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Abstract

The Gale-Nikaido theorem claims that if the Jacobian of a mapping F

is a P-matrix at every point of K and K is a closed rectangular region in
Rn, then F is globally univalent on K. Under the more severe condition
that the (symmetric part of the) Jacobian is positive definite on K, the
same conclusion is valid on any closed convex set K. In this paper it
is shown that the closed rectangular regions are the only ones for which
the Gale-Nikaido theorem is true. In a similar fashion, it is shown that
the positive definiteness of the Jacobian implies unicity only on (closed)
convex sets.

1 Introduction

It is well known if F = (Fi(x1, . . . , xn))
n
i=1 is a differentiable mapping from a

subset K of Rn into Rn and if the Jacobian (∂Fi/∂xj) of F does not vanish at
a point, then F is univalent (1-to-1) in a neighborhood of that point. Global
univalence is more subtle, and the mere vanishing of the Jacobian at every point
of K is not sufficient. Gale and Nikaido [4] proved in 1965 that if the Jacobian
of F is a P-matrix at every point of K (meaning that all of its principal minors
are positive) and K is a closed rectangular region1

∏

[ai, bi], (ai < bi for all i),
then F is injective. Under the more severe condition that the (symmetric part
of the) Jacobian is positive definite on K, the same conclusion is valid on any
convex set K, see [2], [4] and [5]. The problem if the Gale-Nikaido theorem is
true on any convex set has been mentioned several times in the book [6], but
counterexamples were given later in [1] and [7].

In this note we address the question on what domains are the aforementioned
two unicity theorems true. We are going to show that the closed rectangular
regions are the only ones for which the Gale-Nikaido theorem is true, which

∗Supported by NSF grant DMS 1564541
1This terminology follows the original paper [4]. A more correct notion would be ”closed

rectangular parallelepiped”.
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makes that result quite a peculiar one. In a similar fashion, we shall show that
positive definiteness of the Jacobian implies unicity only on (closed) convex sets.

Let K ⊂ Rn, n ≥ 2, be a compact set. In what follows we shall consider
continuously differentiable maps F from K to Rn, and in order not to worry
about the notion of the partial derivatives at arbitrary points of K, we shall
assume without mentioning that F is defined on a neighborhood of K.

Recall that a not necessarily symmetric (real) square matrix is called a P-
matrix if all of its principal submatrices (obtained by deleting some rows and
the corresponding columns) have positive determinant. See [3, Section 5.5] or
[4] for properties of P-matrices. Recall also that a symmetric square matrix
A is positive definite if x∗Ax > 0 for all non-zero vectors x, where ·∗ denotes
transposition. By Sylvester’s criterion this happens if and only if all leading
principal submatrices of A have positive determinants (the m × m principal
submatrix of A is the one that lies in the first m rows and first m columns). In
general, a not necessarily symmetric square matrix A is called positive definite
if x∗Ax > 0 for all non-zero vectors x. This is the case precisely if its symmetric
part 1

2
(A+A∗) is positive definite.

With these notations the two global unicity theorems above can be stated
as follows, where continuous partial derivatives of F are assumed.

Theorem A If K ⊂ Rn is a closed rectangular region
∏

[ai, bi], (ai ≤ bi for all
i) and the Jacobian of a C1 mapping F : K → Rn is a P-matrix at every point
of K, then F is univalent on K.

Note that K may be a degenerated rectangular region.

Theorem B If K ⊂ Rn is a closed convex set and the Jacobian of a C1 mapping
F : K → Rn is positive definite at every point of K, then F is univalent on K.

Here again, K may have empty interior.
In this paper we show that the following converses hold.

Theorem 1 Let K ⊂ Rn be a non-empty compact set with the property that
any C1 mapping F : K → Rn for which the Jacobian is a P-matrix at every
point of K, is univalent on K. Then K is a closed rectangular region.

