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Abstract

Light drives photosynthesis and informs plants about their surroundings. Regarded as a multifunctional signaling 
molecule in plants, nitric oxide (NO) has been repeatedly demonstrated to interact with light signaling cascades to 
control plant growth, development and metabolism. During early plant development, light-triggered NO accumulation 
counteracts negative regulators of photomorphogenesis and modulates the abundance of, and sensitivity to, plant 
hormones to promote seed germination and de-etiolation. In photosynthetically active tissues, NO is generated at 
distinct rates under light or dark conditions and acts at multiple target sites within chloroplasts to regulate photosyn-
thetic reactions. Moreover, changes in NO concentrations in response to light stress promote plant defenses against 
oxidative stress under high light or ultraviolet-B radiation. Here we review the literature on the interaction of NO with 
the complicated light and hormonal signaling cascades controlling plant photomorphogenesis and light stress re-
sponses, focusing on the recently identified molecular partners and action mechanisms of NO in these events. We 
also discuss the versatile role of NO in regulating both photosynthesis and light-dependent stomatal movements, two 
key determinants of plant carbon gain. The regulation of nitrate reductase (NR) by light is highlighted as vital to adjust 
NO production in plants living under natural light conditions.

Keywords:  De-etiolation, germination, light stress, nitric oxide, photomorphogenesis, photoreceptor, phytochrome, reactive 
oxygen species, stomata, UV-B.

Introduction

Light not only drives photosynthesis to produce sugars but 
is also one of the most reliable abiotic cues that informs 
plants about their surrounding environment. Plants are ex-
posed to an ever-changing light environment, influenced by 
factors as diverse as shading from clouds and overlapping 
leaves, to gradual variations in the number of consecu-
tive hours of light (i.e. photoperiod) throughout the year. 
Due to their extraordinary ability to continually monitor 
light quality, intensity, duration and direction, plants can 

coordinate flexible short- and long-term responses that fa-
cilitate growth and survival. Light-regulated development 
responses, also regarded as plant photomorphogenesis, in-
clude seed germination, photoperiodic flowering, shade 
avoidance and phototropism (Chen et al., 2004; Franklin and 
Quail, 2010). Light perception is also vital to adjust the cir-
cadian clock, allowing the synchronization of plant growth 
and metabolism with the daily light/dark cycle (Sanchez 
et al., 2020).
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The information provided by the light environment is per-
ceived by multiple plant photoreceptors: UV-B RESISTANCE 
LOCUS8 (UVR8) detects ultraviolet-B radiation (UV-B, 
280–315  nm), phototropins (PHOTs) and cryptochromes 
(CRYs) both sense UV-A (315–400 nm) and blue light (BL, 
320–500 nm), and phytochromes (PHYs) are sensitive to red 
(RL, max=660  nm) and far-red (FRL, max=730  nm) light. 
These photoreceptors convert light signals into physiological 
responses by initiating intricate downstream signal trans-
duction cascades. As natural light is composed of different 
wavelengths, plants living under natural light conditions are 
regularly exposed to a range of wavelengths at the same time, 
which causes the simultaneous activation of multiple photo-
receptors of the same or distinct families. The integration of 
stimuli from different regions of the light spectrum relies on 
multiple shared hubs in the signal transduction pathways trig-
gered by each photoreceptor. Examples of these hub signaling 
proteins include ubiquitin ligases, notably CONSTITUTIVE 
PHOTOMORPHOGENESIS1 (COP1), and transcription 
factors (TFs) such as ELONGATED HYPOCOTYL5 (HY5) 
and PHYTOCHROME INTERACTING FACTORs (PIFs; 
Xu et al., 2015; Jing and Lin, 2020). HY5 and its homolog HYH 
stimulate photomorphogenic development by binding dir-
ectly to promoters of a large number of photomorphogenesis-
related genes (Osterlund et al., 2000; Lee et al., 2007), whereas 
PIFs and PIF-like (PILs) proteins are major repressors of 
photomorphogenic responses (Leivar and Quail, 2011; Jing 
and Lin, 2020).

Plant hormones and other small signaling molecules are also 
responsible for shaping plant growth and development in re-
sponse to the light environment (Seo et al., 2009; Vanhaelewyn 
et  al., 2016). The small molecule nitric oxide (NO) has 
emerged as part of the signaling cascades controlling light-
dependent plant responses such as seed germination, stomatal 
movements, light stress responses, and photosynthesis, amongst 
others (Beligni and Lamattina, 2000; Lozano-Juste and León, 
2011; Melo et  al., 2016; Li et  al., 2018). The first report on 
the influence of NO on plant photomorphogenesis dates back 
to the year 2000, when Lamattina’s group revealed that NO 
donors could replace, to different degrees, the light require-
ments for repressing hypocotyl and internode elongation, and 
promoting seed germination and seedling greening (Beligni 
and Lamattina, 2000). Since then, light was shown to regu-
late NO metabolism at several steps of the plant life cycle, and 
some new mechanisms behind the crosstalk between NO and 
photoreceptor-mediated signaling cascades have been charac-
terized (Lozano-Juste and León, 2011; Melo et  al., 2016; Li 
et  al., 2018). In this review, we cover recent breakthroughs 
on NO signaling action in plant photomorphogenesis, light-
dependent stomatal movement, photosynthetic reactions, and 
light stress responses, and highlight how NO metabolism is af-
fected by distinct light conditions. As different light-controlled 
processes can affect the ability of plants to germinate, acclimate, 
survive and reproduce in natural and agricultural ecosystems, 
we also discuss the practical implications and biotechnological 
relevance of further understanding NO and light signaling 
interaction as a means to enhance productivity and stress re-
sistance of crop plants.

Shedding light on nitric oxide metabolism

Nitric oxide metabolism in plants: a brief overview

The capacity of leaves to emit NO into the atmosphere has 
been reported well before the recognition of this gaseous free 
radical as a critical signaling molecule in plant development 
and stress responses (Klepper, 1979). Despite this, the mech-
anisms by which plant cells control NO homeostasis are still 
under intense debate (Astier et al., 2018; Kolbert et al., 2019a; 
León and Costa-Broseta, 2020).

Various reductive and oxidative routes for NO production 
in plants have been proposed, but the in vivo relevance and mo-
lecular mechanisms of NO biosynthesis have not been clari-
fied so far (Fig.  1). In his pioneering study, Klepper (1979) 
demonstrated that treatment with photosynthesis-inhibiting 
herbicides induced NO emission from soybean leaves under 
dark conditions, in a process that was dependent on nitrite 
(NO2

-) accumulation. The relationship between nitrogen me-
tabolism and NO synthesis was further established by Dean 
and Harper (1986), who suggested the involvement of nitrate 
reductase (NR) in NO synthesis. NR catalyzes the reduction 
of nitrate (NO3

-) to NO2
-, which is further reduced to ammo-

nium by nitrite reductase, before being converted into amino 
acids (Yoneyama and Suzuki, 2019). However, NO2

- is now 
widely considered an important substrate for NO synthesis in 
plants, as it can also be reduced to NO (Astier et  al., 2018; 
Kolbert et al., 2019a).

In vitro and in vivo assays have indicated that NR is indeed 
able to reduce NO2

- to NO, which may account for 1% of 
its overall activity (Yamasaki et al., 1999; Rockel et al., 2002; 
Planchet et al., 2005). In addition to directly generate NO, NR 
plays a pivotal role of providing NO2

- to be reduced to NO 
by other pathways (Salgado et al., 2013). Non-enzymatic re-
duction of NO2

- to NO occurs at low pH and in the presence 
of reductants (as phenolic acids), conditions that are found in 
the apoplast (Bethke et al., 2004). NO2

- can also be reduced 
to NO by the electron transport chains of plant mitochon-
dria and chloroplasts (Gupta et  al., 2005; Jasid et  al., 2006; 
Alber et  al., 2017), and by plasma membrane-bound nitrite: 
NO reductase activity in roots (Stöhr et al., 2001). More re-
cently, the molybdoenzyme amidoxime-reducing component 
of the alga Chlamydomonas reinhardtii was demonstrated to have 
a NO-forming nitrite reductase activity (Chamizo-Ampudia 
et al., 2016; León and Costa-Broseta, 2020). This enzyme inter-
acts with NR, providing electrons and NO2

- for NO synthesis. 
Despite some genomic evidence, such a mechanism has not 
yet been functionally confirmed in higher plants (León and 
Costa-Broseta, 2020).

