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Abstract

It is shown that under fairly weak conditions on the measure the or-

thonormal polynomials have almost everywhere oscillatory behavior. A

simple lower bound for the amplitude of oscillation is also given in terms

of the measure and the equilibrium density of the support. This bound is

also shown to be exact in some situations.

1 Introduction and results

Let µ be a measure on the real line of compact support Σ, and consider the
orthonormal polynomials pn(x) = pn(µ, x) = γnx

n + · · · with respect to µ.
Assume that I ⊂ Σ is an open interval, and let w be the Radon-Nikodym
derivative of µ with respect to Lebesgue measure, so that dµ(x) = w(x)dx +
dµs(x) on I with the integrable function w and with a singular measure µs.

The usual pointwise asymptotic formulas for orthogonal polynomials on a
finite interval have the form

pn(x) ≈ A(x) sin(nρ(x) +B(x)),

and the oscillatory nature of the sequence {pn(x)}∞n=0 can easily be deduced
from this expression. However, all of the results concerning pointwise asymp-
totics are rather special, and there are no (probably there can be no) pointwise
asymptotics results without imposing some strong smoothness conditions on the
measure (like µs = 0 and w satisfies some kind of continuity condition). Never-
theless, the oscillatory behavior of the sequence {pn(x)}∞n=0 was established in
[7], where it was proven that if the support of µ is [−1, 1] and w(x) > 0 almost
everywhere, then for almost every x ∈ [−1, 1] the set of accumulation points of
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the sequence {pn(x)}∞n=0 is an interval J(x), symmetric about the origin, such
that

|J(x)| ≥ 2
√

2/π(w(x))−1/2(1− x2)−1/4. (1)

For the classical Jacobi polynomials (when dµ(x) = (1−x)α(1+x)β , α, β > −1)
we have equality in (1), so the lower bound in (1) is, in general, tight. Further-
more, oscillation is not necessary at every point, for example the orthonor-
mal Chebyshev polynomials (that are orthonormal with respect to the weight
w(x) = 1/

√
1− x2 on [−1, 1]) take only the values 0,±

√

2/π at x = 0.
Two features of this result are as follows.

• The support of µ has to be an interval.

• The condition w > 0 has to be assumed on the whole support, and it is
known that then it is a pretty strong condition.

The aim of this note is to answer two natural questions that emerge from
these features, namely

• what happens if the support of µ consists of several intervals, or even of a
general compact subset of the real line?

• Is the result true locally, i.e. on any subinterval I of the support where
w(x) > 0 almost everywhere?

We shall have a general result that answers these questions but under a
somewhat stronger local assumption, namely instead of w(x) > 0 almost ev-
erywhere we shall assume that logw is locally integrable on the interval I in
question. Some weak global assumption is also necessary, for which we take the
condition that µ belongs to the so called Reg class consisting of those measures
for which the leading coefficients γn of pn satisfy

lim
n→∞

γ1/n
n =

1

cap(Σ)
,

where cap(Σ) is the logarithmic capacity of the support Σ of the measure µ
(see [8], [10] or [14] for the necessary concepts of logarithmic potential theory
that are used in this work). See the book [11] for the Reg class, as well as
for various criteria for regularity. In particular, if the support Σ of µ consists
of several intervals and w(x) > 0 almost everywhere on them, then µ ∈ Reg.
As for the necessity of this µ ∈ Reg global condition, it is relatively easy
to construct an example showing the result below does not hold without the
µ ∈ Reg assumption.

To formulate the result in this paper note that if νS is the equilibrium mea-
sure of Σ, then νS is absolutely continuous on any subinterval I of the support
S, and we denote its density as ωΣ, which is the Radon-Nikodym derivative of
νS with respect to Lebesgue-measure. This ωΣ is a C∞ function on I.
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Theorem 1 With the previous notations assume that µ is in the Reg class,
and logw is locally integrable on a subinterval I of the support Σ of the measure
µ. Then for almost all x ∈ I the set of accumulation points of the sequence
{pn(µ, x)}∞n=0 is a closed (possibly infinite) interval, symmetric with respect to
the origin, of length

≥ 2
√
2

√

ωΣ(x)

w(x)
. (2)