Theorem 2 Let K ⊂ Rn be a non-empty compact set with the property that
any C1 mapping F : K → Rn for which the Jacobian is positive definite at every
point of K, is univalent on K. Then K is convex.

It is clear that Theorems A and B imply their variant for open rectangular
regions and for open convex sets, respectively. However, this is not the case for
Theorem 2; at the end of the paper we shall show a non-convex open set with
the property that every F is univalent on K for which the Jacobian is positive
definite at every point of K.
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2 Proof of Theorem 1

First of all note that K must be connected. Indeed, in the opposite case K =
K1 ∪ K2, where K1,K2 are disjoint non-empty closed sets. If P1 ∈ K1 and
P2 ∈ K2, then the mapping which is Id−P1 on K1 and is Id−P2 on K2 (where
Id is the identity mapping) shows that K does not have the property set forth
in the theorem.

For P = (βi), Q = (γi) ∈ Rn we set ai = min(βi, γi), bi = max(βi, γi) and
define the closed rectangular region

T (P,Q) := {(αi) ai ≤ αi ≤ bi, i = 1, . . . , n}.

The segment PQ is one of the diagonals of T (P,Q), and the dimension of T (P,Q)
equals the number of those i for which βi 6= γi.

Let K be as in the theorem, and let m be the maximal dimension of the
rectangular regions T (P,Q) for P,Q ∈ K. If m = 0 then K is a singleton, so
assumem ≥ 1. Then there are points P,Q ∈ K such thatm of the corresponding
coordinates of P and Q are different, but any two points in K have at most m
different coordinates. We fix these P,Q and write P = (βi), Q = (γi). Since
simultaneous permutation of the rows and the corresponding columns of a P-
matrix results in a P-matrix again, we may assume without loss of generality
that β1 6= γ1, . . . , βm 6= γm, but βm+1 = γm+1, . . . , βn = γn. Set, as before,
ai = min(γi, βi), bi = max(βi, γi). Then ai < bi for i ≤ m and ai = bi = βi for
i > m.

Ifm = 1 then it is immediate that K lies on the line {(xi) xi = βi for i > 1}.
Since K is also connected, it is a segment on that line, and the theorem is true
in this case. Therefore, in what follows we may assume that m ≥ 2.

Claim 1. T (P,Q) ⊆ K.
Suppose this is not the case. Then there is a point R = (δi) in T (P,Q) \K,

and clearly δi = ai = bi = βi for i > m, while δi ∈ [ai, bi] for i ≤ m, and
these last intervals are non-degenerate. Since K is closed, a neighborhood of
R is disjoint from K, and by changing all δi ∈ [ai, bi], 1 ≤ i ≤ m, a little, we
may assume that δi ∈ (ai, bi) for 1 ≤ i ≤ m. Select a τ > 0 such that the
(closed) ball about R of radius nτ is disjoint from K, and at the same time
[δi − τ, δi + τ ] ⊂ (ai, bi) for all 1 ≤ i ≤ m. Note that there is no S = (αi) ∈ K
such that αi ∈ [δi − τ, δi + τ ] for all 1 ≤ i ≤ m. Indeed, this is clear if
αm+1 = βm+1, . . . , αn = βn, for then S is closer to R than nτ . On the other
hand, if there is a j > m for which αj 6= βj , then m + 1 coordinates of P and
S are different (the first m and the j-th one), so, by the definition of m and by
P ∈ K, we cannot have S ∈ K.

For each 1 ≤ i ≤ m select a continuously differentiable function gi with the
property that

(1) g′i(t) = 0 if t 6∈ [δi − τ, δi + τ ], 1 ≤ i ≤ m,
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(2) gi(γi) = −γi−1, gi(βi) = −βi−1, 2 ≤ i ≤ m,

(3) g1(γ1) = −γm, g1(β1) = −βm.