NO synthesis has also been proposed to occur through 
oxidative pathways using L-arginine (L-Arg) or related 
molecules as substrates. L-Arg-dependent NO production 
has been reported in different compartments of plant cells, 
indicating the existence of a nitric oxide synthase (NOS) ac-
tivity similar to that found in mammals (Corpas and Barroso, 
2017; Santolini et  al., 2017). Despite the detection of this 
NOS-like activity, a gene with homology to mammalian and 
algal NOS has not been identified in land plants, suggesting 
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the absence of a canonical NOS in these organisms (Jeandroz 
et al., 2016). Similarly, NO production from polyamines and 
hydroxylamines have been reported, but the involved mech-
anisms remain completely unknown (Tun et al., 2006; Rümer 
et al., 2009).

In addition to biosynthesis, mechanisms of NO degradation 
are pivotal for controlling the homeostasis of this signaling mol-
ecule in plant cells (Fig. 1). Non-enzymatic pathways for NO 
removal in aqueous aerobic solutions include the oxidation of 
NO or its derivatives to form NO2

- or NO3
- (Wendehenne 

et  al., 2001), and the reaction of NO with superoxide anion 
to form peroxynitrite (ONOO-; de Oliveira et  al., 2008). 
ONOO- is an oxidant related to tyrosine (Tyr) nitration, but 

can be converted to NO2
- by cytochrome c oxidase (Pearce 

et al., 2002) or peroxiredoxins (Romero-Puertas et al., 2007).
Some products of NO oxidation can react with thiol 

groups, yielding S-nitrosothiols (RSNO). S-nitrosoglutathione 
(GSNO) is the most abundant low-molecular-weight RSNO 
in cells, acting as an intracellular reservoir of NO, besides having 
signaling functions per se (Broniowska et al., 2013). Although 
GSNO degradation may occur non-enzymatically, the enzyme 
GSNO reductase (GSNOR) plays a vital role in converting 
GSNO to oxidized glutathione and ammonia, thus regulating 
intracellular NO concentrations and protein S-nitrosation 
(Fig. 1; Leterrier et al., 2011; Lindermayr, 2018; Jahnová et al., 
2019). Phytoglobins also control NO concentrations in plants 

Fig. 1. Mechanisms of nitric oxide (NO) synthesis and removal in plants and their regulation by light stimuli. Nitrate reductase (NR) catalyzes the reduction 
of nitrate (NO3

-) to nitrite (NO2
-), which is further reduced to ammonium (NH4

+) by nitrite reductase (NiR). NO2
- can also be reduced to NO either non-

enzymatically at low pH or enzymatically via NR, plasma membrane-bound nitrite: NO reductase (PM NiNOR), NO-forming nitrite reductase (NOF-NiR) or 
the electron transport chains (ETC) of plant mitochondria and chloroplasts. NO may also be generated by the oxidation polyamines and hydroxylamines 
or from L-arginine (L-Arg) via nitric oxide synthase (NOS)-like activity. NO removal involves the action of phytoglobins as well as the non-enzymatic 
oxidation of NO to NO3

-. NO can react with the thiol group of reduced glutathione (GSH) generating S-nitrosoglutathione (GSNO). GSNO can be 
converted to oxidized glutathione (GSSG) and ammonia (NH3) via GSNO reductase (GSNOR) activity. Light promotes both NR- and NOS-like- synthesis 
of NO. NR gene transcription is promoted and repressed by the positive and negative regulators of photomorphogenesis, ELONGATED HYPOCOTYL5 
(HY5) and PHYTOCHROME INTERACTING FACTOR (PIF), respectively. Light is also involved in the post-translational activation of NR enzyme. 
Degradation of GSNO via GSNOR is also promoted by light. COX, cytochrome c oxidase; HNO2, nitrous acid; N, nitrogen; N2O3, dinitrogen trioxide; O2, 
molecular oxygen; O2

-, superoxide anion; ONOO-, peroxynitrite; Prx, peroxiredoxin; RONS, reactive oxygen and nitrogen species.
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by catalyzing the oxidation of NO to NO3
- (Stasolla et  al., 

2019).
Over the years, Arabidopsis mutants defective in spe-

cific NO production and degradation pathways, particularly 
NR (single nia1, nia2 and double nia1nia2 mutants) and 
GSNOR (gsnor), have played a significant role in clarifying 
NO metabolism under different contexts (Desikan et  al., 
2002; Lozano-Juste & León, 2010, 2011; Kwon et al., 2012). 
In addition, two mutants with alterations in plastid biogen-
esis, the nitric oxide associated 1 (noa1) and NO overproducer1 
(nox1), have also been widely used in NO research because 
of their reduced and increased NO accumulation, respect-
ively (He et al., 2004; Flores-Pérez et al., 2008; Fu et al., 2016 
; Li et al., 2018).

Nitric oxide metabolism at the beginning of plant 
photomorphogenic development

Plant photomorphogenesis initiates with seed germination and 
the subsequent establishment of emergent seedlings as com-
petent autotrophic organisms (Seo et  al., 2009). During this 
challenging step of the plant life cycle, NO production appears 
to be up-regulated (Lozano-Juste and León, 2011; Melo et al., 
2016; Li et al., 2018).

Although L-Arg-dependent NO biosynthesis has been 
reported to occur under some circumstances, such as in 
dark-grown barley and wheat seedlings transferred to light 
(Zhang et al., 2006; Li et al., 2013), NR activity has been pre-
dominantly reported as the primary source of NO during 
early plant photomorphogenesis (Lozano-Juste and León, 
2011; Melo et al., 2016; Li et al., 2018). For instance, light-
triggered increments in NO production in germinating 
seeds and de-etiolating seedlings were accompanied by con-
comitant elevations in NR gene expression and enzymatic 
activity, which depended on PHY activation (Melo et  al., 
2016; Li et  al., 2018). Moreover, high concentrations of 
gibberellins (GAs) repressed NO production in darkness 
(Lozano-Juste and Léon, 2011), and GAs negatively regulated 
NR activity in Arabidopsis seedlings (Zhang et al., 2011b). 
Accordingly, PHY-mediated light perception has long been 
shown to promote the transcription of genes involved in 
nitrogen assimilation, including NR (Lillo and Appenroth, 
2001). It is known that NITRATE REDUCTASE 2 (NIA2), 
which is the NR-encoding gene predominantly expressed 
in Arabidopsis green tissues, is stimulated and repressed by 
positive and negative regulators of photomorphogenesis, 
HY5/HYH and PIF4, respectively (Jonassen et  al., 2009 a, 
b; Fig. 1).

Light not only influences NO generation, but also NO deg-
radation (Fig. 1). In dark-grown tomato seedlings, either RL- 
or BL-triggered NO generation was followed by an increase 
of the NO scavenging capacity by cotyledons, which correl-
ated with increased RSNO content and GSNOR activity 
(Zuccarelli et al., 2017). Furthermore, hypocotyl GSNOR ac-
tivity was higher in pea seedlings under a 12 h photoperiod 
than under continuous darkness, reinforcing the role of this 
enzyme in the regulation of NO homeostasis in the light 
(Kubienová et al., 2014).

Diel fluctuations in nitric oxide production in green 
tissues: a central role for nitrate reductase?

Although seed plants often initiate their life in the subterra-
nean environment, a permanent transition to repetitive day/
night cycles takes place as soon as seedlings emerge from the 
soil. Therefore, for most of their life cycle, plants continu-
ously monitor the diel cycle by combining inputs from the 
photoreceptor-mediated detection of light stimuli and the 
rhythmic nature of light-dependent photosynthetic reactions 
(Sanchez et al., 2020).