When Σ = [−1, 1], then

ω[−1,1] =
1

π
√
1− x2

, x ∈ (−1, 1),

so in this case (2) gives back the bound (1).
There is an explicit form for the ωΣ in (2) if Σ consists of finitely many

intervals, and with it (2) becomes more concrete in this case. Indeed, if

Σ = ∪m
j=1[aj , bj ],

where the intervals on the right are disjoint and aj < bj < aj+1 for all j, then
(see [15, Section 14, (14.1)] or [11, Lemma 4.4.1])

ωΣ(t) =
1

π

∏m−1
j=1 |t− ξj |

∏m
j=1

√

|t− aj ||t− bj |
, (3)

where ξj lies in the interval (bj , aj+1) for all 1 ≤ j < m, and the ξj are the
unique solutions of the system of equations

∫ aj+1

bj

∏m−1
j=1 (t− ξj)

∏m
j=1

√

|t− aj ||t− bj |
= 0, j = 1, 2, . . . ,m− 1. (4)

It is beyond the tools of this paper to investigate if the bound (2) can be
improved or not, here we shall be content only with the case when Σ consists
of two intervals of equal lengths.

Example 2 Let Σ = [−β,−α] ∪ [α, β] with some 0 < α < β. There is a large
class of measures dµ(x) = w(x)dx with support Σ for which

lim sup
n→∞

|pn(x)| ≤
√
2

√

ωΣ(x)

w(x)

for all x ∈ Σ. So in the bound given in (2) for the amplitude of oscillation the
equality is attained in this case.
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It was informed to us by Peter Yuditskii [13] that, in general situations, the
amplitude of oscillation of {pn(x)} is bigger than

√

2ωΣ(w)/w(x). Indeed, if
Σ consists of several intervals and logw is integrable on Σ, then this is shown
by the L2 asymptotics for the orthogonal polynomials given in [15, Theorem
12.3]. To determine this amplitude (at least almost everywhere) seems to be a
non-trivial problem connected with the structure of the set E and the measure
µ. Our theorem gives a simple universal lower bound, and the one-interval case
as well as Example 2 show that this universal bound is the best possible in some
situations. Furthermore, our result is local, and in such a local form one cannot
expect improvement via asymptotic formulae for orthogonal polynomials since
so far no local asymptotic result exists in the literature.

We also state the following consequence of Theorem 1.

Corollary 3 Assume the conditions of Theorem 1. Let ϕ be a function on I,
and suppose that

lim sup
n→∞

|pn(µ, x)| ≤ ϕ(x), x ∈ I.

Then

w(x) ≥ 2
ωΣ(x)

ϕ2(x)
(5)

almost everywhere on I.

This corollary gives a quantitative lower bound for the measure on subin-
tervals of the support µ provided we know an upper bound for the orthonormal
polynomials. As has been mentioned before, (5) becomes equality for Jacobi
polynomials as well as for the polynomials from Example 2.

2 Proof of Theorem 1

By shrinking I if necessary, we may assume that the closure of I lies in the
interior of Σ.

A local form of the orthonormal polynomials

We shall use the Christoffel-Darboux kernels

Kn(x, y) =

n
∑

j=0

pj(x)pj(y), (6)

for which it is known that

Kn(x, y) = τn
pn+1(y)pn(x)− pn(y)pn+1(x)

y − x
, (7)
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with some positive constants τn. In the simple procedure below we employ an
often used idea (see e.g. [4]), namely apply the Christoffel-Darboux formula for
values y that are zeros of pn, in which case the second term in the numerator
on the right vanishes and Kn(x, y) becomes

τnpn+1(y)
pn(x)

y − x

with the fixed value of y.
As usual, we say that x ∈ I is a Lebesgue-point for w if

lim
r→0

1

2r

∫ r

−r

|w(x+ t)− w(x)|dt = 0,

and for the measure dµ(x) = w(x)dx+dµsing(x), we call x a Lebesgue-point for
µ if it is a Lebesgue-point for w and

lim
r→0

1

2r
µsing([x− r, x+ r]) = 0.

After the fundamental work [5] of D. Lubinsky on universality results on the
Christoffel-Darboux kernel a lot of work was devoted to local asymptotics for
Kn. What follows is the one of them that we need to prove our theorem. Let
E be the set of all x ∈ I which are Lebesgue-points for both µ and logw. Then
E has full measure in I. For each x ∈ E the following relations are known:

Kn

(

x+ a
w(x)Kn(x,x)

, x+ b
w(x)Kn(x,x)

)

Kn(x, x)
= (1 + on(1))

sinπ(a− b)

π(a− b)
(8)

(see Theorem [12, Theorem 1]) and

1

n
Kn(x+ a/n, x+ a/n) = (1 + on(1))

ωΣ(x)

w(x)
(9)

(see [12, Theorem 3]), where on(1) tends to 0 as n → ∞, and its convergence to
0 is uniform in a, b lying on any fixed subinterval of R.