Since βi, γi lie in different components of R \ [δi − τ, δi + τ ], that is possible.
With these gi define

F(x1, . . . , xn) = (x1+g2(x2), x2+g3(x3), · · · , xm−1+gm(xm), xm+g1(x1), xm+1, xm+2, · · · , xn).

(When m = n, the coordinates xm+1, xm+2, · · · , xn are not needed.) For this
mapping we have F(P ) = F(Q) = (0, · · · , 0, βm+1, . . . , βn), so F is not univalent.
On the other hand, we shall show below that the Jacobian of F is a P-matrix
at every point of K. However, this contradicts the assumed property of K, and
this contradiction proves the claim.

The Jacobian of F is
































1 g′2(x2)
1 g′3(x3)

1
. . .

. . .

1 g′m(xm)
g′1(x1) 1

1
. . .

1

































,

where we showed only the (possibly) non-zero entries of the Jacobian. Note
that at each point of K at least one of the off-diagonal entries (i.e. at least one
of g′1(x1), . . . , g

′

m(xm)) is zero. Indeed, if (xi) ∈ K, then, according to what we
have said before, there is an 1 ≤ i ≤ m such that xi 6∈ [δi − τ, δi + τ ], and then
g′i(xi) = 0 by the choice of the function gi.

Thus, it is sufficient to show that any matrix of the form

M =

































1 u2

1 u3

1
. . .

. . .

1 um

u1 1
1

. . .

1

































with the side-condition that at least one of the ui’s is zero, is a P-matrix. Indeed,
this follows from the two facts:
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(i) any principal submatrix of M is of the same form (with m replaced by m−k
if k of the first m rows and columns are deleted from M),

(ii) the determinant of M is 1.

It is sufficient to prove (i) for the case when one row and the corresponding
column is deleted from M, for we can iterate this special case. If the j-th row
and column are deleted and j > m, then the claim is clear. If j = 1, then we
get an upper triangular matrix, while if 2 ≤ j ≤ m, then the j-th column of
the obtained matrix (which is otherwise of the form as M but with m replaced
by m − 1) contains only zeros except for the single 1 in the diagonal, so the
side-condition that at least one of the ui’s is zero is preserved.

Finally, (ii) is immediate, for the determinant of M is 1+(−1)m+1
∏m

i=1
ui =

1, as can be seen by expanding the determinant according to the first column.
With this the proof of Claim 1 is complete.

Claim 2. K lies in the affine subspace L := {(xi) xi = βi for i > m}.
Recall that (βi) is the point P that was chosen after the definition of the

number m.
The claim is immediate, for if there was a point S = (αi) ∈ K outside L,

then we could select in T (P,Q) a point R = (θi) with θi 6= αi for i ≤ m (recall
that T (P,Q) =

∏n

i=1
[ai, bi] with ai < bi for i ≤ m). But then R and S would

be two points in K the coordinates of which differ for at least m + 1 indices
(for the first m ones and for the j-th index for which m < j ≤ n and αj 6= βj),
which is not possible by the choice of m.

Seeing that all points of K have as their i-th coordinate βi for all i > m,
for simpler notations in what follows we shall suppress those coordinates, which
amounts the same as setting m = n.

Claim 3. If all the m coordinates of the points P ′, Q′ ∈ K are different, then
T (P ′, Q′) ⊂ K.

Indeed, just follow the proof given for Claim 1 by replacing P and Q by P ′

and Q′.

Claim 4. If T is the smallest closed rectangular region that contains K (which
is the intersection of all such closed regions), then K = T .

Let T =
∏m

i=1
[Ai, Bi]. Then Ai < Bi for all 1 ≤ i ≤ m (recall that T (P,Q) ⊆

K ⊆ T ). Now K ⊆ T , and if we show that (Ai) ∈ K and (Bi) ∈ K, then
T = T ((Ai), (Bi)) ⊆ K by Claim 3, hence K = T will follow.