NO production has been shown to vary significantly over 
the 24 h light-dark cycle (Rockel et  al., 2002). Interestingly, 
the influence of light on NO homeostasis in green, mature 
leaves has been outlined in the very first report describing NO 
production by plants. Klepper (1979) observed that short-term 
NO emission by soybean leaves upon 2,4-D treatment was 
much higher in darkness than in the presence of light. The 
herbicide was shown to promote the accumulation of NO2

-, 
a substrate for NO synthesis. The inhibitory effect of light on 
NO evolution was related to the activation of nitrite reductase, 
which decreased NO2

- concentrations in the cells.
In contrast to Klepper’s results, which were obtained in a 

particular experimental condition (i.e. herbicide treatment), 
subsequent studies showed a different scenario, in which 
light exposure promoted NO production in green plant tis-
sues (Wildt et al., 1997; Rockel et al., 2002; Planchet et al., 
2005), which seems to be linked to the influence of this 
environmental cue on transcriptional and post-translational 
regulation of NR. NR gene expression and enzyme activity 
fluctuate within the 24  h cycle, in part due to the robust 
control by the circadian clock (Jones et al., 1998; Lillo et al., 
2001; Freschi et  al., 2009). At the post-translational level, 
light regulates the phosphorylation state of NR. In the dark, 
NR is phosphorylated at a conserved serine residue, which 
allows the binding of 14-3-3 proteins and divalent cations, 
leading to NR inactivation (Lillo et al., 2004). In the pres-
ence of light, NR is dephosphorylated by a photosynthesis-
dependent process, resulting in its activation (Lillo and 
Appenroth, 2001; Lillo et al., 2004).

In agreement, spinach leaves maintained under dark con-
ditions emitted less NO than in the light, which was con-
sistent with lower NR activity and NO2

- concentrations, 
whereas the illumination of dark-grown sunflower plants led 
to a rapid increase of NO flux (Rockel et al., 2002). In con-
trast, when illuminated leaves were transferred to darkness, 
a transient increase in NO production was observed, which 
correlated with transient NO2

- accumulation. As NO2
- con-

centrations decreased, the NO flux decayed to values below 
than those of light-exposed leaves (Rockel et al., 2002). This 
“light-off peak” of NO emission in light-dark transition, as 
well as the strong induction of NR-dependent NO evo-
lution by light, were also reported in a study with tobacco 
leaves (Planchet et  al., 2005). It is noteworthy that in the 
pioneering work of Klepper (1979), a decay of NO emis-
sion by soybean plants was observed after 2 h of darkness; 
a response presumably related to NR inactivation via dark-
induced protein phosphorylation.
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Nitric oxide action in plant 
photomorphogenesis

Interaction of nitric oxide and light signaling in 
germinating seeds

Studies in Arabidopsis have started to elucidate the NO-PHY 
interplay during seed germination (Batak et al., 2002; Li et al., 
2018). Amongst the five Arabidopsis PHY proteins (PHYA-E), 
PHYA and PHYB are most relevant for seed germination in 
response to FRL and RL, respectively (Seo et al., 2009), with 
PHYB being particularly important during early events of seed 
germination. In the presence of RL, PHYB moves from the 
cytosol to the nucleus, where it promotes the degradation of 
PIFs and promotes the transcription of HY5 (Shen et al., 2005). 
As part of a fail-safe mechanism, LONG HYPOCOTYL IN 
FAR-RED (HFR1), which is known to sequester PIF1 and 
restrain PIF1 transcriptional activity, requires light to accumu-
late in plant cells (Shi et  al., 2013). In this signaling context, 
NR-derived NO production was demonstrated to promote 
PHYB-mediated seed germination by both down-regulating 
PIF1 transcription, and stabilizing HFR1 protein (Li et  al., 
2018). Therefore, NO fine-tunes light-regulated seed ger-
mination by intensifying the HFR1-PIF1 regulatory module, 
which in turn alleviates PIF1-mediated repression of genes as-
sociated with the hormonal and metabolic rewiring required 
for germination. NO has also been reported to participate in 
PHYA-mediated germination (Batak et al., 2002); however, the 
mechanism behind PHYA-NO interaction in imbibed seeds 
remains elusive.

A central aspect in light-regulated germination is the in-
fluence of the photosensory systems on the relative abun-
dance of, and sensitivity to, plant hormones such as abscisic 
acid (ABA) and GAs (Seo et al., 2009; Barrero et al., 2014). As 
a dormancy-relieving molecule and promoter of seed ger-
mination, NO closely interacts with both these hormonal 
classes to fine-tune the germination process, according to 
the environmental conditions (Bethke et al., 2007; Liu et al., 

2009; Sanz et al., 2015; Fig. 2A). Analysis of Arabidopsis mu-
tants with altered NO amounts, as well as treatment with 
NO donors, revealed that NO alleviates seed dormancy by 
reducing ABA sensitivity in imbibed seeds (Bethke et  al., 
2006; Lozano-Juste and León, 2010). The regulation of the 
abundance of ABA INSENSITIVE5 (ABI5), a TF respon-
sible for ABA-mediated post-germinative seedling arrest 
(Lopez-Molina et al., 2001), represents a central hub of NO 
action during seed germination and initial seedling growth 
(Gibbs et al., 2014; Albertos et al., 2015). NO was demon-
strated to control ABI5 transcription via regulation of the 
stability of group VII ethylene response factors (ERFs), with 
NO-mediated degradation of ERFVIIs proposed as the basis 
of NO sensing during germination and other plant responses 
(Gibbs et al., 2014). Moreover, S-nitrosation stimulates the 
degradation of ABI5 and promotes seed germination and 
seedling growth, whereas ABI5 protein accumulation per-
turbs the inhibition of seed germination by reducing en-
dogenous NO concentrations (Albertos et  al., 2015). NO 
also alleviates the inhibitory effect of ABA on seed germin-
ation by S-nitrosation and inactivation of SNF1-RELATED 
PROTEIN KINASE 2.2 (SnRK2.2), and presumably 
SnRK2.3 (Wang et al., 2015a), which are protein kinases in-
volved in ABI5 phosphorylation and activation (Nakashima 
et  al., 2009). Considering that ABI5 is also a convergence 
point of light and ABA signaling during seed germination, 
with HY5 acting as a direct activator of ABI5 expression 
(Chen et al., 2008), it seems plausible to anticipate some role 
for ABI5 in NO-light crosstalk in germinating seeds. Another 
relevant mechanism controlling the sensitivity of plant tis-
sues to ABA relies on the Tyr nitration-mediated inactivation 
of PYR/PYL/RCAR (PYRABACTIN RESISTANCE 1/
PYR1-LIKE/REGULATORY COMPONENTS OF ABA 
RECEPTORS) family of ABA receptors, which is described 
as a rapid NO-mediated mechanism to locally restrict hor-
mone action (Castillo et al., 2015). As seed imbibition pro-
motes both NO and hydrogen peroxide (H2O2) increase 

Fig. 2. NO, light and hormone interaction in plant photomorphogenesis. (A) In light-dependent seed germination, NO promotes abscisic acid (ABA) 
degradation, represses the accumulation of ABA INSENSITIVE5 (ABI5), up-regulates gibberellin (GA) biosynthesis, and possibly facilitates DELLA 
degradation. (B) During seedling de-etiolation, NO inhibits hypocotyl elongation through the repression of GA accumulation, reduction in PHYTOCHROME 
INTERACTING FACTOR (PIF) expression and promotion of DELLA accumulation. (C) NO also mediates light-triggered cotyledon greening by repressing 
ethylene (ET) synthesis and promoting auxin (AUX) accumulation and signaling. (D) In photoperiodic floral transition, NO affects the light-dependent inputs 
to, and output components from, the circadian clock, causing delayed flowering. Output components of the circadian clock, such as CO (CONSTANS) 
and GI (GIGANTEA), are major regulators of flowering time. Dashed lines indicate potential pathways. CCA1, CIRCADIAN CLOCK ASSOCIATED 1; LHY, 
LATE ELONGATED HYPOCOTYL; TOC1, TIMING OF CAB EXPRESSION1.
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(Liu et al., 2010), monitoring the impacts of in vivo Tyr ni-
tration of ABA receptors at early stages of seed germination 
remains an interesting topic for future investigation.