We fix x ∈ E. In what follows let A ≥ 2 be a large number, and for a given
a ∈ [−A,A] and a given n let an be defined by the relation

a

nωΣ(x)
=

an
w(x)Kn(x, x)

.

In view of (9) we have

a− an = a

(

1− w(x)Kn(x, x)

nωΣ(x)

)

= on(1).
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Thus, (8) and (9) imply

Kn

(

x+ a
nωΣ(x) , x+ b

nωΣ(x)

)

nωΣ(x)/w(x)
=

Kn

(

x+ an

w(x)Kn(x,x)
, x+ bn

w(x)Kn(x,x)

)

nωΣ(x)/w(x)

= (1 + on(1))
sinπ(an − bn)

π(an − bn)

= (1 + on(1))
sinπ(a− b)

π(a− b)
.

Now if on the left we use (7), then we obtain

τn
pn+1

(

x+ b
nωΣ(x)

)

pn

(

x+ a
nωΣ(x)

)

− pn+1

(

x+ a
nωΣ(x)

)

pn

(

x+ b
nωΣ(x)

)

(b− a)/w(x)

= (1 + on(1))
sinπ(a− b)

π(a− b)
. (10)

The spacing of the zeros zn,k of pn about x (more precisely in any O(1/n)
neighborhood of x) obeys the law

lim
n→∞

n(zn,k+1 − zn,k)ωΣ(x) = 1

([12, Theorem 2]), so, for large n, pn has a zero which lies closer to x than
2/nωΣ(x). Thus, if A ≥ 2, then we can select a b = bn ∈ [−A,A] (that depends
on n and x) such that

pn

(

x+
bn

nωΣ(x)

)

= 0.

But then, with this choice

τnw(x)pn+1

(

x+
b

nωΣ(x)

)

pn

(

x+
a

nωΣ(x)

)

= (1 + on(1))
sinπ(a− b)

π
, (11)

and so

pn+1

(

x+
b

nωΣ(x)

)

6= 0

(a well-known fact that pn and pn+1 do not have common zeros), and since this
factor is independent of t, we can divide with it, and the rearrangement of (11)
shows that uniformly in a ∈ [−A,A]

pn

(

x+
a

nωΣ(x)

)

= (1 + on(1))αn(x) sinπ(a− bn)

with some non-zero αn(x). Finally, if we set here t = a/nωΣ(x), then we obtain

pn (x+ t) = (1 + on(1))αn(x) sin (ntρ(x) + βn(x)) , (12)
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uniformly in t ∈ [−A/n,A/n] where βn(x) = −πbn and ρ(x) = πωΣ(x) (recall
that A can be any fixed number, so, for simplicity, we wrote here A instead
A/ωΣ(x)). By replacing βn(x) by βn(x) + π if necessary, we may assume that
αn(x) > 0. This is the local form of pn(x+ t) we shall be working with. In what
follows shall often omit the argument x from αn(x), βn(x) and ρ(x).

We shall also need that αn(x) and βn(x) can be selected as measurable —
actually continuous — functions. Indeed, (12) shows that we may choose

αn(x) = max
t∈[−2/nωΣ(x),2/nωΣ(x)]

pn(x+ t),

and then βn(x) can be

βn(x) = arcsin(pn(x)/αn(x))

(set t = 0 in (12)).
(12) is closely related to a beautiful recent result of D. Lubinsky [6] on

local (relative) asymptotics on orthogonal polynomials in terms of their local
maximal values. In [6] t was also allowed to be a complex number, which has
the advantage that then the result can be differentiated, so [6] also contains
local asymptotics in the same spirit for the derivatives.

The largest and smallest accumulation points

Recall now (9), which implies

1

n

2n
∑

k=n+1

p2k(x+ t) = (1 + on(1))
ωΣ(x)

w(x)

uniformly in t ∈ [−A/n,A/n]. If we substitute here (12), then we obtain

1

n

2n
∑

k=n+1

(1 + ok(1))α
2
k sin

2(ktρ+ βk) = (1 + on(1))
ωΣ(x)

w(x)
, t ∈ [−A/n,A/n].

