], which supports the 
aforementioned hypothesis. Further, in the case of pharmacologic 
challenges, the relative contributions of D1 and D2 receptors are still 
debated and the experimental findings are inconsistent. Zhou et al. [30] 
found that in the hypothalamus, neither of these receptors influenced 
CRH expression, while D2 receptors appeared to curb cocaine-binge 
elicited transcription of proopiomelancocortin (POMC). However, 
recently Gozzi et al. reported a profound inhibitory activity of D1 
receptor antagonism on the orexin positive stress and arousal pathways 
[31]. Therefore, these contradictory findings necessitate stressor specific 
evaluation of the role of D1 and D2 receptor families in HPA activation.

Consequently, our experiments first investigated the dopaminergic 
mediation of ether induced HPA activation by using two selective 
inhibitors of dopaminergic transmission: the D1 receptor antagonist, 
SCH-23390, and the D2 dopamine receptor antagonist, haloperidol. 
However, because we observed a profound additive activity of D2 
receptor inhibition on the endocrine response, the mediation of 
the intrinsic effect was evaluated by measuring plasma levels of 
adrenocorticotropic hormone (ACTH) and corticosterone and 
by applying the corticotropin-releasing hormone (CRH) receptor 
antagonist, α-helical CRF9-41.

Materials and methods
Animals

The animals were maintained and handled during the experiments 
in accordance with the Council Directive of the European Economic 
Community regarding the protection of animals for experimental and 
other scientific purposes (86/609/EEC). Male Wistar rats weighing 
150-250 g upon arrival were used and they were between 2.5-3 months 
old at the time of the experiments. The rats were kept in their home 
cages at a constant room temperature on a standard illumination 
schedule, with 12-h light and 12-h dark periods (lights on from 6.00 
a.m.). Commercial food and tap water were available ad libitum. The 
rats were allowed a minimum of 1 week to acclimatize before surgery. 
To minimize the effects of nonspecific stress, the rats were handled 
daily. All experiments were carried out between 8:00 a.m. and 10:00 
a.m.

Surgery

For icv. administration, the rats were implanted, under pentobarbital 
(Nembutal, Phylaxia-Sanofi, Budapest; 35 mg/kg, intraperitoneal (ip.)) 
anesthesia, with a stainless steel, Luer cannula (10 mm long) aimed at 
the right lateral cerebral ventricle. The stereotaxic coordinates were 0.2 
mm posterior, 1.7 mm lateral to the bregma, and 3.7 mm deep from the 
dural surface, according to a rat brain atlas [32]. Cannulas were secured 
to the skull with dental cement and acrylate. The rats were used for 
studies after a recovery period of at least 5 days. After the experiments 
to verify the permeability of the cannulas, methylene blue was injected 
into each decapitated head and the brains were dissected. Only the data 
obtained from animals which manifested a diffusion of methylene blue 
into all the ventricles were used for statistical analysis.

Treatments

The animals were subjected to pretreatment with either the D1 
receptor selective dopamine blocker, SCH-23390 (Tocris, Bristol, 
UK), or the D2 dopamine receptor antagonist, haloperidol (Richter, 
Budapest, Hungary). All compounds were dissolved in 0.9% saline. 
The initial concentrations of the antagonists were doses we found to be 
most effective in previous experiments [33,34], but which per se did not 
affect hormone levels. Different doses of haloperidol (from 25 nmol/kg 
to 2.5 mmol/kg) and SCH-23390 (25-250 nmol/kg) were dissolved in 
0.5 ml saline and administered ip. to conscious rats. The same volume 
of saline was administered to the controls ip. To evaluate the mediation 
of the intrinsic activity of haloperidol, combined treatment with a 
CRH antagonist was performed. Thirty minutes prior to haloperidol 
treatment, 5 nmol/kg CRH antagonist, α-helical CRH9-41 (Bachem, 
Germany) was administered icv. in a volume of 2 μl.

Ether stress

Thirty minutes after the above treatments the animals were 
exposed to ether stress in the following manner. Rats were removed 
from their cages and placed individually for 1.5 min in a large closed jar 
containing a diethyl-ether (Reanal, Hungary) dampened paper towel 
at the bottom. Unconsciousness always occurred within this period of 
breathing the ether-saturated atmosphere [28,29].