Besides controlling ABA sensitivity, NO influences ABA 
and GA abundance in imbibed seeds. NO is released at the 
endosperm layer within hours after seed imbibition and ac-
celerates ABA degradation by promoting the transcription of 
the ABA 8′-hydroxylase gene CYP707A2 (Liu et  al., 2009). 
Aleurone cells also respond to NO by up-regulating key genes 
encoding the GA biosynthetic enzyme GA3 oxidase (GA3ox1 
and GA3ox2), which in turn leads to structural changes in the 
protein storage vacuoles of these cells (Bethke et al., 2007). NO 
further promotes the hydrolysation of storage starch (Zhang 
et  al., 2005; Wu et  al., 2013) and the expression of cell wall 
loosening-related genes (Li et al., 2018) in germinating seeds, 
two key processes also regulated by the ABA/GA balance. 
Therefore, NO may represent a key piece of the puzzle 
interconnecting PHY-PIF signaling cascade, ABA catabolism 
and GA biosynthesis during light-dependent seed germination 
(Seo et al., 2009; Barrero et al., 2014; Fig. 2A). In agreement, 
the overproduction of NO conferred by the nox1 mutation 
was shown to intensify the promotive effect of HFR1 on the 
expression of CYP707A2, GA3ox1 and GA3ox2, as well as cell 
wall loosening-related genes, in imbibed seeds of Arabidopsis 
(Li et  al., 2018). Since NO interferes with DELLA accumu-
lation during hypocotyl elongation (Lozano-Juste and León, 
2011), determining whether DELLA stability is also influenced 
by NO during seed germination remains an interesting topic 
for future research.

An incomplete picture of NO interaction with other 
signaling molecules and photoreceptors during light-regulated 
seed germination is also emerging. This includes the action of 
phospholipase D (PLD)-mediated phosphatidic acid (PA) pro-
duction as a downstream signal of NO in light-induced lettuce 
seed germination (An and Zhou, 2017), and NO, ABA and 
BL interaction during tomato seed germination under osmotic 
stress (Piterková et  al., 2012). In addition, salt-induced accu-
mulation of ETHYLENE INSENSITIVE 3 (EIN3), a crit-
ical ethylene-related TF, requires NO production under light 
in imbibed Arabidopsis seedlings (Li et al., 2016). Since EIN3 
protein stability during early plant development is regulated 
by light in a PHYB-dependent manner (Shi et al., 2016), and 
ethylene is known to affect seed germination in several species 
(Arc et al., 2013), a crosstalk between NO, ethylene and PHY 
signaling cascades may be relevant during seed germination, 
particularly under unfavorable conditions.

Nitric oxide and light signaling interplay during seedling 
de-etiolation

Seedlings growing through the soil must adjust their growth 
to absent or limited light supply via etiolated growth (i.e. 
skotomorphogenesis). After emerging from the soil, seed-
lings may encounter adequate light conditions and initiate 
de-etiolated, autotrophic growth, which involves decel-
eration of hypocotyl elongation, unfolding of cotyledons, 
and opening of the apical hook, amongst other processes 
(Seluzicki et al., 2017).

Decades of research in plant photobiology have progressively 
dissected the molecular mechanisms repressing and promoting 
seedling photomorphogenesis under dark and light conditions, 
respectively (Seluzicki et al., 2017). DELLA proteins physically 
interact with PIF1, PIF3, and PIF4 to impede these TFs from 
binding to their targets, which culminates in the inhibition 
of hypocotyl elongation (Feng et  al., 2008). Evidence points 
out that NO is also part of the light-GA signaling crosstalk 
controlling Arabidopsis hypocotyl growth (Lozano-Juste and 
León, 2011; Fig. 2B). Light and GAs antagonistically regulate 
hypocotyl elongation by promoting the accumulation and deg-
radation of DELLA proteins, respectively (Feng et  al., 2008). 
NO-deficient mutants display more elongated hypocotyls than 
the wild type exclusively under RL, and this phenotypic dif-
ference is linked to higher transcript abundance of PIF1, PIF3, 
and PIF4, reduced DELLA accumulation, and altered GA 
sensitivity (Lozano-Juste and León, 2011). In contrast, treat-
ment with increasing concentrations of a NO donor resulted 
in progressively shorter hypocotyls under RL, a response dir-
ectly correlated with DELLA accumulation (Lozano-Juste and 
León, 2011). PIF3 was also identified as the TF most highly 
associated with NO sensitivity in etiolated seedlings (Castillo 
et al., 2018). As in seed germination, the NO-mediated regu-
lation of the turnover of ERFVIIs is proposed to regulate NO 
sensing in etiolated hypocotyls (Gibbs et al., 2014).

The switch from heterotrophic to autotrophic growth in 
de-etiolating seedlings requires the conversion of etioplasts into 
green, photosynthetically active chloroplasts. Exogenous NO 
has been recurrently shown to induce or intensify chlorophyll 
accumulation and chloroplast maturation during early plant de-
velopment, as reported in dark-grown wheat seedlings (Beligni 
and Lamattina, 2000; Liu et  al., 2013), apple embryos under 
photoperiodic conditions (Krasuska et al., 2015), PHY-deficient 
tomato seedlings under RL conditions (Melo et al., 2016), and 
barley seedlings transferred from dark to white light conditions 
(Zhang et al., 2006). Furthermore, the progressive light-mediated 
chlorophyll accumulation in etiolated tissues is reported to be 
accompanied by a gradual increase in NO production (Zhang 
et al., 2006; Melo et al., 2016), with the intensity of chloroplast 
maturation correlated with the NO production rates across 
photomorphogenic mutants (Melo et al., 2016). NO-mediated 
repression of ethylene synthesis and promotion of auxin accu-
mulation and signaling were characterized as essential to allow 
the transcription of plastid division and differentiation genes in 
tomato seedlings (Melo et al., 2016; Fig. 2C). As these two hor-
monal classes are highly regulated by light at both metabolic and 
signaling levels (Halliday et al., 2009; Rodrigues et al., 2014), and 
are implicated in many other aspects of seedling de-etiolation 
(Zhong et al., 2014; de Wit et al., 2016), the interplay between 
auxin, ethylene and NO in early events of plant photomorpho-
genesis remains a promising target for future research.

The interplay between PHY, PIF3 and NO also seems to 
coordinate root growth in light, as NO-mediated root growth 
in light-exposed Arabidopsis seedlings was directly linked to 
changes in PHYB and PIF3 protein accumulation (Bai et al., 
2014). Furthermore, NO was reported to mediate light-
triggered morphological changes in rice seminal roots, acting 
upstream of auxin and ethylene (Chen et al., 2015).
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The role of nitric oxide in other plant 
photomorphogenic responses: what are we missing?

Compared with early events in plant photomorphogenesis, 
much less is known about the involvement of NO in light-
regulated developmental processes that take place later in the 
plant life cycle. Floral transition, for instance, can be regulated 
by seasonal changes in day length (i.e. photoperiodic flowering; 
Song et al., 2013), and is repressed by NO (He et al., 2004; Kwon 
et al., 2012; Zhang et al., 2017). In Arabidopsis, PHY- and CRY-
dependent inputs to the circadian clock affect the expression 
of key components of the central oscillators, such as CCA1 
(CIRCADIAN CLOCK ASSOCIATED 1), LHY (LATE 
ELONGATED HYPOCOTYL), and TOC1 (TIMING OF 
CAB EXPRESSION 1), whereas CO (CONSTANS) and 
GI (GIGANTEA) act as output components of the circadian 
clock to regulate flowering time (Song et  al., 2013; Sanchez 
et  al., 2020). Reports indicate that NO down-regulates CO 
and GI expression (He et al., 2004; Zhang et al., 2019; Fig. 2D), 
and both these output components of the circadian clock can 
be S-nitrosated (Zhang et al., 2019). NO-mediated changes in 
transcript abundance of the input gene CRY1 and the central 
oscillator genes LHY, CCA1 and TOC1 were also reported 
(Zhang et al., 2019), which can further explain the repressive 
role of NO on light/circadian regulation of floral transition 
in Arabidopsis. In animal systems, NO is necessary for circa-
dian photic entrainment, and the daily NOS-dependent NO 
production is responsible for generating phase shifts of circa-
dian rhythms (Golombek and Rosenstein, 2010; Vinod and 
Jagota, 2016). Whether daily changes in NO production are 
also linked to circadian rhythms in plants remains to be inves-
tigated. Fruit growth and ripening are also critically influenced 
by both NO (Corpas et al., 2018; Palma et al., 2019) and light 
signaling (Bianchetti et al., 2018; Cruz et al., 2018; Alves et al., 
2020), but the interaction between these two pathways remains 
to be investigated in this context. Moreover, given the multiple 
links between NO and auxins (Freschi, 2013), and the crit-
ical role of auxins in photomorphogenic responses, including 
phototropism and shade-avoidance responses (de Wit et  al., 
2016), further investigation about NO-auxin crosstalk in plant 
photomorphogenesis is needed.

