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MINIMAL ENERGY POINT SYSTEMS ON THE UNIT CIRCLE AND
THE REAL LINE

MARCELL GAAL*, BELA NAGY', ZSUZSANNA NAGY-CSIHA!, AND SZILARD
GY. REVESZ*

Abstract.

In this paper, we investigate discrete logarithmic energy problems in the unit circle. We study
the equilibrium configuration of n electrons and n — 1 pairs of external protons of charge +1/2. It
is shown that all the critical points of the discrete logarithmic energy are global minima, and they
are the solutions of certain equations involving Blaschke products. As a nontrivial application, we
refine a recent result of Simanek, namely, we prove that any configuration of n electrons in the unit
circle is in stable equilibrium (that is, they are not just critical points but are of minimal energy)
with respect to an external field generated by n — 1 pairs of protons.
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1. Introduction and preliminaries. The motivation of this work comes from
certain equilibrium questions which, in turn, have roots in rational orthogonal sys-
tems. Exploring the connection between critical points of orthogonal polynomials and
equilibrium points goes back to Stieltjes. For more on this connection, see, e.g., [9],
[10] and the references therein.

Rational orthogonal systems are widely used on the area of signal processing,
and also on the field of system and control theory. These systems consist of rational
functions with poles located outside the closed unit disk. A wide class of rational
orthogonal systems is the so-called Malmquist-Takenaka system from which one can
recover the usual trigonometric system, the Laguerre system and the Kautz system
as well. In earlier works, in analogy with the discrete Fourier transform, a discretized
version of the Malmquist-Takenaka system was introduced.

In signal processing and system identification (e.g. mechanical systems related
to control theory) the rational orthogonal bases and Malmquist—Takenaka systems
(e.g. discrete Laguerre and Kautz systems) are more efficient than the trigonometric
system in the determination of the transfer functions. There are lots of results in this
field, see e.g. [3] and the references therein, or [13] and [7].

In connection with potential theory, it was studied (e.g. in [14]) whether the
discretization nodes satisfy certain equilibrium conditions, namely, whether they arise
from critical points of a logarithmic potential energy. Such discretizations appear
naturally, see e.g. [1] by Bultheel et al or [5] by Golinskii. The question whether the
critical points are minima was proposed by Pap and Schipp [14, 15]. In this paper,
we follow this line of research. After this introduction and statements of results,
we study on the unit circle a quite general logarithmic energy which is determined
by a signed measure, and prove that after inverse Cayley transform the transformed
energy on the real line differs only in an additive constant. Next using a recent result
of Semmler and Wegert [16] we give an affirmative answer to the question posed by
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Pap and Schipp concerning the critical points. Finally, as an application, we present
a refinement of a result of Simanek [18].

First let us start with some notation and essential background material. We
use the standard notations D := {z € C: |z| < 1}, dD := {z € C: |z| = 1},
D*:={z€C: |z| > 1}, T:= R/27Z and ¢* := 1/{ (¢ # 0). We also use Blaschke
products, defined for aq,...,a, € D and x, |x| =1 as

. zZ — Qg
1.1 B(z) := .
(1) ()= x ] T
k=1
In particular, when the leading coefficient x = 1, B(z) is called monic Blaschke

product.

We assume B’(0) # 0. In this case the well-known Walsh’ Blaschke theorem (see
for instance [17], p. 377) says that B’(z) = 0 has 2n — 2 (not necessarily different)
solutions, where n — 1 of them (counted with multiplicites) are in the unit disk, and
if ¢ € D\ {0} satisfies B'(¢) = 0, then ¢* := 1/ is also a critical point, B'(¢*) = 0,
with the same multiplicity as ¢. It also follows that then B’|gp # 0.

Next, we investigate the structure of solutions of the equation

(1.2) B(e) = ¢,

where B(.) is a Blaschke product. It is standard to see that S'log B(e®) can be defined
continuously and it is strictly increasing on [0, 27] from

a:=SlogB(1) =argB(1), «€|—-m,m)

to a + 2nmw, see, e.g. [17], pp. 373-374. Therefore (1.2) has n different solutions in
t € 0,2m) for any § € R. Hence it is logical to consider n-tuples of different solutions
as solution vectors for (1.2).

Now, we are to reduce different types of symmetries among the solution vectors
step-by-step. For given ¢ € R, consider

(1.3) {(’7’1,...,’7’n) eR":B (e”ﬂ') =, j= 1,...,n}.

We can restrict our attention to the reduced set m < 1 <... <7, <7 + 27 without
loss of generality, for picking any 7, we can normalize mod 27 and then order the
remaining 7;. Actually, since the 7; are different, all such solutions of (1.2) belong to
the open set

(1.4) AZ:{(Tl,TQ,...,Tn)€RnI 71<72<...<Tn<71+27r}.