Write sin2(·) = (1− cos(2·))/2 and integrate the preceding relation with respect
to t over [0, A/n] to obtain

1

n

2n
∑

k=n+1

(1 + ok(1))α
2
k

(

A

2n
−
∫ A/n

0

cos(2ktρ− 2βk)dt

)

= (1 + on(1))
ωΣ(x)

w(x)

A

n
.

Here

∫ A/n

0

cos(2ktρ− 2βk)dt =
1

n

∫ A

0

cos(2(k/n)tρ− 2βk)dt = O(1)
1

n
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uniformly in A, n < k ≤ 2n and n, hence

1

n

2n
∑

k=n+1

(1 + ok(1))α
2
k

(

A

2n
+O

(

1

n

))

= (1 + on(1))
ωΣ(x)

w(x)

A

n
.

Since here A can be any large number, this relation implies

1

n

2n
∑

k=n+1

α2
k = 2(1 + on(1))

ωΣ(x)

w(x)
, (13)

and hence

α(x) := lim sup
n→∞

αn(x) ≥
√

2
ωΣ(x)

w(x)
. (14)

In what follows we shall use several times that (|·| denoting Lebesgue measure
on the real line) if J ⊂ [−1, 1] is an interval, then

∣

∣

∣

∣

{

t ∈
[

0,
2π

ρ

]

sin(tρ+ βn) ∈ J

}∣

∣

∣

∣

≥ |J |
ρ
. (15)

Let {ns} = {ns(x)} be a sequence such that

lim
ns→∞

αns
(x) = α(x)

(see (14)). There are two possibilities: α(x) < ∞ or α(x) = ∞. In the first case
if ε > 0 is given, then, in view of (15) (apply it with J = [1 − ε

2 , 1]), there is a
set Hns

(x) ⊆ [0, 2π/nsρ(x)] of measure ≥ ε/2nsρ(x) such that for large ns and
for t ∈ Hns,ε(x) we have

pns
(x+ t) = (1 + ons

(1))αns
(x) sin(nstδ(x) + βns

(x)) > (1− ε)α(x). (16)

On the other hand, if α(x) = ∞, then, for every M and for large ns there is a
set H∗

ns,M
(x) ⊆ [0, 2π/nsρ(x)] of measure > 1/2nsρ(x) such that for large ns

and for t ∈ H∗
ns,M

(x) we have

pns
(x+ t) = (1 + ons

(1))αns
(x) sin(nstδ + βns

(x)) > M. (17)

Now we are ready to prove that for almost all x ∈ I we have

lim sup
n→∞

pn(x) ≥
√

2
ωΣ(x)

w(x)
. (18)

We prove more (cf. (14)), namely that for almost all x ∈ I

lim sup
n→∞

pn(x) = α(x). (19)
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That the left hand side is at most as large as the right hand side is clear
from (12) and from the definition of α(x) in (14), so we only need to show that
the left hand side is at least as large as α(x) almost everywhere in I. Suppose
to the contrary that this is not the case, and we have

lim sup
n→∞

pn(x) < α(x)

on a set F ⊂ I of positive measure. Without loss of generality we may assume
that α(x) < ∞ on F or that α(x) = ∞ on F (the set of those x with one of
these properties must be of positive measure, and then just replace F with that
set).

Case I: α(x) < ∞ on F . In this case, by reducing F somewhat, we may assume
that for some M we have α(x) < M for all x ∈ F , and that

lim sup
n→∞

pn(x) < (1− ε)2α(x)

for some ε > 0. Redefine α(x) outside F to be 0, and let x ∈ E be a density
point of F and at the same time a Lebesgue-point for this α(x) (which is an
integrable function after the redefinition). Then for large ns = ns(x) as above,
the set

Kns
:=

{

t ∈ [0, 2π/nsρ(x)] x+ t ∈ F, α(x+ t) <
1

1− ε
α(x)

}

has measure > 2π/nsρ(x)− ε/2nsρ(x) (we used here the Lebesgue-point prop-
erty of x for α as well as the fact that x is a point of density of the set F ).
Since the measure of Hns,ε in (16) is bigger than ε/2nsρ(x), the intersection
Hns,ε ∩ Kns

cannot be empty. Now if t is a point in this intersection, then

pns
(x+ t) < (1− ε)2α(x+ t) < (1− ε)α(x)

by the fact that x + t ∈ F and t ∈ Kns
, but this contradicts (16) which must

also be true since t ∈ Hns,ε.