Light as an energy source: nitric oxide 
action in carbon assimilation

Role of nitric oxide in mediating light-dependent 
stomatal movements

Light intensity and quality are major determinants of photo-
synthetic rate and sugar synthesis in plants. As gateways linking 
the intercellular gas spaces to the external environment, sto-
matal movements balance atmospheric CO2 uptake by leaves, 
which is vital for photosynthesis, along with water loss to the 
atmosphere. To carry out this critical role, guard cells integrate 
a multitude of external and endogenous stimuli to modu-
late stomatal aperture (Matthews et al., 2020). Amongst them, 
light promotes stomatal opening in C3 and C4 species via two 

pathways: (i) the guard cell-specific response to BL, which sat-
urates at low fluence rates (~10 µmol m–2 s–1; Shimazaki et al., 
2007), triggers photosynthesis-independent stomatal opening 
at early morning; whereas (ii) the RL-triggered stomatal 
opening requires high fluence rates and is believed to coord-
inate stomatal behavior and photosynthesis (Matthews et  al., 
2020).

Under BL, phototropins are activated via autophosphorylation 
and initiate a signaling cascade within the guard cells, involving 
the protein kinase BLUE LIGHT SIGNALLING 1 (BLUS1), 
and type 1 protein phosphatase (PP1), among other com-
ponents (Takemiya et  al., 2006; Matthews et  al., 2020). This 
BL-triggered signaling cascade promotes H+ pumping by 
activating H+-ATPase in the plasma membrane of the guard 
cells, causing membrane hyperpolarization and driving the 
uptake of K+ into guard cells through inward-rectifying K+ 
channels (Takemiya et al., 2006; Shimazaki et al., 2007; Hayashi 
et al., 2011; Fig. 3). The uptake of K+, combined with the ac-
cumulation of the counter-ions malate (produced via starch 
degradation) and Cl- in the vacuole, drives water movement 
into guard cells leading to swelling and stomatal pore opening 
(Matthews et  al., 2020). BL-triggered stomatal opening can 
be reversed by ABA to minimize water loss during day time 
(Goh et  al., 1996), with ABA inhibiting plasma membrane 
H+-ATPase, and promoting membrane depolarization and K+ 
efflux from the guard cells (Schroeder and Hagiwara, 1990; 
MacRobbie, 1992; Thiel et al., 1992; Goh et al., 1996; Zhang 
et al., 2004).

Over the last two decades, NO has been repeatedly impli-
cated as a downstream signal in ABA-induced stomatal closure 
(Desikan et al., 2002; Neill et al., 2002; Garcia-Mata et al., 2003; 
Bright et al., 2006; Murata et al., 2015), as the NO concentra-
tions in guard cells usually increase following ABA treatment, 
whereas the application of NO scavengers prevents ABA-
induced stomatal closure (Garcı́a-Mata and Lamattina, 2001; 
Neill et al., 2002; Zhang et al., 2004). ABA-induced NO pro-
duction was also shown to cause S-nitrosation of SnRK2.6 
(also known as OPEN STOMATA 1-OST1), inactivating this 
central component of ABA signaling in guard cells (Wang et al., 
2015b). However, other lines of evidence suggest that, rather 
than acting as an intermediate of ABA, NO would be limited 
to fine-tune stomatal apertures through alternative pathways 
(van Meeteren et al., 2020).

Although NO action in stomatal closure under rapid dehy-
dration is currently under debate (van Meeteren et al., 2020), 
the role of NO in coordinating stomatal aperture in response 
to light/dark cycles in well-hydrated plants remains unques-
tioned (Ribeiro et  al., 2009; Wilson et  al., 2009). In turgid 
epidermal strips, NO acts downstream to H2O2 in signaling 
during stomatal closure, as supported by multiple lines of evi-
dence. Stomatal closure in response to NO and H2O2 is more 
efficiently induced in light than in the dark, and higher concen-
trations of both these molecules in guard cells were observed 
following the light to dark transition (She et al., 2004; He et al., 
2005). Also, NO- and H2O2-scavengers prevent both light- and 
dark-induced stomatal opening and closure, respectively (She 
et al., 2004; Garcia-Mata and Lamattina, 2007; Ribeiro et al., 
2009), with exogenous H2O2 inducing rapid NO synthesis in 
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guard cells (Lum et al., 2002; Lü et al., 2005; Bright et al., 2006; 
Yan et al., 2007; Wang et al., 2010). Pharmacological and gen-
etic data suggest NR, particularly NR1/NIA1, as the primary 
biosynthetic source of NO in guard cells during ABA-induced 
stomatal closure (Bright et al., 2006), with H2O2 synthesis by 
NADPH oxidase isoforms AtrbohD/F preceding NO syn-
thesis by NR1/NIA1 (Bright et al., 2006; Fig. 3). In addition 
to AtrbohD/F, copper amine oxidase (CuAO) is also reported 
as the H2O2 source that precedes NO accumulation and cyto-
solic alkalinization during dark-induced stomatal closure 
(Huang et al., 2015).

NO was also shown to inhibit BL-specific, but not 
RL-induced, stomatal opening via the repression of multiple 
BL-regulated processes, such as H+-ATPase activity (Zhang 
et  al., 2007), PA production via PLD (Distéfano et  al., 2008; 
Takemiya and Shimazaki, 2010), and K+ influx across the guard 
cell plasma membrane (Zhao et al., 2012, 2013). During ABA 
inhibition of light-induced stomatal opening, there is cross-
talk between NO and Ca2+ (Garcı́a-Mata and Lamattina, 2007; 
Ribeiro et  al., 2009), possibly by the S-nitrosation of Ca2+-
dependent ion channels (Sokolovski and Blatt, 2004). NO also 

acts upstream to cyclic GMP (cGMP) in guard cells (Neill et al., 
2002), and reactive oxygen species (ROS) can react with NO 
to form reactive nitrogen species (RNS), which in turn lead to 
the formation of the nitrated cGMP derivative 8-nitro-cGMP. 
While cGMP induces stomatal opening in the dark, 8-nitro-
cGMP triggers stomatal closure in the light by repressing Ca2+ 
channels (Joudoi et al., 2013; Fig. 3).

A role for NO in UV-B-mediated stomatal closure is also 
proposed. UV-B induces NO production in the cytosol and 
chloroplasts of guard cells (He et al., 2005), and both UV-B-
triggered NO generation and stomatal closure are repressed by 
NR inhibitors and a NO scavenger (He et al., 2011). GPA1, 
the Gα-subunit of heterotrimeric G proteins, is also reported 
to activate H2O2 production by AtrbohD/F followed by NR1/
NIA1-dependent NO production during UV-B-mediated 
stomatal closure (He et al., 2013). Moreover, ethylene produc-
tion was shown to precede NO accumulation during UV-B-
triggered stomatal closure (He et al., 2011), whereas treatment 
with ethylene reduced NO amounts in guard cells and pro-
moted stomatal opening under dark conditions (Song et  al., 
2011).