It is a standard step (see [17] loc. cit.) that one can define the functions 6 — 7;(9)
such that they are continuously differentiable, strictly increasing, and 71(6) < ... <
Tn(6) < T(6) 4+ 2m for all 6 € R, while B(exp(i7;(0))) = exp(id) j = 1,...,n. As
B(e®) = ¢, we have 0 € {r1(a), T2(), ..., Tn(a)}. By relabelling again, if necessary,
we may assume that

(15) 7'1(0[) = O

Hence T(6) := (71(6),...,7(6)) can be viewed as a smooth arc lying in A C R™.

Moreover, the graph Sg := {T'(J) : § € R} contains all the solutions of (1.2) from A,

that is, if t := (¢1,...,%,) € A and A € R are such that B(exp(it;)) = exp(iA), j =
2
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1,...,n hold, then there exists § € R such that t = 7°(§). Furthermore, exp (i;(6 +
2n7r)) = exp (iTj(J)) for j =1,2,...,n, 6 € R. We introduce the set

(1.6) So:=SrN[0,2m)" ={T(): § € [, + 2m)}
where we used (1.5). We call the set
(1.7) S:={T(0):6 € [a,a+2nm)}
the solution curve. Note that
S =5SrNQ, where
Q :=10,27) x [r2(a), T2(a) + 27) X ... X [Tp(), Tn(a) + 27)

where we also used (1.5), so [r1(a), () 4+ 27) = [0,27). Geometrically, S can be
obtained from Sy with reflections and translations, while Sg can be obtained from S
with translations only. Another useful property of S is that for each 5 € [0,27) there
is exactly one § € [a,  + 2n7) such that 71 (5) = S.
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FIGURE 1. Left: solution curve S of the monic Blaschke product with zeros at 1/2 and (1+1)/2,
0< 1 <72 <2m, B(e'™) = B(e'2) = e, a < 0 < a+2m, where « = —7/2 now. Right: argument
of the same monic Blaschke product, § = arg B(e't).

These are depicted on the left half of Figure 1 where Sy is the thick arc and it is
continued above with another arc. These two arcs together form S and describe the
motions of 71,7 together as exp(id) goes around the unit circle twice (6 grows from
a to a + 4w). Extending these two arcs with the very thin arcs, we obtain Sg, the
full solution curve.

Now we recall the question raised by Pap and Schipp in [15]. Consider the pairs
of protons, each of charge +1/2, at (1,¢{,...,(n-1,¢( _; as the critical points of a
(monic) Blaschke product of degree n, and the (doubled) discrete energy of electrons
restricted to the unit circle

ZZog| Cr)(wj — )| —2 Z log |w; — wy,

(1.8) W(wy,...,w
k=1j 1<j<k<n
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104 where |wi| = 1, ..., |w,| = 1. The set Sg connected to the same monic Blaschke

105 product yields critical configurations of electrons for each fixed ¢ (which corresponds to

106 fixing one of the electrons), according to e.g. [15]. In other words, for ay,...,a, € D,
107 using the monic Blaschke product with zeros at aq,...,a, one can construct pairs of
108 protons as solutions of B’(z) = 0, and, for any given ¢ € [0,27), the corresponding

109 configuration of electrons as all solutions of B(z) = e*. Then according to the
110 result of Pap and Schipp, Theorem 4 from [15], these configurations of electrons are

111 critical points of W. The question posed on p. 476 of [15] is then: Are these critical

112 points (local) minima of the restricted energy function W where W(ry,...,7,) :=
113 W(CZTl,...76”’L),Tl...,TnGR?
114 We give a positive answer to this question in general. Note that two special cases

115 were solved in [15] with different methods. Our answer is the following. There are
116 no other critical points on the unit circle (where the tangential gradient vanishes).
117 Moreover, all the points on the set Sg are global minimum points of the restricted
118 energy function W.

119 THEOREM 1.1. Let ay,...,a, € D and B(z) be the monic Blaschke product (1.1)
120 with zeros at ay,...,a,. Assuming B'(0) # 0, list up the critical points of B as
121 C1yeevy Cn1 €D\ {0} and (f,..., (i, € D*.

122 Then the tangential gradient of W vanishes on the points corresponding to the set
123 AN Q defined in (1.4) ezactly on the set S.

124 More precisely, on AN Q, it holds that VW(Tl,...,Tn) = 0 if and only if
125 (T1,...,7n) = T(6) for some § € [o, 0 + 2n7).

126 Furthermore, all points of Sg are global minimum points of w.

127 Let us recall here a recent result of Simanek [18, Theorem 2.1]. Briefly, he estab-

128 lished that for any configuration of electrons on the unit circle, there is an external
129 field (collection of protons) such that the electrons are in electrostatic equilibrium
130 (that is, the gradient of the energy is zero). We are going to refine this result by de-
131 termining the number of pairs of protons and their locations using the solution curve
132 defined in (1.7).

