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Abstract: Allograft ischemia during liver transplantation (LT) adversely affects the function of mito-
chondria, resulting in impairment of oxidative phosphorylation and compromised post-transplant
recovery of the affected organ. Several preservation methods have been developed to improve donor
organ quality; however, their effects on mitochondrial functions have not yet been compared. This
study aimed to summarize the available data on mitochondrial effects of graft preservation methods
in preclinical models of LT. Furthermore, a network meta-analysis was conducted to determine if any
of these treatments provide a superior benefit, suggesting that they might be used on humans. A
systematic search was conducted using electronic databases (EMBASE, MEDLINE (via PubMed), the
Cochrane Central Register of Controlled Trials (CENTRAL) and Web of Science) for controlled animal
studies using preservation methods for LT. The ATP content of the graft was the primary outcome, as
this is an indicator overall mitochondrial function. Secondary outcomes were the respiratory activity
of mitochondrial complexes, cytochrome c and aspartate aminotransferase (ALT) release. Both a
random-effects model and the SYRCLE risk of bias analysis for animal studies were used. After a
comprehensive search of the databases, 25 studies were enrolled in the analysis. Treatments that had
the most significant protective effect on ATP content included hypothermic and subnormothermic
machine perfusion (HMP and SNMP) (MD = −1.0, 95% CI: (−2.3, 0.3) and MD = −1.1, 95% CI:
(−3.2, 1.02)), while the effects of warm ischemia (WI) without cold storage (WI) and normother-
mic machine perfusion (NMP) were less pronounced (MD = −1.8, 95% CI: (−2.9, −0.7) and MD
= −2.1 MD; CI: (−4.6; 0.4)). The subgroup of static cold storage (SCS) with shorter preservation
time (< 12 h) yielded better results than SCS ≥ 12 h, NMP and WI, in terms of ATP preservation
and the respiratory capacity of complexes. HMP and SNMP stand out in terms of mitochondrial
protection when compared to other treatments for LT in animals. The shorter storage time at lower
temperatures, together with the dynamic preservation, provided superior protection for the grafts in
terms of mitochondrial function. Additional clinical studies on human patients including marginal
donors and longer ischemia times are needed to confirm any superiority of preservation methods
with respect to mitochondrial function.

Keywords: liver transplantation; graft preservation; mitochondrial functions; animal studies;
meta-analysis

1. Introduction
1.1. Background

Liver transplantation (LT) is the treatment of choice for patients with end-stage liver
disease. From the first human LT performed by Thomas Starzl in 1963, advances in surgical
technology and effective immunosuppressive agents have increased the five-year survival
of transplanted patients by over 75% [1]. The success of LT, however, is limited by a
shortage of donor organs compared to waiting list demand. Efforts to expand the donor
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pool have included the use of suboptimal, so-called extended criteria donor (ECD) grafts,
which were previously considered unsuitable for transplantation, allowing the use of
organs after prolonged cold ischemia times (CIT), inclusion of older donors, donation after
cardiac death (DCD) or hepatic steatosis [2] (Table 1).

Table 1. Predictors of outcome in extended criteria donor (ECD) livers.

Parameters Variables

Donor characteristics

Age >65 years
ICU stay with ventilation >7 days

BMI >30 kg/m2

DCD

Laboratory parameters

Serum Na+ >165 mmol/L
Serum bilirubin >3 mg/dL

ALT/GPT >105 U/L
AST/GOT >90 U/L

Histology Steatosis of the liver 30–60% (macrosteatosis)
Preservation time CIT >10.5–14 h

Risk factors associated with higher postoperative complications, early allograft dysfunction (EAD) and primary graft non-function (PNF)
refer to advanced donor age (over 65 years), steatosis of the liver (30–60% macrosteatosis), prolonged ICU stay with ventilation (over 7
days), body mass index (BMI) over 30 kg/m2, serum sodium (Na+) levels over 165 mmol/L, elevated alanine aminotransferase (ALT) and
aspartate aminotransferase (AST) levels, increased serum bilirubin, donation after cardiac death (DCD) and long cold ischemic time (CIT)
of procured graft.