Fig. 3. NO action in light-regulated stomatal movement. In the presence of blue light, phototropins (PHOT) initiate a signaling cascade involving the 
protein kinase BLUE LIGHT SIGNALLING 1 (BLUS1), type 1 protein phosphatase (PP1) and its regulatory subunit (PRLS1). Guard cell photosynthesis 
provides ATP for H+-ATPase, while the signal from BLUS1 activates plasma membrane H+-ATPase by the phosphorylation and subsequent binding 
of a 14-3-3 protein, promoting H+ pumping, which hyperpolarizes the plasma membrane and drives K+ into guard cells. The accumulation of K+ and 
counter-ions (Cl- and malate2-) drives water movement into the guard cells, increasing cell turgor and opening the stomatal pore. Preceded by hydrogen 
peroxide (H2O2) generation, nitrate reductase1 (NR1)-mediated nitric oxide (NO) synthesis promotes phospholipase D (PLD)-dependent phosphatidic acid 
(PA) production, which inhibits PP1 and represses H+-ATPase. Abscisic acid (ABA) is known to promote both H2O2 and NR1-mediated NO generation in 
guard cells. NO can react with reactive oxygen species, such as H2O2, generating nitrogen reactive species (RNS), leading to the accumulation of 8-nitro-
cGMP in guard cells, which in turn triggers stomatal closure in the light by favoring Ca2+ influx. In the dark, NAD(P)H oxidase- and copper amine oxidase 
(CuAO)-mediated H2O2 production triggers NR1 activation and NO production, leading to Ca2+ signaling-dependent events that culminate in stomatal 
closure.
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Light and NO also interact to regulate stomatal development 
and patterning. Supporting this claim, Fu et al. (2016) revealed 
that NO treatment, as well as nox1 and noa1 mutations, af-
fect stomatal development by affecting the expression of genes 
encoding SPEECHLESS (SPCH), MUTE and FAMA, which 
are TFs responsible for initiating stomatal development that 
also are responsive to the PHY-CRY-COP1 signaling system 
(Casson et al., 2009; Kang et al., 2009).

Chloroplasts and photosynthesis: multiple target 
sites of nitric oxide action in the solar powerhouse of 
green plants

Mature chloroplasts are the solar powerhouses of green plants, 
and also a focal point of ROS and NO production in illu-
minated plants. The effects of NO on the plant photosynthetic 
system have been extensively examined, leading to the iden-
tification of a large number of target sites of NO action in 
chloroplasts (reviewed by Misra et al., 2014).

In photosystem II (PSII), NO can reversibly bind to the 
non-heme iron localized between QA and QB (QAFe2+QB) 
and cause a ten-fold decrease in electron transfer between 
QA and QB (Diner and Petrouleas, 1990; Petrouleas and 
Diner, 1990; Fig. 4). In vivo confirmation that QA- QB elec-
tron transfer rate is reduced by NO donors was obtained, 
being linked to inhibited charge recombination reactions 
of QA

− with the S2 state of the oxygen-evolving complex 
(OEC) and decreased maximum quantum efficiency of PSII 
(Wodala et al., 2010).

A second target site of NO action in PSII is the catalytic 
manganese cluster of the OEC (Schansker et al., 2002; Fig. 4). 
In the presence of NO, the oxygen oscillation patterns of 
PSII-enriched membranes changed due to the NO-related 

reduction of the Mn cluster to the S2 state (Schansker et al., 
2002; Sarrou et al., 2003). As a consequence, NO inhibits pri-
mary oxygen-evolving reactions, as demonstrated in vitro in 
isolated thylakoids (Vladkova et  al., 2011) and intact chloro-
plasts (Jasid et  al., 2006). NO may also affect the donor side 
of PSII due to the interaction of NO with the second redox 
active tyrosine residue (YD) of D2 protein. The rapidly formed 
YD–NO complex has lower redox potential than the parent 
Tyr and can act as an electron donor in PSII instead of Tyr YZ 
and the water-splitting Mn complex (Sanakis et al., 1997).

As for photosystem I  (PSI), P700 chlorophyll fluorescence 
measurements in intact pea leaves revealed that GSNO pro-
moted PSI quantum efficiency and modestly increased the 
pool size of electrons in the intersystem chain, indicating that 
NO may influence PSI photochemistry in vivo (Wodala and 
Horváth, 2008). Furthermore, Twigg et  al. (2009) demon-
strated that NO binds to reduced heme cn in the cytochrome 
b6f complex (Fig. 4), though the consequential effect of this 
NO binding has not been revealed so far. It is known, how-
ever, that NO2

--dependent NO production is implicated in 
cytochrome b6f degradation in nitrogen- or sulfur-starved 
C. reinhardtii (Wei et al., 2014; de Mia et al., 2019).

Treatment of isolated thylakoid membranes with NO 
donors revealed that NO strongly inhibits photosynthetic 
ATP synthesis, and that the inhibition can be reversed by 
the addition of bicarbonate (Takahashi and Yamasaki, 2002; 
Fig. 4). Electron transport rate, light-triggered ΔpH forma-
tion, and ATP hydrolysis were also diminished by NO. In 
guard cell protoplasts, exogenous NO reversibly inhibited 
the linear electron transport chain, reducing the amount 
of ATP and NADPH available for osmoregulation (Ördög 
et al., 2013). Additionally, the catalytic component (CF1) of 
ATP synthase was found to be S-nitrosated after treatment 

Fig. 4. Target sites of NO in the photosynthetic electron transport chain. NO inhibits the oxygen-evolving complex (OEC) by reducing Mn clusters, while 
NO affects the activity of photosystem II (PSII) through direct binding to non-heme iron (Fe2+) between plastoquinones QA and QB. NO also binds to both 
the second redox active tyrosine residue (YD) of D2 protein and the reduced heme cn in the cytochrome b6f complex (cytb6f). Moreover, NO influences 
photosystem I (PSI) photochemistry and strongly inhibits photosynthetic ATP synthesis, possibly due to S-nitrosation of the catalytic component (CF1) of 
ATP synthase. PQH2, reduced, mobile plastoquinone pool; PC, plastocyanin; Fd, ferredoxin; FNR, ferredoxin-NADP+ oxidoreductase.
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with NO gas or GSNO (Lindermayr et al., 2005); however, 
the consequent alteration in ATP synthase activity has not 
been revealed.

NO also affects numerous enzymes involved in CO2 as-
similation, including the most abundant key enzyme in 
the Calvin cycle, ribulose-1,5-bisphosphate carboxylase/
oxygenase (RuBisCO). Lindermayr et al. (2005) first analysed 
S-nitrosation in a photosynthetically active tissue and identified 
several chloroplast proteins as targets for S-nitrosation, including 
RuBisCO and RuBisCO activase. Subsequently, S-nitrosation-
triggered inhibition of RuBisCO was demonstrated both in 
vivo and in vitro (Abat et al., 2008), with both subunits of the 
enzyme undergoing S-nitrosation in response to low tempera-
ture (Abat and Deswal, 2009), and six Cys-SNO sites recently 
identified (Qiu et al., 2019). Other photosynthesis-related pro-
teins identified as targets for S-nitrosation are involved in light-
dependent reactions (e.g. PsbP1 or ATPA), in all three phases of 
the Calvin cycle (e.g. phosphoglycerate kinase), components of 
carbon concentration mechanisms (e.g. phosphoenolpyruvate 
carboxylase, carbonic anhydrase) and glycolytic enzymes (e.g. 
aldolase, triosephosphate), amongst others (Lindermayr et  al., 
2005; Abat et al., 2008; Abat and Deswal, 2009; Fares et al., 2011; 
Tanou et al., 2012; Kato et al., 2013; Vanzo et al., 2014; Hu et al., 
2015; Kolbert et al., 2019b). RuBisCO activase and both subunits 
of RuBisCO enzyme are also subjected to in vivo nitration at 
specific Tyr residues, as well as several other chloroplast-localized 
proteins, including the PSII protein D1 (Galetskiy et al., 2011; 
Lozano-Juste et al., 2011; Ramos-Artuso et al., 2019). Therefore, 
based on the proteomic data available so far, it appears that the 
activity of numerous photosynthetic proteins (e.g. RuBisCO 
activase, RuBisCO) is under dual regulation by S-nitrosation 
and Tyr nitration, implicating that NO tightly controls photo-
synthetic activity at the post-translational level.

Multiple high-throughput analysis revealed that NO also 
modulates photosynthesis at the transcriptional level, as revealed 
by the significant proportion of photosynthesis- and chloroplast-
related functional categories within the NO-responsive genes 
(Polverari et al., 2003; Parani et al., 2004; Begara-Morales et al., 
2014; Hussain et  al., 2016; León et  al., 2016). Furthermore, 
NO treatment influences the abundance of intermediates of 
photorespiration (glycerate) and Calvin cycles (sedoheptulose-
7-phosphate and ribose-5-phosphate), as well as downstream 
products of photosynthesis (León et al., 2016).

As chloroplasts are hotspots of NO production and action, and 
this molecule regulates multiple aspects of the photosynthetic 
machinery, intensive research has been devoted to evaluating 
the practical implications of adjusting NO concentrations as a 
strategy to ameliorate the photosynthetic performance of plants 
under stress conditions (reviewed by Misra et al., 2014).