133 For the following we need some more results on Blaschke products. Namely for
134 given z1, 22,...,2n € C, |2;] =1, z; # 2z, (j # k), we need to find a Blaschke product
135  B(.) of degree m, such that

ST j=1,2,....n

136 (1.9) B(z;) = x H T,
k=1

137 The first result of this kind was established by Cantor and Phelps in [2] (for some m)
138 and the stronger form with degree m < n — 1 was given by Jones and Ruscheweyh
139 in [11], see also a paper by Hjelle [8]. By using the results of Jones and Ruscheweyh,
140 Hjelle showed that there is a Blaschke product B(z) of degree m = n such that
141 (1.9) holds, see [8], p. 44. We will use this particular Blaschke product B(z) =
142 B(z1,22,...,2n; 2) corresponding to z1, 22,...,2,. Note that Hjelle’s Blaschke prod-
143 uct is not unique, since there is an extra iterpolation condition. Observe that the
144 extra interpolation condition can be chosen so that B’(0) # 0 is satisfied.

145 THEOREM 1.2. For distinct z1,. ..,z € OD fiz a Blaschke product B(z) so that
146 (1.9) holds with m = n and B'(0) # 0. Denote the critical points of B(z) in the unit
147 disk by (1, Cg, ey Cn—l-

148 Then the (doubled) energy function W (ws, ..., wy,), constructed by means of these
149 points 1,Ca, - - -, Cn1 according to (1.8), has critical point at (w1, ..., wy) = (21, -, 2n)l}

4
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(even regarded as a point of C™).
Moreover, on (OD)", W|amy» has global minimum at (z1, ..., 2y).

2. Some basic propositions. Recall that it was given in (1.8) the discrete
energy of an electron configuration wy,...,w, € C (with charges —1) in presence of
an external field generated by pairs of fixed protons (1,5, (2,¢5, -+, Cu1, (1 (With
charges +1/2 each), where (1,...,(,—1 € D. Note that actually W is the double of
the physical energy of the system (see also [12], p. 22 where they use this form of
discrete energy). We will see later on why it is more convenient to use this ”doubled
energy”.

Sometimes the following exceptional set will be excluded:

(21) E:={(wi,...,wpn,C1,...,(no1) EC" x D71
¢j = 0 for some j or w; = wy, for some j # k,

or (; = wy, or ¢; = wy, for some j, k}

This is a closed set with empty interior. Geometrically, this set covers the cases when
some of the protons are at the origin, some of the electrons are at the same position
or a proton and an electron are at the same position. Let us remark also that W =
W (wy,...,wy) is locally the real part of a holomorphic function when ¢y, ...,(,_1 are
fixed and W is considered on (wy, ..., w,) € C" such that (wy,...,wp, (1, ,Cho1) &
E.

This energy can be generalized substantially. Let p be a signed measure on C.
We define the (doubled) energy in this case as

Wy = 22/ log |wi, — ¢|dp(C), Wy := Z log |w; — wg|, and
k=1"C

£k
1<l,k<n

(2.2) Wy(wi,...,wy) =Wy 1 — Wy o.

Note that in (1.8) we sum over all | < k pairs and there is an extra factor 2. In (2.2),
the sum is over all [ # k pairs. Later this second, symmetric expression will be more
convenient.

Here, it may happen that W, ; or W, » becomes infinity, so we again introduce
the exceptional set as follows:

(2.3) E,:={(w1,...,w,) € C": w; = wy, for some j # k
or [ Nog huy = ¢l el (¢) = +0 for some j).
C

Note that finiteness of this latter integral is equivalent to the finiteness of the potentials
of u4 and p— at w; where py, u_ are the positive and negative parts of u respectively.
Observe that if (wi,...,wy,) € E,, then W, 1 and W, o are finite, and so is W),.

An important tool in our investigations is the Cayley transform and its inverse.
Basically, it is just a transformation between a half-plane and the unit disk, though
there is no widely accepted, standard form of it. We use the following form, which we
call inverse Cayley transform

1+ ze®
C(Z) = C@(Z) = Zm
5
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where 6 € R will be specified later. It is standard to verify that C(z) maps the
unit disk onto the upper half-plane, Cyp(e*?) = oo, and C(.) maps bijectively the unit
circle (excluding e?) to the real axis. Furthermore, Cy(e™) is continuous and strictly
increasing from t = 0 to t = 0 + 2m, Cy(e?) — —oc as t — 0 + 0, Cy(e’) — 400 as
t — 0+ 27 — 0. It is easy to see that C(z*) = C(z) and C’(z) # 0 (if z # €*?). Later
we will use the Cayley transform too:

U — 1
0—1 — 10 .
O U1
Mapping the electrons and protons by Cp, we define t; with t; = Cp(w;). We also
write & := Cp((;) and accordingly, {; = Cg((}) and investigate the following new
discrete energy:

n—1 n
(24)  V(tr,..ootn) =Y > log|(t; —&)(t; — &) -2 > loglt; —ti.
k=1 j=1 1<j<k<n

We also define the (doubled) discrete energy on the real line when the external
field is determined by a signed measure v:

Vi ::22/10g|tk—§|dy(§), Via= > loglt; —t;] and
k=1"C

£k
1<l k<n

(25) Vy(tl, . ,tn) = VV71 — VV72.