The subsequent increase in the incidence of primary graft non-function (PNF), early
allograft dysfunction (EAD) and biliary complications all required the modification of
technical protocols [3]. Alternative preservation methods attempt to reduce graft dam-
age via two main approaches: (1) maintaining organ perfusion after graft procurement
using pulsatile machine perfusion (MP) with fluids and/or gas, and (2) modifying the
temperature of the perfusate.

1.2. Organ Preservation Techniques

The principle of simple/static cold storage (SCS) was first introduced for kidney
grafts by Geoffrey Collins in 1969 and became the gold standard storage option for organ
transplantation [4]. SCS remained the clinical standard of care for liver graft preservation,
using modern preservation solutions, including the University of Wisconsin (UW), and the
Histidine-Tryptophan-Ketoglutarate (HTK) and Celsior solutions on ice [5]. The purpose
of SCS is to lower metabolic activity and oxygen demand before transplantation, but tissue
injury is still present, especially with ECD grafts or prolonged CIT (Figure 1).

At present the accepted CIT for clinical LT is 12 h; however, CIT ≥ 4 h is associated
with considerably lower graft survival than CIT < 4 h [6]. Negative outcomes include
increased risk of PNF, graft failure and patient death, along with reduced long-term graft
survival. Hypothermic machine perfusion (HMP), where the donor organ is continuously
perfused with preservation solution, was introduced in an attempt to limit these undesir-
able consequences [7]. While the increased distribution of nutrients and the clearance of
toxic metabolites with HMP provide certain benefits, the results of studies comparing HMP
and SCS are controversial [8]. Additional shortcomings of HMP, such as higher expenses
and complexity make this approach less feasible than SCS. As a further step to preventing
the negative effects of cold-induced injuries, organ preservation at a higher preservation
temperature—closer to that of physiological conditions—was developed. The current
technique is perfusion of the graft with oxygenated autologous blood, erythrocyte-based
solutions, or a cellular solution at normothermic (35–38 ◦C) (NMP) or subnormothermic
(25–34 ◦C) (SMP) temperatures [8]. Several studies have shown that NMP improves out-
comes in terms of lower early allograft dysfunction (EAD) and aspartate transaminase
(AST) levels as compared to SCS [9–12]. However, problems with NMP are numerous,
including technical complexity, and economic and logistical problems, as no standard
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perfusion apparatus or protocol exists as of today. Due to these challenges, development of
simpler alternative techniques is of great clinical interest.
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Figure 1. Comparison of different preservation methods. Upon transplantation, the graft undergoes consecutive stages of 

ischemia-reperfusion (IR). WI: liver grafts are exposed to warm ischemia to simulate donation after circulatory death (DCD); 

SCS: grafts after procurement from donors are exposed to cold ischemia during storage and organ transport. Dynamic preser-

vation maintains organ perfusion using pulsatile machine perfusion (MP). MP can be divided into subgroups according to 

the temperature of the perfusate as normothermic machine perfusion (NMP), subnormothermic machine perfusion (SNMP) 

and hypothermic machine perfusion (HMP). The different colors of the arrows represent the temperature of the environment. 

Red indicates a 32–37 °C environment, blue demonstrates 0–4 °C, and yellow represents 20–30 °C. 

At present the accepted CIT for clinical LT is 12 h; however, CIT ≥ 4 h is associated 

with considerably lower graft survival than CIT < 4 h [6]. Negative outcomes include in-

creased risk of PNF, graft failure and patient death, along with reduced long-term graft 

survival. Hypothermic machine perfusion (HMP), where the donor organ is continuously 

perfused with preservation solution, was introduced in an attempt to limit these undesir-

able consequences [7]. While the increased distribution of nutrients and the clearance of 

toxic metabolites with HMP provide certain benefits, the results of studies comparing 

HMP and SCS are controversial [8]. Additional shortcomings of HMP, such as higher ex-

penses and complexity make this approach less feasible than SCS. As a further step to 

preventing the negative effects of cold-induced injuries, organ preservation at a higher 

preservation temperature—closer to that of physiological conditions—was developed. 