We shall prove that (Bi) ∈ K, the proof of (Ai) ∈ K is similar. We
shall show by induction on k ≤ m that K has a point Mk of the form Mk =
(B1, . . . , Bk, αk+1, . . . , αm), and then (Bi) ∈ K follows by setting k = m.

Let Lj = {(xi) xj = Bj} be the ((m− 1)-dimensional) hyperplane of those
points that have j-th coordinate equal to Bj . By the definition of T we have
Lj ∩K 6= ∅ for all 1 ≤ j ≤ m, and for j = 1 this proves the existence of M1.
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Suppose now that Mk = (B1, . . . , Bk, αk+1, . . . , αm) ∈ K exists for some
k < m. If αk+1 = Bk+1, then we can set Mk+1 = Mk. Hence, we may assume
that αk+1 < Bk+1. Let R ∈ K ∩ Lk+1, and choose a point S ∈ T (P,Q)
(where T (P,Q) is the closed rectangular region considered in Claim 1) such
that S and R have different coordinates (this is possible, since T (P,Q) is the
product of non-degenerate intervals). Then, by Claim 3, we have T (R,S) ⊂ K,
and T (R,S) ∩ Lk+1 is a non-empty (m − 1)-dimensional closed rectangular
region lying in Lk+1 (note that R ∈ T (R,S) ∩ Lk+1). So there is a point
Nk+1 ∈ T (R,S)∩Lk+1 ⊂ K such that Mk and Nk+1 have different coordinates.
This is so because only the (k + 1)-st coordinate of a generic point Nk+1 from
T (R,S) ∩ Lk+1 is fixed to be Bk+1 – the other coordinates can vary in some
non-degenerate intervals –, and we have assumed that the (k+1)-st coordinate
αk+1 of Mk is smaller than Bk+1. Now Claim 3 asserts that T (Mk, Nk+1) ⊆ K,
and the right upper corner of T (Mk, Nk+1) is suitable as Mk+1, for its i-th
coordinate is the maximum of the i-th coordinates of Mk and Nk+1, and that
is Bi for all i ≤ k + 1.

With this the proof of Claim 4 is complete, and Theorem 1 follows.

3 Proof of Theorem 2

For every large M we construct an auxiliary mapping FM : Rn → Rn for which
the Jacobian is positive definite on a large part of Rn. The mapping FM will
be the gradient of the function

ΦM (x1, . . . , xn) =
(

(x1 − 1)2 +M
n
∑

i=2

x2
i

)(

(x1 + 1)2 +M
n
∑

i=2

x2
i

)

,

i.e.

FM (x1, . . . , xn) =
(

4x3
1−4x1+4x1M

n
∑

i=2

x2
i , . . . , 4M(x2

1+1)xj+4M2xj

n
∑

i=2

x2
i , . . .

)

,

where the generic term is for j = 2, . . . , n. Then the Jacobian of FM is the
Hessian

HM =

(

∂2ΦM

∂xi∂xj

)n

i,j=1

.

First we prove

Proposition 3 The Jacobian HM is positive definite outside the set

EM =

[

−1 +
1

128
, 1−

1

128

]

×

{

(x2, . . . , xn)

n
∑

i=2

x2
i ≤

1

M

}

. (1)
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Proof. By Sylvester’s theorem we need to show that the principal submatrices
of HM have positive determinant. The m×m principal submatrix H(m) of HM

is




























h1,1 8Mx1x2 · · · 8Mx1xj · · · 8Mx1xm

8Mx1x2 h2,2 · · · 8M2x2xj · · · 8M2x2xm

...
...

. . .
...

. . .
...

8Mx1xj−1 8M2x2xj−1 · · · 8M2xj−1xj · · · 8M2xj−1xm

8Mx1xj 8M2x2xj · · · hj,j · · · 8M2xjxm

8Mx1xj+1 8M2x2xj+1 · · · 8M2xjxj+1 · · · 8M2xj+1xm

...
...

. . .
...

. . .
...