We introduce again the exceptional set corresponding to v as follows:
E, :={(t1,...,tn) € C": t; =) for some j # k

or / llog |t; — &|| d|v|(§) = +o0o for some j}.
C

The next result gives a somewhat surprising connection how the inverse Cayley
transform carries over energy. Actually, there is a cancellation in the background
which makes it work.

ProOPOSITION 2.1. Fiz § € R and let i be a signed measure on C with compact
support such that u({0}) = 0, u(C) = n — 1. Write v := o C,', that is, v(B) =
w(Cy Y (B)) for every Borel set B.

Assume that wi,...,w, € C and (wi,...,w,) € E, and
(2.6) /log |C — e|du(¢) is finite.
C
Then with ti,...,t, € C where t; = Cg(w;), we know that (t1,...,t,) & E,,
Wy(wi,...,wy,) and V,(t1,...,t,) are finite and we can write
(2.7) Wy (wi,...,ws) =V, (t1,...,tn) +¢

where ¢ is a finite constant, namely

(2.8) c=mn(n—1)log(2) —2n /(C log [€ + i|dv(&).
6
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Proof. Tt is straightforward to verify that (¢1,ts,...,t,) € E,. Furthermore,

, 1+ e ™
(1555

= /Clog(Q) —log |¢ = ¢”|du(¢),

ozl +ilave) = [ 10g1Cof)+ildn(c) = [ 1o

so (2.6) is equivalent to
(2.9) / log |€ + i|dv (&) is finite.
C

Note that this entails the finiteness of ¢ defined in (2.8).
With the notation of the Proposition,

(2.10) W, (Wi, ey wn) = Vi (s t) :22/10g|wk—g“|d,u(o
k=1"C

_ E 10g|wj —wk| —2 E /10g|t;€ —f‘dV(f)‘f' E 10g|tj _tk|
ik k=1"C j#k
1< k<n 1< k<n

where we investigate the difference of the integrals and difference of the sums sepa-
rately. So we write

/ log wy, — C|du(¢) — / log [t — £|dv(€)
C C
_ / log |y (t) — C; M (©)]di(€) - / log [t — | (€)
C C
:/Clog 0 (tk‘@ 5‘Z>’—1og|tk—f|dv(s>

t+i E4i
:/log(2)+log
c

1
wraesn| "

— [ ~tog¢ + ildo(€) + (log(2) ~ log |t + i) (C),
C
where this last integral exists, by assumption (2.9). Similarly,
log [t; — tg| —log [w; — wy,| = log|t; — ti| —log |Cy (t;) — Cy ' (tx)]

) t: —1 . —1
620 J Z _619 tk Z
tj+i ty+i

= —log(2) + log|t; + i| + log |tk + i].

=log|t; — tk| —log
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280

281

282

283
284

Substituting into (2.10), we get

WI»L (wl,...,wn) - Vl, (tl,...,tn)
=2%" (/ —log |€ + i|dv(€) + (log(2) — log |t + i) y(@))
k=1 €
£ (~log(@) +loglt; + il +log i + i)
J#k
1<), k<n
= —2v(C) Zlog [t + 4| + 2nv(C) log(2) — Zn/ log € + i|dv(€)
k=1 ¢
—n(n—1)log(2) +2(n —1) Y _ log [tx + il
k=1
— nln — Dlog(2) - 20 [ loglg + ilav(©)
C
where we used that v(C) =n — 1. 0

REMARK 2.2. Since p has compact support, supp v is disjoint from —i, moreover,
their distance is positive. Hence the logarithm in the integral in (2.8) is bounded from
below. It is not necessarily bounded from above, but we assume (2.9) directly. Instead
of supposing (2.9), we may suppose that p and 0 (from Cayley transform) are such
that supp p and € are of positive distances from each other. This would ensure that
supp v remains bounded entailing that the logarithm in the integral in (2.9) is bounded
from above. In other words, if supp u is compact and ¢’ ¢ supp p, then (2.9) holds.

We note that this Proposition 2.1 extends the result of Theorem 6 in Pap, Schipp
[15] that we allow arbitrary signed external fields in place of discrete protons located
symmetrically with respect to the unit circle.

PRrROPOSITION 2.3. We maintain the assumptions and notations of Proposition
2.1. Let £ € {1,...,n} and let wj, j # ¢ be fized.
Assume that

(2.11) e & supp p

and assume further that replacing we by €, we have

(2.12) (wl,...,ew,...,wn)gEu.