The current technique is perfusion of the graft with oxygenated autologous blood, eryth-

rocyte-based solutions, or a cellular solution at normothermic (35–38 °C) (NMP) or sub-

normothermic (25–34 °C) (SMP) temperatures [8]. Several studies have shown that NMP 

improves outcomes in terms of lower early allograft dysfunction (EAD) and aspartate 

transaminase (AST) levels as compared to SCS [9–12]. However, problems with NMP are 

numerous, including technical complexity, and economic and logistical problems, as no 

standard perfusion apparatus or protocol exists as of today. Due to these challenges, de-

velopment of simpler alternative techniques is of great clinical interest. 
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Figure 1. Comparison of different preservation methods. Upon transplantation, the graft undergoes consecutive stages of
ischemia-reperfusion (IR). WI: liver grafts are exposed to warm ischemia to simulate donation after circulatory death (DCD);
SCS: grafts after procurement from donors are exposed to cold ischemia during storage and organ transport. Dynamic
preservation maintains organ perfusion using pulsatile machine perfusion (MP). MP can be divided into subgroups
according to the temperature of the perfusate as normothermic machine perfusion (NMP), subnormothermic machine
perfusion (SNMP) and hypothermic machine perfusion (HMP). The different colors of the arrows represent the temperature
of the environment. Red indicates a 32–37 ◦C environment, blue demonstrates 0–4 ◦C, and yellow represents 20–30 ◦C.

1.3. Mechanism of IR-Induced Mitochondrial Dysfunction

Protection of mitochondrial functions should be considered a main strategy for graft
preservation. Mitochondria are sites of high-energy phosphate synthesis and calcium stores,
and activate signaling pathways that impact cell fate directly. We, and others, have shown
that hepatic IR induces damage to mitochondrial structure and function, which contributes
to poor outcomes upon transplantation [13–15]. The mechanism of mitochondrial metabolic
changes upon ischemia is relatively well-known, the interruption of blood flow and the
concomitant hypoxia reduces mitochondrial electron transport chain (ETC) activity, and
cells switch to anaerobic glycolysis. In the absence of oxygen, the highly reduced CoQ
pool passes electrons onto fumarate by reversal of succinate dehydrogenase (respiratory
complex II), leading to succinate accumulation; a metabolic marker of ischemia [16–18]
(Figure 2).

The lack of ATP production by oxidative phosphorylation also inhibits the activity
of ATP-dependent membrane Na+/K+ ATPases. The increase in extramitochondrial Na+

impairs other transporters, including Na+/Ca2+ efflux through the plasma as well as mito-
chondrial membranes. The accumulation of Ca2+ in the cytoplasm, and eventually in the
mitochondrial matrix, has been shown to increase mitochondrial permeability, contributing
to the production of reactive oxygen species (ROS), both of which are exacerbated during
reperfusion [17]. Upon reperfusion, the leaked electrons reduce the newly present oxygen
due to impaired ETC activity, thus leading to an excess of ROS that cannot be eliminated.
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Therefore, the ROS-mediated damage to ETC complexes leads to more pronounced ATP
depletion, which can ultimately cause cell death [18]. ROS also damage mitochondrial
membrane lipids, causing the opening of mitochondrial permeability transition pores
(MPTPs) along with Ca2+-induced mitochondrial swelling. Due to increased mitochondrial
membrane permeability, mediators of the intrinsic apoptotic pathway are released into the
cytoplasm, thus, initiating apoptosis.
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in impairment of oxidative phosphorylation and the production of reactive oxygen species (ROS), such as superoxide radicals
(O2
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flux. As regards downstream changes, inhibition of ATP-dependent Ca2+ channels further increases intracellular Ca2+ levels
and causes membrane damage and cell death in conjunction with ROS.

1.4. The Impact of Mitochondrial Damage on Transplantation

The role of IR-induced mitochondrial damage as one of the key contributors in allograft
functions is increasingly recognized [19–21]. Our research group previously demonstrated
that SCS of heart grafts resulted in decreased mitochondrial oxidative phosphorylation
capacity and cytochrome c release, together with increased transcription of proapoptotic
proteins [14]. These changes were associated with a parallel decrease in myocardial con-
tractility. Mitochondrial gene expression changes in cardiac and renal transplantation
recipients further support these findings in association with allograft injury and rejec-
tion [22,23]. Disturbances of mitochondrial oxidative pathways are demonstrated during
the acute rejection process, and there is good evidence for decreased glycolytic enzyme
activity in the graft [24]. When the post-transplant mitochondrial function in the renal
and heart biopsies were evaluated by high-resolution respirometry, the results showed
declined oxidative capacity [14,25,26]. The role of cold storage in mitochondrial damage
has also been demonstrated in SCS renal grafts; without transplantation, reduced complex
I, II and III activities were demonstrated along with decreased expression of the proteins
controlling mitochondrial fusion and fission [26,27].