Case II: α(x) = ∞ on F . In this case, by reducing F somewhat, we may assume
that for all x ∈ F

lim sup
n→∞

pn(x) < M

for some M . Let x ∈ E be a density point of F . Then for large ns = ns(x) as
above, the set

K∗
ns

:= {t ∈ [0, 2π/nsρ(x)] x+ t ∈ F}
has measure > 2π/nsρ(x) − 1/2nsρ(x). Since the measure of H∗

ns,M
in (17) is

bigger than 1/2nsρ(x), there is a t ∈ H∗
ns,ε∩K∗

ns
for which we have pns

(x+ t) <
M because x+ t ∈ F , and at the same time pns

(x+ t) > M because t ∈ Hns,M

(see (17)).
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Either way we get a contradiction, and this contradiction proves the claim
that (19) is true almost everywhere on I.

In a completely similar manner can one prove that

lim inf
n→∞

pn(x) = −α(x) (20)

almost everywhere on I.

The set of accumulation points is an interval

Let E∗ ⊆ E be the set of points x ∈ E for which (12), (13), (19) and (20) are
true. Then E∗ has full measure in I.

In view of (19) and (20) the proof of the theorem will be complete if we
show that the set Λx of the accumulation points of {pn(x)}∞n=0 is an interval for
almost all x ∈ E∗.

Suppose this is not the case. Then there is a set F ⊂ E∗ of positive measure
and for each x ∈ F a closed interval Jx ⊂ (−α(x), α(x)), |Jx| > 0, with rational
endpoints such that Jx ∩ Λx = ∅. Then for all such x there is an Nx such that
pn(x) 6∈ Jx for n ≥ nx. Since the possible Jx, Nx form a countable set, we may
assume that Jx = J = [a, b] and Nx = N for all x ∈ F . We are going to show
that this assumption (existence of F ) leads to a contradiction.

We may also assume that 2ωΣ(x)/w(x) < M on F for some M (the set of
points x ∈ F with 2ωΣ(x)/w(x) < M must be of positive measure for some M).

There are now again two cases: α(x) < ∞ for almost all x ∈ F , or α(x) = ∞
on a subset of F of positive measure.

Case I. α(x) < ∞ for almost all x ∈ F . By decreasing F somewhat as before,
then we may assume that α(x) < M∗ on F with some M∗. For x ∈ F we
can choose ns = ns(x) so that pns

(x) → α(x). Since b < α(x), we get that
αns

(x) ∈ (b, 2α(x)) ⊆ (b, 2M∗) is true for all large ns. But then, for all such ns,
we obtain from (12) and (15) that the set

Hns,J = {t ∈ [0, 2π/nsρ(x)] αns
(x) sin(nstρ(x) + βns

(x)) ∈ J/2},

where J/2 is the interval J shrunk by factor 2 from its center, has measure
≥ |J |/4M∗nsρ(x).

Let x be a density point of F . For large ns > N the measure of the set

{t ∈ [0, 2π/nsρ(x)] x+ t ∈ F}

has measure > 2π/nsρ(x)−|J |/4M∗nsρ(x), so there is a t ∈ Hns,J that lies also
in that set, as well. But then on the one hand pns

(x+ t) 6∈ J by the choice of J
and F , and on the other hand pns

(x+t) = (1+o(1))αns
(x) sin(nstρ(x)+βns

(x))
must lie in J because αns

(x) sin(nstρ(x)+βns
(x)) lies in the middle half interval

J/2. This is a contradiction.
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Case II. α(x) = ∞ on a subset of F of positive measure. By decreasing F we
may assume α(x) = ∞ for all x ∈ F .

Let x ∈ F be arbitrary. Since 2ωΣ(x)/w(x) < M on F , (13) shows that for
large n there can be at most n/4 indices k ∈ [n+1, 2n] for which αk(x) > 3

√
M .