If wy — €, then |ty| = |Co(wy)| — oo and we get that

(2.13)  Wy(wr,...,we1, ew,wg_H, cosWp) = Vo (t1, .o ti—1,00,t041, .- tn) €

where ¢ is the constant defined in (2.8) and
(214) Vu(tl, PN ,tgfl, OO,terl, [N ,tn) = Vy(tl, e ,tgfl,tm,l, ce ,tn)

:2Z/log|tjf§|dl/(§)f > loglt; —til.
j=1"C

= 1<j,k<n
L GAORAL 7k
8
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Proof. First, we discuss why the integrals appearing here are finite. By slightly
abusing the notation, W), (wg) := W, (w1, ..., we,...,w,) is finite at w, = €? because
of (2.12). Assumption (2.11) implies that there is a neighborhood U of ¢ such that
its closure U~ is disjoint from suppp, U~ Nsupppu = @. Therefore W, (w) is also
finite when w € U, moreover W,(.) is continuous there. Similarly, we use V,(t) :=
Vo(t1, o to—1,ttogt, oy tn) (abublng the notation again). Obviously, Cy(U) is an
unbounded open set on the extended complex plane C,, and is a neighborhood of
infinity. By Proposition 2.1, V,,(t) is defined on Cy(U) \ {oo}, has finite value and is
continuous there. Moreover, V,(t) has finite limit as ¢ — oco. By (2.12) and (2.11),
(Wi, Wem1, W, Wiyt - ., wy) € By, for w e U. Hence (t1,...,te—1,ttep1,. .. tn) &
E, fort € Cy(U)\{oo}. This also implies that [ log|t;—¢|dv(€) is finite, j = 1,...,n
j # £, which are the integrals appearing on the right of (2.14).

Regarding V,,, we write

3

Jim Vi (t) = lim_ 22/10g|t g = Y loglt; —tal

1<j5,k<n
2k
23 [loglt; ~ lav(e) = Y loglt; ~ 1l
=/c 1<j,k<n
G£0 J#L kAL
+ lim 2/log|te—£\d1/(£)— Y loglty—ty
e C 1<j,k<n

k#j,k=L or j=¢
=V(t1,. . s to—1,tes1, .- tn),

where in the last step we used the following calculation.

Jim |2 [loglte - glavie) - 3 loslty—
e c 1<j.k<n
k#j,k=L or j=0

t.
= lim 2/ log [t¢| + log dv(§) —2 E <log|tg| + log ‘1 -2 )
¢ 1<j<n b

]
where [ log [t¢|dv(§) = (n —1)log|t,| so the first term in the integral and in the sum
cancel each other, by v(C) = n — 1. Regarding the second term in the sum, it tends
to zero. The second term in the integral also tends to zero, because the support of v
is compact, hence log |1 + £/t,| tends to 0 uniformly.

Using this calculation, (2.7) from Proposition 2.1 and the properties of W, and
Cy we get that

1 &
ty

W, () = lim W, (wy)

wy—>etf

= lim (Vy(tz)+c):Vu(tlwuatéfhtl‘l*la"'7t’ﬂ)+c' o

ty—00
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Based on the above proposition, it is justified to extend the definition of V,, by
continuity as Vi, (t1,...,tp—1,00,te41, ..y tn) = Vi (t1,. .. te—1,tes1,...,1,) in case tp
becomes +oo.

Now we are going to relate the critical points of W, and V,, when the configura-
tions of the electrons are restricted to the unit circle (or to the real line).

When the electrons are restricted to the unit circle, that is,

(2.15) lw;l=1, j=1,...,n

we are going to introduce the tangential gradient as follows. In this case, in addition
to supposing that p has compact support, we assume that supp p is disjoint from the
unit circle.

We write

(216)  wi=em, j=lian Walni.m) = W (e, e™)

We call VWH the tangential gradient of W,. VWM of WVM has special meaning with
respect to the complex derivative of W),: it is the tangential component of VW, with
respect to the unit circle. Similar distinction also appears in [18], see the definitions
of I'-normal electrostatic equilibrium and total electrostatic equilibrium on p. 2255.
This total electrostatic equilibrium appears in Theorem 2, [14] which will be used
later.

PROPOSITION 2.4. Let v be a signed measure on C with compact support. Assume
that supp v is disjoint from the real line and v is symmetric with respect to the real
line: v(H) = v(H) where H C {S(u) > 0} is a Borel set and H = {u : u € H}
denotes the complex conjugate.

Then for ui,...,u, € R we have for the j-th imaginary directional derivative
(with direction iej :=1i(0,...,0,1,0,...,0)) that

(217) aiej Vy(ul, e ,’U,n)

— lim Vio(ur, ..o uj + v, .00, u,) — Vi(ur, ..o, uy) —0
1)]'—)0 Uj

Roughly speaking, if the external field is symmetric, then the forces moving the elec-
trons will keep the electrons on the real line (all coordinates of gradient are parallel
with the real line).

PROPOSITION 2.5. Let u be a signed measure on C with compact support. Assume
that supp p is disjoint from the unit circle and u is symmetric with respect to the unit
circle: p(H) = pu(H*) where H C {|w| < 1} is a Borel set and H* = {1/w: w € H}
denotes the inversion of H.

Then for |wn| = ... = |w,| = 1, we have for the j-th normal derivative (with
direction wje;) that

(218)  upyo, Wp(wr, ..., wy)

- liII(l) Wy(wi,...,wj +ewj, ..., wy) — Wy(wi,...,wy) —0
E—r £

Note that because p has compact support and is symmetric with respect to the
unit circle, we necessarily have that 0 is not in supp p.

10
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Roughly speaking, Proposition 2.5 states that if the measure p is symmetric with
respect to the unit circle, then the gradient and the tangential gradient of W, are the
same. In other words, n electrons on the unit circle, allowed to move freely on the
plane in the external field generated by p will stay on the unit circle.