Unlike cardiac or renal transplantation, human studies on mitochondrial function in
LT are very scarce. In aerobic conditions, the liver derives its energy primarily from the
mitochondria, which constitute 20–25% of the total hepatic cell volume with 1000 to 2000



Int. J. Mol. Sci. 2021, 22, 2816 5 of 17

mitochondria per cell; optimizing hepatic metabolic function before LT is, therefore, an
important task because this factor is closely linked to post-transplant graft survival and
positive outcomes [28]. Nevertheless, no systematic analysis of mitochondrial function
in humans exists. So far, only animal models of LT have provided data on mitochondrial
metabolic changes, respiratory activity of mitochondrial complexes or the release of pro-
apoptotic proteins. Furthermore, there is no clear-cut evidence for optimal preservation
methods, and a comprehensive quantitative analysis is also missing in this respect.

1.5. Aims

The purpose of this review is to explore the impact of different liver preservation
techniques on mitochondrial functional changes, which may contribute to the outcome of
LT. We will discuss the role of temperature during the storage of the graft and the most
frequent clinical applications of machine perfusion (MP) in animal experiments. Animal
models of LT play a crucial role in all stages of developing future clinical strategies and
therapeutic interventions for human health and diseases, since a wide range of experimental
data can be safely obtained from them. Therefore, we will provide a summary of current
relevant animal studies in the field, with a special focus on mitochondrial functional
parameters. The primary outcome of our study is to evaluate the ATP content of liver
allografts, by which the efficiency of oxidative phosphorylation can be evaluated, and
this includes overall mitochondrial bioenergetics as well. Other mitochondrial functional
parameters, such as mitochondrial respiratory complex (I–V) activities, cytochrome c
and AST release and mitochondrial apoptosis markers, will also be evaluated as further
outcomes.

2. Results
2.1. Eligible Studies and Study Characteristics

A total of 4598 records were identified through our search strategy in January 2021.
After excluding duplicates, the remaining 2508 articles were screened by title. A total of
201 abstracts were assessed, and 150 publications were enrolled in the final, comprehensive
full-text analysis. After this, 25 records ultimately met our eligibility criteria. Table 2 shows
a summary of the included studies. The flowchart of study enrolment is shown in Figure 3.

Table 2. Characteristics of included studies (RCR: respiratory control ratios; TAN: total adenine nucleotid; GDH: glutamate
dehydrogenase; MDA: malondialdehyde; LDH: lactate dehydrogenase).

Characteristic of Studies Outcome Parameters

Author Year Country Species Preservation
Methods

Number of
Cases

Primary Secondary

ATP
Other

Mitochondrial
Parameters

Other liver
Parameters

Baumann [29] 1989 Netherlands rat WI ND + RCR, Oxphos,
Leak

Morimoto [30] 1991 Germany rat SCS 6 + RCR, Oxphos,
Leak TAN,

Tanaka [31] 1990 Japan rat SCS,WI 5,5 + RCR, Cytochrome
C, Oxphos TAN

Furuyashiki [32] 1994 Japan rat SCS 5 +
Kusumoto [33] 1995 Germany rat SCS 6 + TAN, LDH

Mitchell [34] 1996 Canada rat SCS 4 +
Neveux [35] 2000 France rat SCS,HMP,SNMP ND + AST, ALT, LDH
Minor [36] 2000 Germany rat SCS 5 ALT, LDH

Jassem [37] 2006 Italy rat SCS 6 Cytochrome C, Hy-
drogenperoxide
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Table 2. Cont.