8Mx1xm 8M2x2xm · · · 8M2xj−1xm+1 · · · hm,m





























,

where the diagonal elements are:

h1,1 = 12x2
1 − 4 + 4M

n
∑

i=2

x2
i ,

and for j ≥ 2

hj,j = 4M(x2
1 + 1) + 8M2x2

j + 4M2

n
∑

i=2

x2
i .

Even though the positivity of det(H(m)) can be shown using standard row and
column operators, some care has to be exercised since det(H(m)) is not (cannot)
be positive on the whole Rn, so we give some details.

First assume that none of the numbers xi, 1 ≤ i ≤ n is zero.
Divide the j-th row and j-th column of H(m) by xj for all 1 ≤ j ≤ m. We

obtain a matrix A = (ai,j) for which the determinant is of the same sign as the
determinant of H(m), so it is sufficient to consider A, which is of the form





























a1,1 8M · · · 8M 8M 8M · · · 8M
8M a2,2 · · · 8M2 8M2 8M2 · · · 8M2

...
...

. . .
...

...
...

. . .
...

8M 8M2 · · · aj−1,j−1 8M2 8M2 · · · 8M2

8M 8M2 · · · 8M2 aj,j 8M2 · · · 8M2

8M 8M2 · · · 8M2 8M2 aj+1,j+1 · · · 8M2

...
...

...
. . .

...
...

. . .
...

8M 8M2 · · · 8M2 8M2 8M2 · · · am,m





























,

where now

a1,1 = 12−
4

x2
1

+
4M

x2
1

n
∑

i=2

x2
i ,
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and

aj,j = 8M2 + 4M
x2
1 + 1

x2
j

+ 4M2

∑n

i=2
x2
i

x2
j

, j ≥ 2.

Subtract the last row from rows 2, 3, . . . , (m−1) to obtain the matrix B = (bi,j)
of the form





























b1,1 8M · · · 8M 8M 8M · · · 8M
0 b2,2 · · · 0 0 0 · · · b2,m
...

...
. . .

...
...

...
. . .

...
0 0 · · · bj−1,j−1 0 0 · · · bj−1,m

0 0 · · · 0 bj,j 0 · · · bj,m
0 0 · · · 0 0 bj+1,j+1 · · · bj+1,m

...
...

...
. . .

...
...

. . .
...

8M 8M2 · · · 8M2 8M2 8M2 · · · bm,m





























.

The off-diagonal entries in B are zero except for those in the first and last
rows and in the last column. In the first row all off-diagonal elements are 8M ,
in the last row they are 8M, 8M2, 8M2, · · · , 8M2, respectively, and the bj,m,
2 ≤ j ≤ m− 1, element in the last column is

bj,m = −4M
x2
1 + 1

x2
m

− 4M2

∑n

i=2
x2
i

x2
m

≤ −4M2. (2)

Finally, the diagonal entries are

b1,1 = a1,1 = 12−
4

x2
1

+
4M

x2
1

n
∑

i=2

x2
i , (3)

bj,j = 4M
x2
1 + 1

x2
j

+ 4M2

∑n

i=2
x2
i

x2
j

≥ 4M2, 2 ≤ j ≤ m− 1, (4)

and

bm,m = am,m = 8M2 + 4M
x2
1 + 1

x2
m

+ 4M2

∑n

i=2
x2
i

x2
m

. (5)

If
∑n

i=2
x2
i ≥ 1/M , then b1,1 ≥ 12. Now subtract (8M/b1,1)-times the first

column of B from the j-th column for all 2 ≤ j ≤ m to get the matrix C = (ci,j).
For it c1,1 = b1,1 ≥ 12, and this is the only non-zero element in the first row. In
the last row of C the j-th element is

cm,j = 8M2 − 8M(8M/b1,1) ≥ 8M2 − 8M(8M/12) = 8M2/3 > 0

for 2 ≤ j ≤ m− 1, while

cm,m = 8M2 + 4M
x2
1 + 1

x2
m

+ 4M2

∑n

i=2
x2
i

x2
m

− 8M(8M/b1,1)

≥ 8M2 − 8M(8M/12) = 8M2/3 > 0,
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and of course, in the last column we have cj,m = bj,m ≤ −4M2 for 2 ≤ j ≤ m−1.
Thus, if C1,1 is the matrix that we obtain from C by deleting the first row and
first column, then C1,1 is an (m− 1)× (m− 1) matrix of the form

Q =















+ −
+ −

. . .
...