Multifunctional role of nitric oxide in plant 
light stress responses

Nitric oxide as a protective molecule against light 
stress-induced disturbances in redox homeostasis

Throughout their life cycle, plants can face both seasonal and 
sporadic deviations from optimal light conditions, including 

excessive or insufficient light intensity. Either irradiances 
below the light-compensation point or far above the light sat-
uration point of photosynthesis, collectively known as light 
stress, can lead to oxidative stress, photoinhibition, and limited 
plant growth and development (Krause et  al., 2012; Zhang 
et al., 2018). Enrichment in UV radiation, particularly UV-B, 
can also be a source of light stress for plants (Mackerness, 
2000). Whereas low-fluence UV-B contributes to plant photo-
morphogenesis (Wu et al., 2016), high levels of this radiation 
can cause DNA damage, photooxidation of pigments, inhib-
ition of photosynthetic activity, and reduction of biomass ac-
cumulation (Greenberg et al., 1997; An et al., 2005).

Chloroplasts and the photosynthetic apparatus are particu-
larly sensitive to excess visible light and UV-B radiation (Powles, 
1984; Aro et al., 1993). The oxygen produced by PSII during 
photosynthesis can potentially increase ROS generation, espe-
cially under excessive light (Aro et al., 1993; Mackerness et al., 
2001). Therefore, disturbances in redox homeostasis are argu-
ably one of the most frequent metabolic consequences of light 
stress (Fig.  5). Light stress-induced production of ROS (e.g. 
singlet oxygen, superoxide anion, H2O2 and hydroxyl radicals) 
may lead to lipid peroxidation and damage to the cell mem-
branes, consequently inhibiting photosynthesis, respiration and 
plant growth (Asada, 2006; Xu et al., 2013). As one of the first 
lines of plant defense against oxidative stress, non-enzymatic 
antioxidants (e.g. ascorbate and glutathione) and antioxidant 
enzymes (e.g. catalase, ascorbate peroxidase and superoxide 
dismutase) are frequently up-regulated by plant cells to avoid 
or minimize light stress-induced cellular damage (Jansen et al., 
1998; Kim et al., 2010).

High amounts of visible light or UV-B modulate NO 
production in plant cells (Wang et  al., 2006; Corpas et  al., 
2008; Choudhury et al., 2018), which in turn activates plant 
antioxidant defenses under these circumstances (Xu et  al., 
2013; Simontacchi et  al., 2015). For example, the transfer of 
Arabidopsis plants from low light conditions (50 µmol m-2 s-1) 
to excessive light (1000 µmol m-2 s-1) increased endogenous 
NO concentration within minutes; a response also coupled 
with the accumulation of glutathione (Choudhury et al., 2018). 
Short-term high light stress (above 1000 µmol m-2 s-1 for 4 h) 
stimulated NOS-like activity and RSNO production in pea 
plants, whereas GSNOR activity remained unaltered (Corpas 
et  al., 2008). When two varieties of tall fescue grass (Festuca 
arundinacea) with contrasting tolerance to light stress were 
treated with ABA followed by high light exposure, a signifi-
cant increase in NO release and NOS-like activity, linked to 
the activation of antioxidant defenses, was observed in the high 
light-tolerant variety (Xu et al., 2013). Similarly, UV-B stress 
was demonstrated to promote NO and ROS accumulation in 
maize seedlings, with pharmacological treatments indicating 
that both ROS and NO mediate UV-B-induced ethylene bio-
synthesis (Wang et al., 2006). Data from the literature support 
either NR (Wang et al., 2006; Zhang et al., 2011a) or NOS-
like activity (Xu et al., 2013) as the source of NO production 
during light stress responses, depending on the species. In the 
green algae C. reinhardtii, very high light intensity (3000 µmol 
m-2 s-1) triggered non-enzymatic NO production, which in 
turn repressed carotenoid synthesis, consequently leading to 
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singlet oxygen (1O2) over accumulation, lipid peroxidation, 
enhanced expression of oxidative stress-related genes and ir-
reversible PSII inactivation (Chang et al., 2013). On the other 
hand, less extreme high-light conditions (1600 µmol m-2 s-1) 
induced a burst in both NR and NOS-dependent NO gen-
eration in C. reinhardtii, which was associated with autophagy 
activation, probably via an interplay with H2O2 (Kuo et  al., 
2020). In Arabidopsis, both NO and H2O2 interact during the 
induction of cell death (Murgia et  al., 2004), and 1O2 over-
production is associated with high light-induced cell death 
(Shumbe et al., 2016), suggesting a connection between ROS 
and NO in light stress-triggered cell death, although this has 
yet to be demonstrated.

Exogenous NO, applied as sodium nitroprusside (SNP), also 
promotes antioxidant defenses and ameliorates oxidative stress 
caused by excessive light (Xu et al., 2010) or UV-B exposure 
(Santa-Cruz et al., 2014; Hu et al., 2016). The ameliorative ac-
tion of NO on chloroplast function under UV-B stress was 
confirmed by SNP-induced reduction of thylakoid membrane 
protein oxidation, prevention of chlorophyll loss and limited 
accumulation of H2O2 , as well as the restorative effect on PSII 
activity in UV-B treated common bean leaves (Shi et al., 2005). 
Moreover, UV-B-triggered increase in the activity of antioxi-
dant enzymes was further intensified upon SNP treatment (Shi 

et al., 2005). In soybean, NO production also mediates UV-B-
triggered induction of heme oxygenase, an enzyme associated 
with antioxidant defenses (Santa-Cruz et al., 2010). As in land 
plants, NO treatment induces antioxidant defenses and allevi-
ates UV-B-induced chlorophyll degradation and damage to the 
photosynthetic apparatus in green algae (Chen et al., 2010) and 
cyanobacteria (Xue et  al., 2007). NO also promotes enzym-
atic antioxidant defenses under low light conditions (Fu et al., 
2014; Zhang et al., 2018; Hu et al., 2019). For example, NO 
production was suggested as being necessary to promote the 
ascorbate-glutathione (AsA-GSH) cycle in Brassica pekinensis 
seedlings exposed to moderately low light stress (100 µmol m-2 
s-1) in the presence of a nitrate-containing hydroponic solu-
tion (Hu et al., 2019). Although catalase, superoxide dismutase 
and other central players in the AsA-GSH cycle are regulated 
by S-nitrosation and/or Tyr nitration (Begara-Morales et  al., 
2016), the relevance of these NO-dependent post-translational 
modifications for the induction of antioxidant responses under 
light stress remains to be investigated.

In a contrasting situation, ROS can promote NO accumu-
lation during light stress (Lin et al., 2012). Working with the 
catalase-deficient rice mutant nitric oxide excess1 (noe1), Lin 
et  al. (2012) demonstrated that the distinctive over accumu-
lation of H2O2 in leaves of this genotype was responsible for 
promoting NR-dependent NO production upon high light 
treatment. In this same study, GSNOR overexpression in noe1 
plants failed to reduce leaf H2O2 concentrations, suggesting 
that NO acts downstream of H2O2 during light stress-induced 
programmed cell death in rice leaves (Lin et al., 2012). In agree-
ment, H2O2 was also characterized as an upstream signal in 
UV-B-induced NO production in hypocotyls of radish sprouts 
(Wu et al., 2016). Under some circumstances, however, no cor-
relation between antioxidant metabolism and NO protective 
action against excessive light has been observed, as seen in 
neotropical tree seedlings treated with NO-releasing chitosan 
nanoparticles under full sun (Lopes-Oliveira et al., 2019).

Screening out UV radiation: nitric oxide and flavonoid 
biosynthesis

As an additional line of defense against UV radiation damage, 
plants have evolved mechanisms for screening out UV ra-
diation through the accumulation of UV-absorbing phen-
olic compounds, particularly flavonoids such as flavonols, 
anthocyanins and chalcones (Fig.  5). UV-B, perceived by 
UVR8, is known to control multiple TFs (e.g. HY5, HYH, 
MYB) responsible for regulating the transcription of key 
components of the phenylpropanoid biosynthetic pathway in 
plant cells (Kliebenstein et al., 2002; Heijde et al., 2013; Huang 
et al., 2014; Wu et al., 2016). In agreement, constitutively active 
UVR8 variants and UVR8-deficient mutants are character-
ized by increased and reduced anthocyanins levels, respectively 
(Kliebenstein et al., 2002; Heijde et al., 2013; Huang et al., 2014; 
Wu et al., 2016).