Proofs of Propositions 2./ and 2.5. To see Proposition 2.4, we fix u1,...,u;j_1,
Uj, Ujt1,..-,U, € R, and use here J(.) for the conjugation: J(u) = w. Writing
V(u) ==V, (u1,...,uj—1,%,Uj11,...,U,) for general complex u = u; + iv;, and using

that v is symmetric to the real line, in other words, v(H) = v(J(H)) for Borel sets
H, we find

V(ula ceey U1, Uy Ujp 1y - - - aun) = V(ula sy Uj—1, J(U),Uj+1, s ;un)'
Therefore,

8iejV(’LL1, e 7Uj_1,Uj,Uj+1, . ,Un)

o 8V(u1, sy Uj—1, Uy + i'Uj, Uj41y--- ,Un)

- 8Uj |(u17---7uj—lvuj7uj+17~~-7un)
8V(u1, ey Uj—1,Uj — ivj, Uj41y--- ,un) |

- v, (W15 U 15U, U 155U )

. oV (uq, ... JUG—1, Uj + TV, Ujq, - ,Un) |

- (u1 ey U — 1, UG, Ugj 1. u")

a(_vj) yeees yUj s R
= *61‘9]V(U1, ey Uj_l,Uj, Uj+1, . ,un)

showing that Proposition 2.4 holds.
To see Proposition 2.5, we use that the inverse Cayley transform is a conformal
mapping, hence it is locally orthogonal. ]

3. The case of finitely many pairs of protons. In this section, we specialize
the propositions of the previous section. Most of the results here simply follow from
those statements.

We consider the case when supp p is a finite set with 2n — 2 elements, which are
symmetric with respect to the unit circle and the support is disjoint from the unit
circle and the origin:

Supp/"L:{ClaCQa'"7Cn717<-ik7<;7"'7 :(7,71}7
0 <Gl <1, p{Gh) =p{GH =1/2, j=12...,n—-1,
Cj?éCka Jak:1727,n_1)j#k

Recall that ¢* = 1/(.

The restriction ¢; # 0 is essential for the following reasons. Although 0* = oo
may be introduced, definition of discrete energy W cannot be meaningfully defined.
Note that the usefulness of symmetrization of external fields lies in that the normal
component of the field generated by the symmetrized proton configuration identically
vanishes on the unit circle. However, when there is a proton at the origin, there is
no complementing system of protons wi,...,w, (for no m) such that the total sys-
tem {C1,...,Cn, w1, ..., wn} would generate a field with identically vanishing normal
component on the unit circle.

Furthermore, the protons at the origin contribute to the electrostatic field of
all protons only with identically zero tangential component all over the unit circle.

11
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Therefore, studying equilibrium and energy minima on the circle, protons at the
origin have no contribution, hence can be dropped from the configuration. However,
then the total charge of the system will drop below —1. There are results in this
essentially different case, too, see e.g. [6] or [4], Theorem 4.1 but those necessarily
involve assumptions on locations of electrons.

The below Proposition 3.1 follows directly from the more general Proposition 2.1.
Roughly speaking, it expresses how the energy functions are mapped to one another
via the inverse Cayley transform in this special case. We use here the exceptional set
E introduced in (2.1).

ProroSITION 3.1. Fiz 0 € R and let (;j € D, j = 1,...,n — 1. Consider the
parameters (j,C; as well as the parameters §; = Cp((;), & = Co((5)-

Assume that wy,...,w, € C are such that (wy,...,w,,(1,...,C-1) € E, and
w;j#e (G=1,...,n).

With t1,...,t, € C where t; = Cy(w;), we can write

(3.1) W (wy,...,wp) =V (t,...,tn) +¢

where ¢ is a constant,

n—1

(3-2) c=n(n—1)log(2) —n Y log|(& +i)(& + ).
k=1

If (wi, ... ,wn, 1y oy Cne1) € E, then W, V or ¢ is infinite.
Next we formulate the following special case of Proposition 2.3.

PROPOSITION 3.2. Let ¢ € {1,...,n} and let w;, j # { be fived such that w; # e*
for all j # €. If we = €, then t, = Cp(wy) = 0o and we get that

(3.3) W(wl,...,wg_l,eie,wg+1,...,wn) =V (t1, . to—1,00,tp41,---,tn) +c¢

where ¢ is defined in (3.2) and similarly to (2.14)

(3.4) V(tl,...,tg,17007t4+1,...,tn) = V(tl,...,tz,htprh...,tn)

n—1 n
=3 Y logl(t — 60t — &) —2 S loglt; —tl.
k=1 j=1 1<j<k<n
a7t JALRFL

In Figure 2, particular sets of electrons and protons are shown along with the
transformed configuration on the real axis. Namely, the zeros of the monic Blaschke
product B(.) are 1/2, (1+1i)/2, 2/3i, —3/4i and —7/104-6/10¢. The protons are at the
critical points of this monic Blaschke product B’(.) = 0 : 0.38 — 2.21¢, 1.69 + 1.134,
0.68 + 1.867, —0.99 + 0.944, —0.53 + 0.5143 , 0.17 + 0.47¢, 0.41 + 0.27¢, 0.08 — 0.444
(here and in the remaining part of this paragraph the numbers are rounded to two
decimal digits). The electrons are at the solutions of B(.) = 1, and their arguments
are: —2.87, —1.19, 0.41, 1.28, 2.33. For the inverse Cayley transform, = —2.87, that
is, the first electron is mapped to infinity.