So for all large n there is necessarily a k ∈ [n+1, 2n] such that αk(x), αk−1(x) ≤
3
√
M . In particular, if Λx is the set of accumulation points of {αn(x)}∞n=1, then

Λx has a point in [0, 3
√
M ]. Next we show, that there is an L > 1 (actu-

ally independent of x) such that Λx has an element in each of the intervals
[(2L)l3

√
M, (2L)l+13

√
M ], l = 0, 1, . . ..

The orthonormal polynomials pn(x) obey a three-term recurrence

xpn(x) = anpn+1(x) + βnpn(x) + an−1pn−1(x).

Since the support of the generating measure is compact, the recurrence coeffi-
cients an, bn are bounded. Also, by a result of Dombrowski [2] lim inf an > 0
unless µ is a singular measure, which is certain not the case. Thus, if the support
Σ of µ lies in the interval [−S, S], then there is an L such that

|pn+1(x)| ≤
L

2
(|pn(x)|+ |pn−1(x)|)

for all x ∈ [−2S, 2S]. In particular, for x ∈ F and |t| < S

|pn+1(x+ t)| ≤ L

2
(|pn(x+ t)|+ |pn−1(x+ t)|),

and if we use here the formula (12), then we obtain for large n and |t| ≤ A/n
(with any fixed A > 0)

αn+1(x)| sin ((n+ 1)tρ(x) + βn+1(x)) | ≤ L(αn(x)| sin (ntρ(x) + βn(x)) |
+ αn−1(x)| sin ((n− 1)tρ(x) + βn−1(x)) |).

Choose now a t ∈ [0, 2π/(n+ 1)ρ(x)] for which sin((n+ 1)tρ(x) + βn+1(x)) = 1
and conclude the inequality

αn+1(x) ≤ L(αn(x) + αn−1(x)). (21)

Let l ≥ 0 be an integer. We have seen that there are arbitrarily large k such
that αk(x), αk−1(x) ≤ 3

√
M , and, since λ(x) = ∞, after every such k there is

an n for which αn(x) > (2L)l3
√
M . Now if n is the first such n following k,

then (21) shows that we must have αn(x) ∈ [(2L)l3
√
M, (2L)l+13

√
M ]. Since

this happens infinitely often, {αn(x)} has, indeed, an accumulation point in the
interval [(2L)l3

√
M, (2L)l+13

√
M ].

Let x be a density point for F , and choose the smallest l such that (2L)l3
√
M >

b (recall that J = [a, b] is the interval such that pn(x) 6∈ J for x ∈ F and
n > N). According to what we have just proven, the sequence {αn(x)} has
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infinitely many elements in the interval (b, 3(2L)l+1
√
M ], say αns

(x) are such
elements. For all such ns, we obtain from (12) and (15) that the set

Hns,J = {t ∈ [0, 2π/nsρ(x)] αns
(x) sin(nstρ(x) + βns

(x)) ∈ J/2},

where J/2 is the interval J shrunk by factor 2 from its center, has measure
≥ |J |/6ns(2L)

l+1
√
Mρ(x). For large ns > N the set

K∗
ns

:= {t ∈ [0, 2π/nsρ(x)] x+ t ∈ F}

has measure > 2π/nsρ(x)− |J |/12ns(2L)
l+1

√
Mρ(x), so there is a t ∈ Hns,J ∩

K∗
ns
. But then we obtain a contradiction as before: on the one hand pns

(x +
t) 6∈ J by the choice of J and F , and on the other hand pns

(x + t) = (1 +
o(1))αns

(x) sin(nstρ(x) + βns
(x)) must lie in J because αns

(x) sin(nstρ(x) +
βns

(x)) lies in the middle half interval J/2.
With this the proof of Theorem 1 is complete.

3 Details on Example 2

In view of (3)–(4) the equilibrium density of Σ = [−β,−α] ∪ [α, β] is

ωΣ(t) =
1

π

|t|
√

|t2 − α2||t2 − β2|
, t ∈ Σ.