Characteristic of Studies Outcome Parameters

Author Year Country Species Preservation
Methods

Number of
Cases

Primary Secondary

ATP
Other

Mitochondrial
Parameters

Other liver
Parameters

Lee [38] 2005 South
Korea rat WI 8 + GDH, Hydrogen-

peroxide
MDA, TAN,
AST, ALT

Dutkowski [39] 2006 Switzerland rat SCS, HMP 8,12 Cytochrome C,
Caspase 3 MDA, LDH

Bessems [40] 2007 Netherlands rat SCS,HMP 7,7 + AST, LDH
Hata [41] 2007 Germany rat SCS 7 + GDH AST, ALT, LDH
Jain [42] 2008 USA rat SCS,HMP 5,5 + ALT, LDH

Figueira [43] 2009 Brazil rat WI 8 RCR, Oxphos AST, ALT
Rougemont [44] 2009 Switzerland pig SCS,HMP 6,6 + AST, ALT

Ferringo [45] 2011 Italy rat SCS,SNMP 5,5 + GDH AST, ALT, LDH
Sgrabi [46] 2011 Italy rat SCS ND + Oxphos, Leak

Srinivasan [47] 2012 Japan rat SCS 5 GDH MDA, AST,
ALT

Schegel [48] 2013 Switzerland pig SCS,HMP 8,8 Cytochrome C AST,
Hoyer [10] 2016 Germany pig SCS,SNMP,NMP 5,6,5 + TAN,
Merlen [49] 2018 Canada rat WI 5 + Caspase 3 AST, ALT
Martins [16] 2019 Portugal rat SCS 4 + RCR

Kanazawa [50] 2019 Japan pig SCS,HMP,SNMP 5,5,5 + AST, LDH

Slim [51] 2020 Tunisia rat SCS 6 Caspase 3, GDH MDA, AST,
ALT

In order to reduce any bias originating from the study protocols of the included
studies, we excluded machine perfusion (MP) groups using non-oxygenated perfusion
solutions or protocols where the length of perfusion was shorter than one hour. We only
included MP groups where the grafts were perfused for the entire duration of preservation
or where MP was preceded by static cold storage (SCS). We excluded warm ischemia (WI)
groups with a warm ischemic time longer than 90 min. We also excluded all groups (1)
which compared a modified version of a preservation solution to the standard solution, (2)
which were preconditioned with ischemia and (3) which received some form of treatment
prior to or during preservation.

2.2. Study Bias

We used the Cochrane risk-of-bias analysis to assess the risk of bias for each study
(Figure 4).

2.3. Findings of Meta-Analysis

A meta-regression analysis of tissue ATP content (Figure 5) showed a significant
difference (p < 0.05) in the SCS < 12 h (MD = −1.51; 95% CI = −2.92 to −0.09), SCS ≥ 12 h
(MD = −3.09; 95% CI = −4.13 to −2.06) and WI (MD = −1.77; 95% CI = −2.88 to −0.65)
groups compared to the control group. There was, however, no significant difference in the
HMP (p = 0.13; MD = −1.00; 95% CI = −2.3 to 0.3), NMP (p = 0.097; MD = −2.09; 95% CI =
−4.57 to 0.38) and subnormothermic machine perfusion (SNMP) (p = 0.308; MD = −1.10;
95% CI = −3.22 to 1.02) groups.
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An identical analysis of CI-linked mitochondrial respiratory activity revealed a signifi-
cant decrease (p < 0.05) in respiratory control ratio (RCR) (MD = −4.24; 95% CI = −7.79 to
−0.69) and OxPhos activity (MD = −13.10; 95% CI = −15.22 to −10.98) in the WI group,
but not in Leak state (p = 0.823; MD = −0.1; 95% CI = −0.98 to 0.78) (Figure 6). In the SCS
≥ 12 h group, there was a significant increase (p < 0.05) in Leak state (MD = −1.00; 95%
CI = 0.62 to 1.38), while RCR (p = 0.492; MD = −0.89; 95% CI = −3.44 to 1.65) and OxPhos
activity (p = 0.089; MD = −0.1; 95% CI = −0.98 to 0.78) were not significantly different
compared to the control group. There was no significant difference in RCR (p = 0.927; MD
= −0.16; 95% CI = −3.28 to 3.6), OxPhos activity (p = 0.443; MD = 0.41; 95% CI = −0.64 to
1.46) or Leak state (p = 0.566; MD = 0.7; 95% CI = −0.17 to 0.31) in the SCS < 12 h group.