Both H2O2 and NO interplay with the UVR8 signaling 
pathway to regulate flavonoid accumulation (Fig.  5). Early 
evidence in Arabidopsis, based on enzyme inhibitors and 
free radical scavengers, indicated that UV-B-triggered 

Fig. 5. Protective roles of nitric oxide in light stress responses. High light 
and UV-B promote NO generation via both nitrate reductase (NR) and 
NO synthase-like (NOS-like) activity and also trigger the accumulation of 
reactive oxygen species (ROS). NO promotes the expression and activity 
of antioxidant enzymes such as ascorbate peroxidase (APX), catalase 
(CAT) and superoxide dismutase (SOD). UV-B-triggered activation of the 
photoreceptor UVR8 up-regulates genes encoding transcription factors, 
such as ELONGATED HYPOCOTYL5 (HY5), HY5-homolog (HYH) and 
MYB, which in turn promote the transcription of flavonoid structural genes. 
NO-mediated accumulation of UVR8 transcripts intensifies the synthesis 
of flavonoids, which in turn alleviates oxidative stress and minimizes UV 
absorption by the plant tissues. Dashed lines indicate potential pathways. 
CHI, chalcone isomerase; CHS, chalcone synthase; FLS, flavanol 
synthase.
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up-regulation of CHALCONE SYNTHASE (CHS), which 
encodes a key enzyme in the phenylpropanoid pathway, was 
not affected by ROS scavengers, but was reduced by NOS 
inhibitors or NO scavengers (Mackerness et  al., 2001). In 
addition, UV-B was shown to promote H2O2 and antho-
cyanin accumulation, whereas treatment with SNP, H2O2, 
and their combination promoted the transcript abundance 
of both UVR8 and structural genes responsible for antho-
cyanin biosynthesis (Wu et al., 2016; Fig. 5). More recently, 
studies performed in the anthocyanin-over accumulating 
Anthocyanin fruit (Aft) tomato accession revealed that both 
NR transcript and activity are promoted by co-irradiation 
with blue light and UV-B, and pharmacological evidence 
supported a role for NR-mediated NO generation in the 
control of anthocyanin biosynthesis in tomato fruit skin 
(Kim et  al., 2020). As flavonoids have both the capacity to 
shield the tissue by UV absorption and also scavenge exces-
sive ROS production (Harborne and Williams, 2000), their 
accumulation in the cells offers a dual benefit to plants fa-
cing excessive white light or UV irradiance. Moreover, in 
line with the well-described role of flavonols as inhibitors 
of auxin transport and root development (Silva-Navas et al., 
2016), the over accumulation of flavonoids in NO-deficient 
Arabidopsis mutants has been linked to the reduced root 
growth phenotype found in light-grown seedlings of these 
genotypes (Sanz et  al., 2014). In addition, UV-B radiation 
has been reported to cause dose-dependent inhibition of 
root growth in soybean seedlings by modulating the pro-
duction of NO, ROS and multiple plant hormones (Zhang 
et al., 2019).

The extended landscape of nitric oxide and light 
interaction in plant stress responses

Light and NO can also co-regulate plant responses to other 
abiotic stresses (Lee et al., 2008; Liu and Guo, 2013; Kumari 
et al., 2019). In sunflower seedling cotyledons, the biosynthesis 
of the osmolyte glycine betaine (GB) was differentially modu-
lated by NO under light and dark conditions, with light re-
stricting its NO-induced accumulation (Kumari et al., 2019). 
In gsnor1 missense and null Arabidopsis mutants, unusual 
thermotolerance has been observed depending on the light 
conditions (Lee et al., 2008). Whereas gsnor1 null mutants were 
not able to heat-acclimate, gsnor1 missense mutants exhibited 
typical heat-acclimation responses when grown under light 
but not in the dark (Lee et al., 2008).

NO is also known to closely interact with ethylene to 
regulate flooding-induced plant responses, including aer-
enchyma formation (Wany et  al., 2017) and acclimation 
to hypoxia (Hartman et  al., 2019). Since light conditions 
vary greatly depending on floodwater depth and clarity, 
light availability may also play a relevant role in control-
ling NO biosynthesis and removal during natural flooding 
conditions (Sasidharan et al., 2018). In addition, NO is also 
known to inhibit chlorophyll catabolism and promote the 
stability of photosynthetic complexes in thylakoid mem-
branes during dark-induced senescence in Arabidopsis (Liu 
and Guo, 2013).

Conclusions and future perspectives

Accumulating evidence indicates that light stimuli exert a 
positive influence on NO production, very frequently via in-
crements in NR transcription and enzyme activity. Moreover, 
NO has been shown to interact with central components 
of signaling cascades initiated by photoreceptors, including 
signaling hub proteins (e.g. PIFs, HFR1, HY5), as well as plant 
hormones (e.g. ABA, GA, ethylene, auxins), during light-
dependent plant responses.

Some cutting-edge insights into NO–light signaling cross-
talk have recently been achieved during seed germination and 
de-etiolation, including the identification of a NO sensing 
mechanism (NO-mediated ERFVIIs degradation; Gibbs et al., 
2014), NO-interacting partners (e.g. PIFs, HFR1, DELLA; 
Lozano-Juste and León, 2011) and downstream responses 
to NO action (e.g. regulation of starch metabolism, cell wall 
loosening). However, a multitude of other signaling steps leading 
to light-induced seed germination and de-etiolation remains 
to be investigated as possible targets of NO action. Additional 
research efforts are also required to identify photoreceptors 
and light signaling proteins susceptible to NO-mediated PTMs 
under physiologically relevant conditions.

Although the initiation of seed germination in response 
to adequate environmental conditions and the acquisition of 
photoautotrophic capacity in emerging seedlings are life-or-
death issues for plants, they usually occupy a brief moment 
in the plant photomorphogenic life. Therefore, a compre-
hensive picture of NO action in plant photomorphogenesis 
requires an intensification of research efforts in other light-
modulated developmental responses. Photoperiod flowering, 
shade-avoidance responses, fruit development and leaf senes-
cence are some examples of light-modulated developmental 
responses that are gaining momentum in photo-biotechnology 
endeavors to promote crop productivity (Ganesan et al., 2016). 
However, very limited, or non-existent, information is avail-
able about the involvement of NO in these processes. Also, as 
many plant photomorphogenic responses are regulated by the 
inter- and intra-class interaction of photoreceptors, research on 
the interplay between NO and light signaling should consider 
this additional level of complexity.

NO production and signaling are also of great biotechno-
logical relevance in the context of carbon gain, not only due 
to the central role of NO in the complex signal transduction 
pathways responsible for light-dependent stomatal movements, 
but also because the target sites of NO action in chloroplasts 
are multiple and diversified. However, a closer look at the avail-
able literature reveals that very little is known about the in vivo 
regulatory role of NO on chloroplast function, despite this or-
ganelle is a hotspot of NO production. Moreover, determining 
whether NO represents a unifying signal to control stomatal 
movements in response to light, drought, and other environ-
mental factors is another critical question open for future in-
vestigation. Additional research is also needed to dissect how 
photoreceptors and light signaling proteins are linked to NO 
production and removal systems in guard cells.

As in other abiotic stresses, NO promotes plant antioxidant 
defenses under unfavorable light conditions. Under intense 
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UV-B radiation, NO promotes the synthesis of UV-absorbing 
phenolic compounds, which fulfill the dual role of screening 
out UV radiation and acting as non-enzymatic antioxidants. 
Despite the importance of light stress for both crop and non-
crop plants, the mechanisms behind NO interplay with other 
signaling elements controlling the induction of enzymes in-
volved in antioxidant defenses and phenolic compound syn-
thesis remain poorly characterized.

The emergence of more precise and robust gene modifica-
tion tools applicable to both model and crop species, combined 
with the wealth of information derived from several decades 
of investigation in plant photobiology, suggest a bright future 
for research on the interaction between NO and light signaling 
from both scientific/academic and agronomical/economic 
points of view.
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