Let the weight function w(t) = dµ(t)/dt be defined on Σ by

w(t) = |t| ϕ(t2)
√

|t2 − α2||t2 − β2|
,

where ϕ is any continuously differentiable positive function on [α2, β2]. Consider
also

W (u) =
ϕ(u)

√

|u− α2||u− β2|
on the interval [α2, β2], and let Pn be the orthonormal polynomials with respect
to W . The function ξ = 2(u−α2)/(β2 −α2)− 1 maps [α2, β2] into [−1, 1], and
set

ρ(ξ) = W (u)
2

β2 − α2
=:

θ(ξ)
√

1− ξ2
,

where θ is a continuously differentiable positive function. Then, by a result of
Bernstein [1] and Szegő [9, Chap. XII], if Φm are the orthonormal polynomials
with respect to ρ, we have uniformly in t

Φm(cos t) =

√

2

π
ℜ
(

e−imϕπ(eit)
)

+O(m1/2),

12



where

π(z) = exp

{

1

4π

∫ 2π

0

eit + z

eit − z
log θ(cos t)dt

}

,

for which θ(cos t) = 1/|π(eit)|2. Since the equilibrium density of [−1, 1] is

1/π
√

1− ξ2, this implies

lim sup
m→∞

|Φm(ξ)| ≤
√
2

√

ω[−1,1](ξ)

ρ(ξ)
,

which translates into

lim sup
m→∞

|Pm(u)| ≤
√
2

√

ω[α2,β2](u)

W (u)
. (22)

The same argument gives the same conclusion for the weight function

W̃ (u) = uW (u), u ∈ [α2, β2]

and for the corresponding orthonormal polynomials P̃n:

lim sup
m→∞

|P̃m(u)| ≤
√
2

√

ω[α2,β2](u)

W̃ (u)
=

√
2

√

ω[α2,β2](u)

uW (u)
. (23)

After these let us turn to the orthonormal polynomials pn(x) = γnx
n + · · ·

with respect to w on Σ = [−β,−α] ∪ [α, β]. Because of the symmetry of w and
Σ, these pn are even for even n and odd for odd n. Let first n be even, say
n = 2m. Using that the monic orthogonal polynomial is the one that minimizes
the L2 integral with the given weight (see e.g. [11, (3.10)]) we have

∫

Σ

(

1

γn
pn(x)

)2

w(x)dx = min
hn(x)=xn+···

∫

Σ

h2
n(x)w(x)dx,

and by simple symmetrization (i.e. considering (hn(x) + hn(−x))/2 instead of
hn), in the minimum on the right the polynomials hn can be taken to be even.
But then the substitution u = x2 shows that

∫ β2

α2

(

1

γn
pn(

√
u)

)2

W (u)du = min
hn(

√
u)=um+···

∫ β2

α2

h2
n(
√
u)W (u)du,

so (1/γn)pn(
√
u) is the m-th monic orthogonal polynomial with respect to W .

The u = x2 substitution also shows that the L2 norm of pn(
√
u) with respect

to W is 1, so we have pn(x) = Pm(x2). Since

ωΣ(x) = |x|ω[α2,β2](x
2),

13



we can see that (22) is the same as

lim sup
n=2m→∞

|pn(x)| ≤
√
2

√

ωΣ(x)

w(x)
. (24)

In a similar fashion, if n = 2m+ 1 is odd, then pn is odd, and

∫ β2

α2

(

1

γn
pn(

√
u)

)2

W (u) =

∫ β2

α2

(

1

γn

p2m+1(
√
u)√

u

)2

uW (u)du

is the minimal value of the L2 integrals for W̃ (u) = uW (u) among all monic
polynomials of degree m, and we can conclude as before that p2m+1(

√
u)/

√
u =

P̃m(u), i.e. p2m+1(x) = xP̃m(x2). But then (23) gives

lim sup
n=(2m+1)→∞

|pn(x)| = |x| lim sup
m→∞

|P̃n(x
2)| ≤ |x|

√
2

√

ω[α2,β2](x2)

W̃ (x2)

=
√
2

√

x2ω[α2,β2](x2)

x2W (x2)
=

√
2

√

|x|ω[α2,β2](x2)

|x|W (x2)
=

√
2

√

ωΣ(x)

w(x)
.

This and (24) prove the claim in Example 2.
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59(2016), 211-224.

[13] P. Yuditskii, private communication.

[14] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo,
1959

[15] H. Widom, Extremal polynomials associated with a system of curves in the
complex plane, Adv. Math., 3(1969), 127–232.

MTA-SZTE Analysis and Stochastics Research Group
Bolyai Institute, University of Szeged
Szeged, Aradi v. tere 1, 6720, Hungary

and

Department of Mathematics and Statistics, University of South Florida
4202 E. Fowler Ave, CMC342, Tampa, FL 33620-5700, USA

totik@mail.usf.edu

15


