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Abstract

Introduction: There is a limited number of echocardiographic studies determining

mitral annular (MA) dimensions in healthy subjects. The present study aimed to estab-

lish normal reference values of three-dimensional speckle-tracking echocardiography-

derived MA dimensions and functional properties in healthy adults in relation with age

and gender.

Methods: The present study comprised 298 healthy adult subjects. From this popula-

tion, 94 subjects were excluded due to inadequate image quality. Therefore the

remaining group consisted of 204 subjects with the mean age of 33.88 ± 12.97 years

(107 males). The population sample was further divided into age categories:

18-29 years (n = 105; mean age: 24.11 ± 2.98 years, 51 males), 30-39 years (n = 44;

mean age: 33.80 ± 2.39 years, 31 males), 40-49 years (n = 19; mean age: 43.47

± 3.18 years, 11 males) and ≥50 years of age (n = 36, mean age: 57.42 ± 6.11 years,

14 males).

Results: End-diastolic MA dimensions did not change significantly during the

decades. End-systolic MA diameter, area, and perimeter were larger over the age of

50 years than in the 18-29 year-old group. MA fractional area change was found

smaller over the age of 50 years than in 18-29-year-old group. While end-diastolic

MA variables did not show gender-differences, end-systolic MA area and perimeter

were lower in females in the 18-29-year-old group.

Conclusions: End-systolic MA dimensions change over decades, resulting in a special

pattern of MA functional properties with significant reduction over the age of

50 years.
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1 | INTRODUCTION

Three-dimensional (3D) speckle-tracking echocardiography (STE) is a

new clinical method with capability of 3D chamber quantifications.1,2

3DSTE has been introduced in the first decade of the 2000s and is based

on a block-matching algorithm allowing detailed simultaneous assess-

ment of chamber volumes and functional properties (strains, rotational

variables, etc.) along the cardiac cycle.1,2 More and more 3DSTE-based

clinical data are available in different pathological conditions together

with normal reference values of left ventricular (LV),3-5 left atrial (LA),6

and right atrial (RA)7,8 volumes/volume-based functional properties,8

strains,3,4,6,7 and rotational variables5 in healthy adults, as well as their

vendor-dependency.9 Moreover, the clinical usefulness of 3DSTE in the

assessment of mitral annular dimensions and its close relationship to LV

function was also confirmed.10 However, there is a limited number of

transthoracic echocardiographic studies determining MA dimensions in

healthy subjects.11,12 Therefore, the present study aimed to establish

normal reference values of 3DSTE-derived MA dimensions and func-

tional properties in healthy adults in relation with age and gender.

2 | METHODS

2.1 | Subject population

The present study comprised 298 healthy adult subjects without any

symptoms, conditions or diseases which could affect the results. None

of them received any medication. Two-dimensional Doppler echocar-

diography was performed in all subjects and yielded normal findings,

then was complemented with 3DSTE. From this population sample,

94 subjects were excluded due to insufficient image quality during

3DSTE. Therefore, the remaining group consisted of 204 subjects

with the mean age of 33.88 ± 12.97 years (107 males). This subject

population sample was further divided into age categories:

• 18-29 years (n = 105; mean age: 24.11 ± 2.98 years, 51 males),

• 30-39 years (n = 44; mean age: 33.80 ± 2.39 years, 31 males),

• 40-49 years (n = 19; mean age: 43.47 ± 3.18 years, 11 males),

• ≥ 50 years (n = 36, mean age: 57.42 ± 6.11 years, 14 males).

The presented work is a part of the Motion Analysis of the heart

and Great vessels bY three-dimensionAl speckle-tRacking echocardiog-

raphy in Healthy subjects (MAGYAR-Healthy) Study; of which one of

the goals was to determine normal reference values of 3DSTE-derived

variables in healthy adult subjects (‘magyar’ means ‘Hungarian’ in Hun-

garian language). The study was approved by the human research com-

mittee at the University of Szeged and complied with the Declaration

of Helsinki. