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Abstract

This paper deals with best possible estimates for the coefficients of
polynomials in terms of the supremum norm of the polynomials on a
given compact subset K of the plane. The results solve a problem of D.
Dauvergne.

Let K be a compact set on the plane of positive logarithmic capacity cap(K)
(for the notions of logarithmic potential theory see the book [3]). A classical
result of Fekete and Szegő implies that if pn(z) = zn+ · · · is a monic polynomial,
then (see e.g. [3, Theorem 5.5.4])

∥pn∥K ≥ cap(K)n, (1)

where ∥ · ∥K denotes the supremum norm on K. Hence, for monic polynomials

lim inf
n→∞

1

n
log ||pn||K ≥ log cap(K).

D. Dauvergne asked ([1]) if one has the same conclusion if, instead of monic, one
only has one of the coefficients, say am (the coefficient of zm), in pn, satisfies
|am| ≥ 1 for some m with n− b log n ≤ m ≤ n. Here b is a fixed constant.

This is a natural problem related to the classical (1). The present simple
note grew out of this problem — it will follow that the answer is YES even for
the larger range of coefficients am, n− o(n) ≤ m ≤ n.

In general, we can ask if pn(z) =
∑

j ajz
j is a polynomial of degree n, then

what upper estimates are true on the coefficients aj in terms of K and the norm
∥pn∥K . Our first result provides such a simple estimate.

Theorem 1 For a compact set K ⊂ C of positive capacity set

RK = sup
z∈K

|z|.

∗AMS Classification: 30C10
Key words: polynomials, coefficients, estimates, supremum norm, general compact sets

†Supported by NSF DMS 1564541

1



Then for any polynomial pn(z) =
∑n

k=0 akz
k of degree n and for any 0 ≤ k ≤ n

we have

|ak| ≤
(
n

k

)
(RK)n−k∥pn∥K

1

cap(K)n
(2)

As an immediate consequence we obtain the first half of the following corol-
lary that gives a positive answer to the problem mentioned in the beginning of
this paper.

Corollary 2 Let K ⊂ C be a compact set of positive capacity, and let pn(z) =∑n
k=0 ak,nz

k be polynomials of degree n = 1, 2, . . .. Then for any sequence {in}
with in = o(n) we have

lim sup
n→∞

(
|an−in,n|
∥pn∥K

)1/n

≤ 1

cap(K)
. (3)

This is best possible:

• for any sequence {in} of integers with in = o(n) there are pn for which

lim
n→∞

(
|an−in,n|
∥pn∥K

)1/n

=
1

cap(K)
, (4)

• if in ̸= o(n), then there is a K and a sequence of polynomials pn such that

lim sup
n→∞

(
|an−in,n|
∥pn∥K

)1/n

>
1

cap(K)
. (5)

Proof of Theorem 1. For k = n the claim is immediate from (1), so in what
follows we assume k < n. Below we set k = n− i, and then i ≥ 1.

We write

pn(z) = an

n∏
j=1

(z − zj).

If µK is the equilibrium measure of K, then

log |an|+
n∑

j=1

∫
log |z − zj |dµK(z) =

∫
log |pn(z)|dµK(z) ≤ log ∥pn∥K ,

and hence

log |an|+
n∑

j=1

(∫
log |t− zj |dµK(t)− log cap(K)

)
≤ log ∥pn∥K − n log cap(K).

On the left ∫
log |t− ξ|dµK(z)− log cap(K) = gC\K(ξ)
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is the Green’s function of the unbounded component of the complement of K
with pole at infinity (see e.g. [3, Sec. 4.4]), therefore we have

log |an|+
n∑

j=1

gC\K(zj) ≤ log ∥pn∥K − n log cap(K),

which automatically implies

log |an|+
i∑

j=1

gC\K(zj) ≤ log ∥pn∥K − n log cap(K)

for any 1 ≤ i ≤ n.
Let ∆R(z0) be the closed disk of radius R about the point z0, and let ∆R =

∆R(0). Since K ⊂ ∆RK
, and the Green’s function is a monotone decreasing

function of its domain, we have for all |zj | > RK the inequality

gC\K(zj) ≥ gC\∆RK
(zj) = log(|zj |/RK),

where we have used that

gC\∆R
(z) = log(|z|/R)

(as easily follows from the defining properties of Green’s functions). The in-
equality

gC\K(zj) ≥ log(|zj |/RK),

also holds if |zj | ≤ RK (the right-hand side is then non-positive), therefore we
can conclude

log |an|+
i∑

j=1

log(|zj |/RK) ≤ log ∥pn∥K − n log cap(K),

i.e.

|an||z1||z2| · · · |zi| ≤ Ri
K∥pn∥K

1

cap(K)n
.

But the labelling of the zeros was arbitrary, therefore we have the same
inequality with any i different indices:

|an||zj1 ||zj2 | · · · |zji | ≤ Ri
K∥pn∥K

1

cap(K)n
.

Now an−i = ±anσi, where σi is the i-th elementary symmetric polynomial of
the zeros zj , and, by summing up the previous inequalities, we obtain (2) for
k = n− i.

The next proposition shows that, in general, one cannot have a better esti-
mate than what was given in Theorem 1.
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Proposition 3 For every R and every ε > 0 there is a K ⊆ ∆R and there are
polynomials pn(z) =

∑n
k=0 akz

k of degree n = 1, 2, . . . such that for all k

|ak| ≥
(
n

k

)
(R− ε)n−k∥pn∥K

1

cap(K)n
.

Proof. Just set K = ∆ε(R − ε) (the disk of radius ε about the point R − ε)
and

pn(z) = (z − (R− ε))n =

n∑
k=0

(−1)n−k

(
n

k

)
(R− ε)n−kzk,

for which ∥pn∥K = εn and cap(K) = ε, so the claim is obvious.

Now we are ready to prove Corollary 2.

Proof of Corollary 2. In view of (2) for k = n − in it is sufficient to show
that if in = o(n), then (

n

in

)1/n

→ 1.

But this follows from (
n

in

)
≤ nin

in!

and the fact that (see [2], formulae (1) and (2))

m! ≥
√
2πmm+1/2

em−1/(12m+1)
, m = 1, 2, . . . .

Indeed, then (
n

in

)1/n

≤
(
n

in

)in/n (ein−1/(12in+1)

√
2πin

)1/n

,

and for in/n → 0 both factors on the right tend to 0 because (in/n) log(n/in) →
0 (the function x log 1/x has zero right limit at 0). This proves (3).

To prove (4) let Tm(z) = zm + · · · be the Chebyshev polynomial of the set
K of degree m. We have (see [3, Corollary 5.5.5])

∥Tm∥1/mK → cap(K), m → ∞,

so
∥Tn−in∥

1/(n−in)
K → cap(K), n → ∞,

which implies, in view of in = o(n),

∥Tn−in∥
1/n
K → cap(K), n → ∞. (6)
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Add to Tn−in (which is of degree n− in) some term εnz
n, where εn → 0 so fast

that along with (6) we also have for pn(z) = εnz
n + Tn−in(z)

∥pn∥1/nK → cap(K).

Since an−in = 1 for pn, (4) follows.
Finally, for R − ε > 1 Proposition 3 proves (5). Indeed, if in ≥ cn for

infinitely many n with some c > 0, then for cn ≤ in ≤ n/2 we have with
m = [cn] (

n

in

)
≥

(
n

m

)
=

n(n− 1) · · · (n−m+ 1)

m(m− 1) · · · 1
≥

( n

m

)m

,

and so (
n

in

)1/n

≥ (
1

c
)c > 1,

while for in ≥ n/2
((R− ε)in)1/n ≥

√
R− ε > 1.

In either case, if we set k = n − in in the polynomials in Proposition 3, the
inequality (5) follows.

For coefficients of low order (2) yields, in the spirit of Corollary 2, that if
jn = o(n), then

lim sup
n→∞

(
|ajn,n|
∥pn∥K

)1/n

≤ RK

cap(K)
. (7)

Our last result shows that while, as we have seen, among all sets this cannot be
improved, for individual K’s it can.

We say that K is a regular set if the Green function gC\K(z) (considered to
be extended to 0 outside the unbounded component of C\K) is continuous, i.e.
gC\K(z) = 0 for all z ∈ K.

Theorem 4 Let K be regular, and let LK = gC\K(0) be the value of the Green’s
function of the complement of K at the origin. Then for jn = o(n) and for any
polynomials pn(z) =

∑n
j=0 aj,nz

j of degree n = 1, 2, . . . we have

lim sup
n→∞

(
|ajn,n|
∥pn∥K

)1/n

≤ eLK . (8)

Furthermore, this estimate is sharp:

• for any jn = o(n) there are polynomials pn with

lim
n→∞

(
|ajn,n|
∥pn∥K

)1/n

= eLK , (9)
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• for any jn ̸= o(n) there is a K and there are polynomials pn with

lim sup
n→∞

(
|ajn,n|
∥pn∥K

)1/n

> eLK . (10)

In particular, if 0 belongs to a bounded component of C \ K or if 0 ∈ K,
then

lim sup
n→∞

(
|ajn,n|
∥pn∥K

)1/n

≤ 1.

To compare (7) and (8) consider the segment Kα connecting the points e±iα

for an 0 < α ≤ π/2. In this case RKα = 1, cap(Kα) = 1
2 sinα (because the

capacity of a line segment is one quarter of its length, see [3, Table 5.1]), while
using that the Green’s function of the complement of the segment [−1, 1] is
log |z +

√
z2 − 1|, simple computation shows that LKα = log cot(α/2). Hence,

the right-hand side of (7) is 2/ sinα = 1/ sin(α/2) cos(α/2), while the right-hand
side of (8) is cot(α/2) = cos(α/2)/ sin(α/2). For example, the latter one is 1 for
α = π/2, while the former one is 2.

Proof. Let ε > 0, and consider the level set

G = {z gC\K(z) < LK + ε}.

The Green’s function is subharmonic, hence upper semi-continuous. Therefore
G is an open set that contains K and contains the origin, say it contains the
closed disk ∆δ, δ > 0. By the Bernstein-Walsh lemma ([3, Theorem 5.5.7(a)])

|pn(z)| ≤ ∥pn∥Ken(LK+ε), z ∈ G.

Cauchy’s formula written for the circle about the origin and of radius δ yields

|ajn,n| ≤

∣∣∣∣∣ 1

2πi

∫
|ξ|=δ

pn(ξ)

ξjn+1
dξ

∣∣∣∣∣ ≤ ∥pn∥Ken(LK+ε)

δjn
,

and if we take here n-th root we obtain

lim sup
n→∞

(
|ajn,n|
∥pn∥K

)1/n

≤ eLK+ε,

which proves (8) since ε > 0 is arbitrary.
(9) is trivial for pn(z) = εnz

n + xjn with sufficiently small εn > 0 if 0
belongs to K or to a bounded connected component of C\K. Hence in proving
(9) we may assume that 0 belongs to the unbounded component of C \ K.
Consider 1/z and its best approximant Qm of degree m on K. Since 0 belongs
to the unbounded component of C \K, the function 1/z is analytic on the so-
called polynomial convex hull Pc(K) of K (which is the union of K with all the
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bounded components ofC\K), and this latter set has connected complement, so
the Bernstein-Walsh theorem (see Theorem 3 in [4, Sec. 3.3] or use [3, Theorem
6.3.1]) gives (note that LK = LPc(K))

lim
n→∞

∥∥∥∥1z −Qn−1−jn(z)

∥∥∥∥1/(n−1−jn)

K

= e−LK ,

which implies first

lim
n→∞

∥∥∥∥1z −Qn−1−jn(z)

∥∥∥∥1/n
K

= e−LK ,

then
lim sup
n→∞

∥1− zQn−1−jn(z)∥
1/n
K ≤ e−LK ,

and finally

lim sup
n→∞

∥∥zjn − zjn+1Qn−1−jn(z)
∥∥1/n
K

≤ e−LK ,

because (
max
z∈K

|z|jn
)1/n

→ 1.

Since for pn(z) = zjn − zjn+1Qn−1−jn(z) we have ajn = 1, we can conclude

lim sup
n→∞

(
|ajn,n|
∥pn∥K

)1/n

≥ eLK ,

and (9) follows from here and from (8) (if zjn+1Qn−1−jn(z) happens to have
smaller than n degree, just add to it εnz

n with some very small εn). This proves
(9).

Now let jn ̸= o(n), say jn > cn for infinitely many n with some c > 0. (7)
and (9) shows that

RK

cap(K)
≥ eLK

if 0 belongs to the unbounded component of C \ K. Choose now an R and
small ε such that R − ε = 1 and (1/c)c > R, and consider the set K and the
polynomials pn from the proof of Proposition 3. For cn < jn < n− cn we have

|ajn,n|
∥pn∥K

=

(
n

jn

)
(R− ε)n−jn

1

εn
=

(
n

jn

)
1

εn
,

and if we take here n-th root and follow the argument in the proof of (5) we get
that

lim sup
n→∞

(
|ajn,n|
∥pn∥K

)1/n

≥ (1/c)c

ε
>

R

ε
=

RK

cap(K)
≥ eLK .
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This settles (10) when there are infinitely many jn with cn < jn < 1−cn for
some c. If this is not the case, then there is a subsequence of the natural numbers
along which nm− jnm = o(nm), and then consider any K with 1/cap(K) > eLK

(say K = [0, 1]) and the polynomials pn from (4), for which (4) with inm =
nm − jnm yields

lim
m→∞

( |ajnm ,nm |
∥pnm∥K

)1/nm

=
1

cap(K)
> eLK .
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