Analysis of cellular damage markers revealed a significant increase (p < 0.05) in AST
levels in the WI group (MD = 2943.7; 95% CI = 831.55 to 5055.85), but no significant
difference was observed in SCS ≥ 12 h (p = 0.793; MD = 480.0; 95% CI = −3108.8 to
4068.8) and HMP (p = 0.869; MD = 426.5; 95% CI = −4643.43 to 5496.43) groups (Figure
7). Cytochrome c content showed no significant difference in SCS < 12 h (p = 0.736; MD =
−0.01; 95% CI = −0.09 to 0.06) or SCS ≥ 12 h (p = 0.564; MD = −0.02; 95% CI = −0.07 to
0.04) groups compared to the control group.
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3. Discussion

This study reviews the latest preclinical evidence on ischemia/reperfusion (I/R) injury
in LT—which can disrupt the normal activity of mitochondria in the hepatic parenchyma—
and graft preservation methods, which have an impact on I/R injury. A network meta-
analysis comparison provided good evidence that the present gold standard preservation,
SCS, is outperformed by SNHMP and HMP in providing good functional outcomes with
regard to ATP content. Additionally, WI alone, without cold storage, displayed worse
results than SCS, suggesting the protective role of cooling in mitochondrial metabolism.
According to the results, prolonged cold ischemia in SCS ≥ 12 h deteriorated mitochondrial
leak respiration and ATP content of the grafts. Lower AST levels in HMP revealed that
preservation of mitochondrial respiration enhances functional recovery and decreases
cellular necrosis of the graft.

3.1. Principal Findings and Comparison with Other Studies

Until now, no systematic review has addressed the role of mitochondrial function
in LT. All the published studies that have compared the preservation techniques of liver
grafts mainly focused on the feasibility and safety of the technology investigating clinical
outcomes such as EAD, PNF and ischemic-type biliary lesion (ITBL) [52–58].

The first clinical study that used HMP prior to transplantation was carried out by
Guarrera et al. in a non-actively oxygenated model of HMP [52]. Since then, the concept
of hypothermic oxygenated machine perfusion (HOPE), with active oxygenation of the
perfusate and dual hypothermic oxygenated machine perfusion (D-HOPE) was developed,
with beneficial effects on post-transplant biliary complications, particularly ITBL [53,54].
Subsequently, an increasing number of comparative studies on MP and cold storage (CS)
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have been reported; however, the benefits on outcomes were inconclusive without pooled
analyses. Animal studies are more comparable, and two meta-analyses of animal studies
concluded that MP preservation is superior to SCS in terms of reducing hepatocellular
injury and biliary injury [55,56]. The largest clinical trial involving NMP as a preservation
strategy was recently published by Nasralla et al. It found that the 30-day graft survival
of NMP grafts was similar to that of SCS grafts and the AST level within the first seven
post-operative days was lower [57]. A recent study comparing HMP and NMP with SCS,
revealed that HMP but not NMP produced significant protective effects on EAD and biliary
complications as compared to SCS [58].

Several studies found that the ATP content of the graft is predictive of post-transplant
outcomes, so we chose this as the primary outcome of our study [16,59–63]. This meta-
analysis demonstrated the superiority of HMP and SNMP over SCS in preserving ATP
levels. This finding is consistent with previous studies, where ATP was also a marker
of the viability of MP-treated grafts [53,54,62–64]. Another result of this meta-analysis is
that SCS < 12 h demonstrated better results in terms of ATP preservation than WI grafts.
Several studies showed differences in the cellular and molecular mechanisms between
cold and WI [65,66]. At the level of the graft, hepatocytes were mainly affected during WI,
while hepatic sinusoidal endothelial cells were more susceptible to cold ischemia [67]. The
background of the beneficial metabolic effects of cold ischemia is that it (i) preserves the
ATP/ADP ratio and adenine nucleotides better, (ii) inhibits a high NADH/NAD+ ratio
and (iii) avoids excessive succinate accumulation [20] (Figure 8).
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Figure 8. Intracellular changes in warm and cold ischemia. Warm ischemia is mainly characterized by an accumulation of
succinate and NADH, while an increase in Ca2+ levels is more prominent in cold ischemia. Mitochondrial ATP depletion
is more significant in warm ischemia, causing severe metabolic changes. Production of reactive oxygen species can be
observed in both types of ischemia.

The decisive role of succinate in warm I/R injury was demonstrated in an animal
model, where succinate alone was sufficient to cause extensive damage to the graft, inde-
pendently of other effects of WI [21].

Our meta-analysis found significant differences when comparing mitochondrial respi-
ration under cold and warm conditions of graft preservation. The maximal ADP-stimulated
O2 consumption rate (OxPhos, state 3) in the graft, which indicates the capacity to pro-
duce ATP through the oxidative phosphorylation pathway, was severely damaged in WI
as compared to SCS. The RCR, which detects any changes in oxidative phosphorylation
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capacity related to tightness of mitochondrial coupling, was also affected. This is consistent
with findings from previous reviews and studies [64]. Such remarkable differences in
mitochondrial electron transport are related to a unique mitochondrial response under
cold conditions. Hypothermia slows mitochondrial activity, which evolves with decreased
proton motive force or with a delayed transition of the de-activated (D) from complex I to
its active form [67,68] (Figure 9).
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Figure 9. Changes in mitochondrial functions in warm and cold ischemia. Warm and cold ischemic changes are shown
on the left and right side of the figure, respectively. Ischemia impairs complex V (ATP synthase). This indicates that
electron transport is not coupled to ATP synthesis, and was decreased in response to prolonged preservation (SCS ≥ 12
h). The electron leak at mitochondrial complex I at the onset of reperfusion is the main source of oxidative stress [17]. The
mechanism is initiated by the ischemic accumulation of the tricarboxylic acid (TCA) cycle metabolite succinate, which fuels
the reverse electron transfer (RET) toward complex I, thereby leading to the production of reactive oxygen species (ROS) [14].
These findings raise the possibility that impairment of mitochondrial function may be an underestimated contributor to the
compromised liver graft function after transplantation.

3.2. Strengths and Limitations

We made an effort to provide objective results. First, the study searched four main
databases, and two investigators examined the experiments to make certain that all of
the relevant studies were included in the research. Secondly, the SYRCLE Risk of Bias
analysis was used independently by two investigators to reduce bias in assessing the
methodological quality of the studies, and they ultimately summarized the key results.
This method has been adjusted for particular aspects of bias that play a role in animal
intervention studies and a low bias of the included studies was revealed. Thirdly, two
investigators implemented the extracted data to ensure that all of the outcomes were
accurately extracted and synthesized from the reported experiments.

Our study has limitations, some of them originate in the method that we used for the
analysis. We employed a network meta-analysis, which is widely used for aggregating
results of clinical trials to make direct and indirect inferences about treatment effects. In
contrast to traditional meta-analyses, which aggregate studies on the same study question,
network meta-analyses also involve studies on different study questions which are linked
by pairwise same-treatment groups [69]. Others share the limitations of the original studies.
This study aimed to investigate the mitochondrial effects of different graft preservation
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techniques in liver transplantation; however, other mechanisms might exist during the
complex process of the graft recovery. Other predictors of poor outcome, such as surgery
time, differences in the operative procedure, the effects of different preservation solutions
and application of scavengers, were not considered in this meta-analysis [70,71]. Storage
time is often cited in the literature as a strong predictor, but we were only able to compare
the effect of shorter (<12 h) and longer (≥12 h) storage times within the SCS group.
Furthermore, none of the studies mentioned the sample size calculation process, which is
necessary to achieve scientific objectives without missing biologically important effects.