In the next proposition we point out, how the critical points of the original and
the transformed energy function correspond to each other.

PROPOSITION 3.3. Let(; €D, j=1,....,n=1andw; €C, j=1,...,n. Assume
that w;’s are restricted to the unit circle, i.e. (2.15) and (2.16) hold. We also assume

that (wl,...,wn,(l,...,(n_l) ¢E
12
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FIGURE 2. Equilibrium configurations of five electrons on the unit circle and the transformed
configuration, with one electron transferred to co.

Fiz w1 and 71 € R and assume that (11,72,...,Tn) € /L Consider the inverse
Cayley mapping C-,(.) and also the points §; = C+,((;), § = Cr,(¢f) and t; =
Cr, (em).

Then 73 < ... < T, from the interval (11,71 + 27) is a (real) critical point of 1174
if and only if to < ... < t, is a (real) critical point of V.=V (ta,...,t,).

Proof. Basically, we use the chain rule to show that the critical points correspond
to each other under the diffeomorphism given by the inverse Cayley transform.
Let 9(7) := €'". It is standard to see

1479 T—0 d 1
Co(¥(1)) = it — ot ECQW}(T)) = @
where we used real differentiation with respect to 7. We write U(r,...,7,) =

((72), ..., 1b(10)) and K (22, . .., 2n) == (Co(22), ..., Ca(zn))", where -T denotes trans-|]
pose. Hence K o ¥ maps from R"~! to R"~! and W=WoU=VoKol+ ¢, by
Proposition 2.3. The derivative of K o ¥ as a real mapping is the diagonal matrix
D := diag (sin*2 (”T_G) ,...,sin2 (T"T_e)) This is an invertible matrix, because
=71 <79 <...<Tp <71+ 27. Because of chain rule,

V‘F2,---,‘rn,W = Vt27~»-,tnv|Ko\y - D,

or by coordinates

W (7, . .. OV (ty, ... t 1
(7'2’ 7Tn) _ ( 2, ) TL) . , j :27. .,
oT; ot rop SN2 (sz—ﬁ’)
which immediately implies the assertion. ]
4. Proofs of the two main theorems.
Proof of Theorem 1.1. We have that 7;’s are different, and ai,...,a, € D is a

sequence with ¢; # 0. These imply that (exp(i71(0)),...,exp(iT,(9)),(1,- -+ Cro1) is
not in E (see (2.1)). We also use the parametrization of the solution curve S defined
in (1.7), and the strict monotonicity and continuity of § — 71(J). Hence for any wy,

13
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wy = ¥ where 8 € [0, 27), the respective points on the solution curve S are uniquely
determined: w; = w;(w;), more precisely, w; = exp(it; (1, 1(B))), 4 = 2,..., 7.
Fix wy, or, equivalently, 8 € [0,27). Now we want to show that

(7—277—33"'77—71) = W(ﬂ77—277—37"'77—n)

(assuming 8 < 19 < ... < 7, < B+ 27) has only one critical point, namely the point
with 7; = Tj(Tl_l(ﬁ)) for j = 2,3,...,n, which happens to be the unique minimum
point in (72,73, ..., Tn)-

To this end, we are going to transform the question to the upper half-plane, as
we want to use Lemma 6 from [16]. We apply first the inverse Cayley transform
C(.) = Cs(.) which maps w; to co. Hence we have n — 1 pairs of fixed protons,
& =0C(G), & = C(¢), j=1,...,n—1and n — 1 free electrons on the real axis,
t; = C(e'), j = 2,...,n. We know that 8 < 7» < ... < 7, < (3 + 2m, and
ty < tz3 < ... < t, are equivalent. (If any two of the 7’s were equal, then the
corresponding t’s would be equal too and W(Tg, cesTn) = V(ta,...,t,) = 400, but
we assumed that (w1,...,wn,(1,...,(u—1) & E so that all w;’s have to be different.)
Again, since we are outside E, we know that {; # —i and &; # —i, which, in turn,
implies that c is finite in (3.2). Thus, we can apply Proposition 3.2 (for £ = 1) to
relate the energy W on the unit circle and the energy V on the real axis:

W(ﬁ,Tg, o Th) = WP e e = Vit .. t,) + e

Introducing U := {(t2,...,t,) € R"™1 1ty < t3 < ... < t,}, Lemma 6 from
[16] gives that there is exactly one critical point (fa,...,%,) of V in U (gradient of
V' vanishes), which is the global minimum point in U. In view of Proposition 3.3,
the corresponding (73,...,7,) with 8 < 75 < ... < 7, < B+ 27 and exp(iTy) =
Cgl(t;), oo exp(ity) = C/;l(f:l), is the only critical point of W = W(B,TQ, ey Th)s
restricted to the simplex Ag of points of the form (3,72, ..., 7,) under the condition
B<T<T3<...<T, <B+2m Notethat Ag = ZgN A with Zg denoting the
hyperplane {3} x R"~!. Furthermore, applying Proposition 3.2, we get that this is
the unique global minimum point of W on Ag.