Determination of plasma corticosterone

Thirty min after the ether stress, the rats were sacrificed by cervical 
dislocation and decapitation, and approximately 3 ml of trunk blood 
was collected in heparinized tubes for corticosterone assay. The plasma 
corticosterone concentration was measured by fluorescence assay 
[36,37].

Determination of plasma ACTH

The most effective doses of haloperidol found in the corticosterone 
or saline alone (control animals) assays were injected ip. into conscious 
rats. Fifteen min after this treatment, the animals were sacrificed and 
2 ml of blood was collected in EDTA-containing tubes. The ACTH 
concentrations of the samples were determined by a solid-phase two-
site sequential chemiluminescent immunometric assay (Immulite 
2000, Diagnostics Products Corporation, Los Angeles, USA). The 
analytical sensitivity of the assay is 5 pg/ml, whereas the intra-assay 
and inter-assay precisions are 6.8% and 8.2%, respectively.

Statistical analysis

Values are presented as means ± S.E.M. Statistical analysis of the 
data was performed by general linear model (GLM). The differences 
between groups were examined by Tukey’s post hoc comparison 
test, and a probability level of 0.05 or less was accepted as indicating 
a statistically significant difference. Data reductions and statistical 
analyses were performed by SigmaPlot 12.0 (Systat Software, Inc., 
Chicago, IL) and IBM SPSS Statistics 20.0 (IBM Corporation, Armonk, 
NY).

Results
As expected, ether stress caused a marked increase in plasma 

corticosterone (Figure 1; F(1, 106)=134.97, p<0.01 vs. control). 
Pretreatment with antagonists also proved to be effective (Figure 
1; F(4, 106)=25.102, p<0.01). According to Tukey’s post hoc comparisons, 
SCH-23390 slightly attenuated the HPA response at the highest dose 
(Figure 1; p<0.01 for 250 nmol SCH-23390 vs. saline). Haloperidol 
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pretreatment in a dose of 25 nmol/kg showed a tendency to increase the 
basal but did not influence the ether induced corticosterone secretion. 
In contrast, a higher dose of haloperidol (250 nmol/kg) elevated the 
basal plasma corticosterone level and the same pretreatment even 
augmented the ether induced response (Figure 1; p<0.05 vs. saline for 
25 nmol/kg haloperidol and p<0.01 vs. saline for 250 nmol/kg).

In further experiments we established that the stimulatory effect of 
haloperidol is dose-dependent on both the ACTH (Figure 2; F(3, 21)=3.2, 
p<0.05 for 2.5 mmol/kg haloperidol vs. saline with Tukey’s post hoc 
test) and corticosterone responses (Figure 2; F(3, 21)=18.85, p<0.01 for 
both 250 nmol/kg haloperidol vs. saline and 2.5 mmol/kg haloperidol 
vs. saline with Tukey’s post hoc test). 

In the third set of experiments the D2 antagonist evoked response 
(Figure 3; F(2, 48)= 80.901, p<0.01 vs. saline) could be partially attenuated 
by pretreatment with the CRH antagonist α-helical CRH9-41 (Figure 3; 
F(1, 48)=28.171, P<0.01 vs. saline). The revealed interaction between the 
two treatments (F(2, 48)=11.0, P<0.01 vs. saline) suggested specificity of 
the CRH antagonist.