3.3. Implications for Practice and Conclusion

To date, human clinical results have strengthened the association between distur-
bances in mitochondrial bioenergetics and the acute rejection process, thus, raising the
possibility of establishing a rejection score containing data predictive of mitochondrial
function [14–20]. The current state-of-the-art method for diagnosis of cellular rejection is
performed by core needle biopsy and is analyzed under a light microscope using the grad-
ing scale of the Banff Schema, which is added to a final rejection index (RAI) [72]. While
the Banff Schema indicates the presence and severity of acute cellular rejection, the RAI
score has been criticized for showing an inadequate correlation with response to therapy
or graft survival [73]. The correlation of graft performance and mitochondrial functional
analyses of the OxPhos and ETC systems in the included experimental studies indicates
the potential of high-resolution respirometry for quantitative assessment of allograft injury
upon transplantation, providing a basis for diagnostic approaches and evaluation of im-
proved preservation techniques for liver grafts [16,46]. In conclusion, our meta-analysis
reveals that dynamic preservation of grafts with HMP and SNMP is superior to SCS with
respect to protection of mitochondria. As presented, cold temperature appears to benefit
mitochondrial metabolism; however, this protection disappears in prolonged storage (SCS
≥ 12 h). Consequently, a combination of dynamic preservation and a shorter storage time
at low temperatures could potentially provide better mitochondrial protection in LT. In
order to validate this, clinical studies on human patients are required and warranted in the
future.

4. Materials and Methods

This study is reported in accordance with the PRISMA 2009 (Preferred Reporting
Items in Systematic Reviews and Meta-Analysis) statement (Supplementary Table S1). The
review protocol was registered with the National Institute for Health Research PROSPERO
system under registration number 224134.

4.1. Search

The literature search was performed with a systematic search of the EMBASE, MED-
LINE (via PubMed), Cochrane Controlled Register of Trials (CENTRAL) and Web of Science
databases. No language limitation was applied. The date of the final literature search was
3 January 2021 (Supplementary Table S2).

4.2. Study Selection

When the duplicates were removed with reference manager software (EndNote X7),
title and abstract screenings were performed on the remaining studies by one of the authors
(T.H). After the selection, the full texts of potentially eligible records were obtained. Any
questions in data extraction were settled by discussion with a second author.

4.3. Selection and Eligibility Criteria

Inclusion criteria specified any piece of literature comparing the preservation method,
temperature and cellular changes (mitochondrial dysfunction and/or ATP level) that
contribute to graft survival. Studies were excluded if they (i) did not include liver trans-
plantations, (ii) liver enzymes, (iii) any information about mitochondrial changes, or (iii)
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did not report clinically relevant outcomes. The potential studies were identified using the
previous search strategy. One author (T.H.) reviewed all the studies, and controversies were
resolved by discussion with another author (P.H.). Full-text versions of potentially relevant
studies were evaluated for inclusion using an eligibility pro forma screening document
based on pre-specified criteria. The articles included the information obtained, the type of
animal model, the outcome of the liver transplantation and the severity of mitochondrial
damage.

4.4. Risk of Bias

We provide a Risk of Bias analysis for animal intervention studies (SYRCLE Risk of
Bias analysis). This analysis is based on the Cochrane Risk of Bias analysis and has been
adjusted for aspects of bias that play a specific role in animal intervention studies.

4.5. Outcomes

The ATP content of the graft was the primary outcome, as it indicates overall mito-
chondrial function. Secondary outcomes were the respiratory activity of mitochondrial
complexes at different metabolic states of the mitochondria (OxPhos, Leak and RCR),
cytochrome c and aminotransferase (AST) release. The outcomes of preservation methods
(SCS, HMP, SNMP and MP) were compared with the control grafts of studies showing
normal liver values without ischemic damage or with negligible ischemic damage. These
grafts are relevant models for the clinical settings of living donor liver transplantation
(LDLT). The grafts that underwent only WI without cold storage were considered as a
separate group to investigate the effects of warm ischemic damage alone. This group
thereby represents the WI damage of DCD grafts, which can be further superimposed by
the cold ischemia damage during storage of the graft.

4.6. Statistical Analysis

The network meta-analysis was conducted within the frequentist framework using
the R package netmeta [74], which is a generalization of the pairwise meta-analysis that
has been found to be equivalent to the most frequent approach used for network meta-
analyses [75]. Random effect analysis was used for all comparisons. The input data for
netmeta was the mean difference between the treatment arms and the corresponding
standard errors (SE). Where the standard error of the difference was not explicitly given, it
was calculated from the 95% confidence interval assuming a normal distribution.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/6/2816/s1. Table S1: PRISMA Checklist, Table S2: Search strategy.
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