Let us define ¢ : [0,27) — R™ by putting ¢(5) := (8,72, 73, - -, Tn)-

As S is a continuous curve lying in A, there exists a point t of S N Zg, which
necessarily belongs to SN ZgNA = SN Ag, too. However — as it was shown in
Theorem 4 in [15] — VW = 0 on S, therefore t is also a critical point of W|AB.
Whence t = (), the unique critical point of W\AB, which is, as said above, the
global minimum point of W| Ay t0O.

It is easy to see that ® := W o ¢ is continuous on [0,27) and with ®(27) :=
W(e(0)) is continuously extensible onto [0,27]. Thus ® = W o ¢ has a global min-
imum on [0, 27), let it be 8*. Obviously, ¢(8*) is also on the solution curve S, and
W(ﬁ, ..., Tpn) has a global minimum in ¢(8*). Since S is a smooth arc, and VW =0

on S, we get that 1% G = const. That is, we find W G = »(B*), the global minimum

of the discrete energy function W= W(Tl, ey Th)-

Finally, we show that all points of Sg are global minimum points of W() Us-
ing that W() is (2m,...,2m)-periodic, that is W(Tl,Tg, ceyTh) = W(Tl + 2w, +
27,..., 7, + 2m) and that for each j, 7;(6 + 2nm) = 7;(8) + 27, we obtain that
W(’Tl (0),...,7(9)) is actually 2nm periodic in §. This, expressed with S and Sg,
implies that all points of Sg are global minimum points of W() O
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Note that the above provides a positive answer to the question raised in [15],
p. 476: the discrete energy function W = W(r,...,7,) attains global minimum at
every point of the full solution curve Sg. Moreover, these are the only critical points
of W.

We collect the following set of "bad” configurations:

(4.1) X = {(21,22,...,2) € (OD)" : z; = z for some j # k, or B'(0) = 0}.

Proof of Theorem 1.2. Let (21,...,2,) € (D)™ \ X be given. Denote their argu-
ments by t; := Slog(z;), j =1,2,...,n. Without loss of generality, we may assume
that t1,ta,...,t, € [0,27) and t; < tg < ... < t,.

We use the above cited result of Hjelle providing a Blaschke product B(z) =
B(z1,...,2,;2) with degree n, satisfying (1.9). Denote the leading coefficient of B(.)
by x where y = €'%; note that & is determined only mod 27 by this choice. Let us
define B;(z) := x~!B(z) which is the monic Blaschke product with the same zeros.
We use «, T, Sy, S and Sk defined for By(.). Now we fix the value of dy so that
—d0p € [, a0 + 27); observe that this does not change the value of x and does not
cause circular dependence. Note that the sets Sg defined for B and B; are the same,
because multiplying the Blaschke product with a constant is just a translation of
variable. More precisely 7;(B;0) = 7;(B1;0 — dp) for all j =1,2,...,n, 6 € R.

Hjelle’s result means that 7;(B;0) = t;, hence 7;(B1; —d9) = t;. By the choice of
do, we immediately see that (t1,ta,...,t,) = T(—do), that is, (t1,t2,...,¢,) is on Sy
defined in (1.6) for the monic Blaschke product Bj(.).

We use the description from Theorem 1.1. This way we obtain that W() has
global minimum at the points T'(d), ¢ € [o, + 27) (defined by Bq(.)). Observe
that when the parameter § changes continuously further on in [a, a + 2n7), the curve
T'(6) recovers (mod 27) the same set of arguments (1, ...,t,) n times, in each cyclic
permutations of them, while the corresponding z1, ..., 2, is repeated n times (in each
cyclic order of the values) always determining the same Blaschke product.

We remark, that according to Proposition 2.5, the energy function W(.) has
critical point in (z1, 22, ..., 2,) not just with restriction to the unit circle, but also in
the total electrostatic equilibrium sense. This was also observed in [14], see Theorem
2. O

Roughly speaking, the union of solution curves for different aq,as,...,a, covers
the whole A N @, and considering as electrons on the unit circle, the whole space
(21,22,...,2,) € (OD)" \ X.

This last result, when compared with Theorem 1.1, shows a direct relation be-
tween the location of electrons, zi,zs,...,2, and the location of pairs of protons,

ClaCfaCQaCéka . '7Cn—15<:;—1'

COROLLARY 4.1. If(z1,...,2,) € (0D)™"\X is given, then the points (1,...,Cn—1 €}
D\ {0} in Theorem 1.2 are the critical points of the Blaschke product satisfying (1.9).
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