Discussion
The results obtained from our experiments with ether stress 

and selective dopaminergic antagonists refine the proposed oversimplified model of dopaminergic mediation in the control of 
the HPA axis [11,38,39]. Selective D1 inhibition by SCH-23390 did 
not have a significant impact on basal secretion and appeared slightly 
antagonistic on stimulated activity of the HPA axis, which supports the 
observations of Zhou et al. regarding cocaine challenge [30]. However, 
to our surprise, haloperidol at higher doses even augmented the ether 
evoked corticosterone response. Because the available literature reflects 
conflicting data regarding the action of antipsychotics on the HPA 
axis [23,30,40], in separate, dose-response experiments, the intrinsic 
activity of D2 antagonism on the HPA system was investigated. It was 
not only the inconsistent literature but the increasingly recognized 
importance of the CRH positive neural networks in the development of 
dopaminergic system-related disorders [23,35,41-45] that motivated us 
to investigate this question. Nevertheless, our results unambiguously 
revealed that the dopamine D2 receptor blockade by haloperidol per se 
increased both ACTH and corticosterone secretion and the response 
could also be inhibited by pretreatment with the CRH antagonist, 
α-helical CRH9-41. These findings argue for two important conclusions. 
First, in the regulation of the HPA axis the activity of D2 receptors 
predominate and that of the D1 family is negligible. Second, the D2-
family exerts tonic inhibitory control over HPA stimulation and 
blockade of the receptors leads to profound augmentation of the 
stress response. Our findings somewhat correspond to those of Zhou 
but unlike cocaine-binge [23] ether stress appears to rely on CRH, 
not POMC, transcription. Taking into account the effectiveness of 
haloperidol and, that the tuberoinfundibular system mainly expresses 
D2 and D3 receptors [46-49] it appears that the D2-like family exerts 
tonic inhibitory control over HPA activation in the hypothalamus. 
Earlier studies clearly demonstrated that ether stimulates directly 
the hypothalamic CRH secretion [28,29], because it proved effective 
despite complete hypothalamic deafferentation [50-52] or olfactory 
bulbectomy [53]. Therefore, haloperidol apparently interrupts centrally, 
in the hypothalamus the feedback regulation exerted by presynaptic 
D2 autoreceptors on dopamine synthesis and release. Further, at 
the same time, it may also disinhibit the action of D2/D3 receptors 
on postsynaptic adenyl-cyclase which, in turn, increase the level of 
cAMP [1,46]. Since, in our studies, the CRH antagonist attenuated the 
haloperidol-evoked response it seems that this effect, to some extent, 

Figure 1. Effects of the D1 antagonist, SCH-23390, and D2 antagonist, haloperidol, on 
ether stress evoked corticosterone release. Data are expressed as means ± S.E.M. Numbers 
within bars are the numbers of animals used. Symbols: *=p<0.05 vs. saline, **=P<0.01 vs. 
saline, +=p<0.01 ether vs. control. 

Figure 2. Effects of haloperidol on ACTH and corticosterone release. Data are expressed as 
means ± S.E.M. Numbers within bars are the numbers of animals used. Symbols: *=p<0.01 
vs. saline; +=p<0.05 vs. saline.

Figure 3. Inhibitory action of the CRH antagonist, α-helical CRH9-41, pretreatment on 
haloperidol-evoked corticosterone release. Data are expressed as means ± S.E.M. Numbers 
within bars are the numbers of animals used. Symbols: *=p<0.01 for CRH antagonist vs. 
saline; +=p<0.05 for haloperidol vs. saline.
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is independent of the direct action of dopaminergic neurons of the 
arcuate nucleus on POMC-positive cells of the pituitary. Further, not 
completely excluding the potential influence of some regions of the 
mesolimbic system, such as the nucleus accumbens [49], we propose 
that it is the dopaminergic and peptidergic inputs from the arcuate 
nucleus [54] that may play significant roles in the central processing 
of ether-induced HPA activation [28,29]. This way, our experiments 
provided in vivo, functional evidence for D2 mediated disinhibition 
of CRH and ACTH secretion. This has not been previously clarified, 
unlike the dopaminergic control of prolactin secretion, which is also 
inhibited by a D2 receptor pathway [55,56]. Nevertheless, our findings 
may reflect ether-challenge specific features of HPA signaling.

Therefore, decreased activity in the dopaminergic system may lead 
to a two-pronged endocrine response in the form of CRH and prolactin 
secretion. This may favor the integrity of the individual (HPA response, 
self-maintenance) at the expense of inhibition of gonadotropins 
(reproduction) by prolactin [56] in a stressful environment. Perhaps 
kisspeptin and other RFamides may play a crucial, integrative role 
in these processes influencing dopamine and then, in turn, CRH 
and prolactin release [57-60]. Moreover, dopamine receptor down-
regulation, and consequent hyperprolactinemia may also aggravate 
HPA stimulation [23].

Nonetheless, further pharmacodynamic studies would be necessary 
to clarify this bewilderingly complex picture and the individual 
contributions of hypothalamically expressed D2 and D4 receptors. 
Moreover, serotonin and noradrenaline and those pharmacologic 
agents, which influence their levels (monoamine oxidase inhibitors, 
tricyclics and selective serotonin reuptake inhibitors), play equally 
ambiguous [9,61,62] roles in the regulation of the HPA axis and mood 
disorders [61-64]. To clarify the mediation of their activity, and to 
shed light on their similarly unpredictable and dangerous side-effect 
spectrum [64,65] further studies are also required.
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