+ −
+ + · · · + +















, (6)

where + indicates a positive element and − indicates a negative element, and all
other elements are zero. Every such Q has positive determinant – just eliminate
the off-diagonal elements in the last row by subtracting appropriate multiples
of the first (m− 1) rows from the last row to get an upper diagonal matrix with
positive diagonal elements.

This proves that det(C) > 0, and hence also det(H(m)) > 0 if
∑n

i=2
x2
i ≥

1/M .

Next, assume that x2
1 ≥ 1− ε with ε = 1/64. We distinguish two cases.

Case 1.
∑n

i=2
x2
i ≥ 4ε/M . In this case

b1,1 = c1,1 ≥ 12 +
−4 + 16ε

1− ε
≥ 8 + 4ε

(see (3)). Hence in the matrix C in the last row we have

cm,j = 8M2 − 8M(8M/b1,1) ≥ 8M2 − 8M(8M/(8 + 4ε)) > 0

for 2 ≤ j ≤ m− 1, so C1,1 is again of the form (6), and we get the positivity of
det(C) = det(B) = det(A) as before.

Case 2.
∑n

i=2
x2
i < 4ε/M (still assuming x2

1 ≥ 1− ε), which implies x2
i < 4ε/M

for all i ≥ 2. In this case (3) yields b1,1 ≥ 4, while (4) and (5) give

bj,j ≥
M2

ε
, 2 ≤ j ≤ m.

Now subtract (bm,j/bj,j)-times the j-th row of B from its last row for all 1 ≤
j ≤ m − 1 to get the matrix D = (di,j). D is upper diagonal with diagonal
entries dj,j = bj,j > 0 for 1 ≤ j ≤ m− 1 and (see also (2))

dm,m = bm,m−
m−1
∑

j=1

bm,j

bj,j
bj,m ≥ bm,m−

bm,1

b1,1
b1,m ≥ bm,m−

8M

4
8M >

M2

ε
−16M2 > 0.

Thus, D, and hence also the matrices B and A have positive determinants also
in this case.
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In summary, if none of the xj is zero and either
∑n

j=2
x2
j ≥ 1/M or if

x2
1 ≥ 1 − 1/64, then det(H(m)) > 0, which proves the positivity of det(H(m))

outside the set EM .

Finally, consider the case when (x1, . . . , xn) 6∈ EM but
∏n

j=1
xj = 0. If an xj ,

2 ≤ j ≤ n, is zero, then in the matrix HM the j-th row and j-th column is zero
except for the positive diagonal element hj,j ≥ 4M in them. For 2 ≤ j ≤ m in
this case by expanding the determinant H(m) according to the j-th row (during
which the contribution of the non-zero element hj,j is positive), we can just omit
that variable during the analysis of the determinant of H(m). Thus, we may
assume that x2 · · · · · xn 6= 0. But then necessarily x1 = 0 and

∑n

j=2
x2
j > 1/M .

In this case the first row and first column of HM is zero except for the entry

h1,1 = 12x2
1 − 4 + 4M

n
∑

i=2

x2
i = −4 + 4M

n
∑

i=2

x2
i > 0,

and then the preceding proof works with the modification that in creating the
matrix A we do not divide by x1 (but do divide with all other xj).

After these preparations the proof of Theorem 2 is immediate.

Proof of Theorem 2. Suppose K is not convex. Then there are points
P ′, Q′ ∈ K such that the segment connecting P ′ and Q′ has a point R that lies
outside K. Since K is compact, if P,Q ∈ K are the two closest points to R on
that segment such that R lies on the segment PQ, then this latter segment PQ
lies outside K except for its endpoints. We can apply a translation, dilation
and rotation (orthogonal transformation) to get a T : Rn → Rn which maps
P into the point (−1, 0, . . . , 0) and Q into (1, 0, . . . , 0). Since these operations
do not change the positive definiteness of a Jacobian, we may consider instead
of K the set T (K), and instead of the mapping F the mapping T ◦ F ◦ T−1 of
T (K) into Rn.

Thus, we may assume that (−1, 0, . . . , 0) and (1, 0, . . . , 0) are in K, but no
other point on the segment connecting these points lies in K. But then, using
again the compactness of K, there is an M > 0 such that the set EM from (1)
lies outside K. So FM is a C1 mapping that has positive Jacobian at every
point of K. But FM (−1, 0, . . . , 0) = (0, . . . , 0) = FM (1, 0, . . . , 0), hence FM is
not univalent in K. Since this contradicts the assumption in Theorem 2, the
proof is complete.

We have already mentioned that Theorem B implies its variant for open
convex sets. But in that form the converse is not true, for there are non-convex
open sets on which every mapping with positive definite Jacobian is univalent.
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Example 1. Let K = (−1, 1)n \ {(0, . . . , 0)} (where n ≥ 2). We claim that
even though K is not convex, every C1 mapping F on K with positive definite
Jacobian is univalent. To prove that, let x,y be two distinct points in K, and
consider the function

g(t) = (y − x)∗F(x+ t(y − x))

(where we consider the vectors as column vectors and the product is dot prod-
uct). If the segment connecting x and y does not pass through the origin, then
g is defined for all t ∈ [0, 1]. Its derivative is

g′(t) = (y − x)∗J(x+ t(y − x))(y − x),

where J denotes the Jacobian of F. So, by the assumed positive definiteness of
J , this is positive for all t ∈ [0, 1], hence g(1) > g(0). In particular, F(x) and
F(y) must be different.

If the origin lies on the segment connecting x and y, then g is not defined
for some t ∈ (0, 1), but it is defined for all t ∈ [0, α] with some α > 0. Let
z = x+ α(y − x). As we have just seen,

(z− x)∗F(z)− (z− x)∗F(x) := b > 0 (7)

with some b > 0. Apply a small translation so that the origin does not lie on the
translation of the segment connecting x and y, and let x′,y′, z′ be the images
of x,y, z under this translation. As above, we get

(y′ − z′)∗F(y′)− (y′ − x′)∗F(z′) > 0,

and since y′ − z′ is a positive constant multiple of z− x, this is the same as

(z− x)∗F(y′)− (z− x)∗F(z′) > 0. (8)

Finally, if the translation is small, then we have

(z− x)∗F(z′)− (z− x)∗F(z) > −
b

2
,

and

(z− x)∗F(y)− (z− x)∗F(y′) > −
b

2
.

If we add together the last two inequalities and (7) and (8), then we obtain

(z− x)∗F(y)− (z− x)∗F(x) > 0,

which proves that F(x) and F(y) are different.
A similar proof works if K = (−1, 1)n \ K0, where K0 is any compact set

which is disjoint from a dense set of segments (i.e. for every segment with

11



endpoints in (−1, 1)n there is arbitrarily close to it another such segment which
is disjoint from K0). Note that for a Cantor-type set K0 such a K is very far
from being convex. But its closure is convex, and this is the only thing one can
claim for an open connected K on which every mapping with positive Jacobian
is univalent (the proof that in such a case the closure of K must be convex
follows the proof of Theorem 2).

Acknowledgement. The author has learned from B. Nagy the problem raised
in the book [6] if the Gale-Nikaido theorem is true on convex sets.
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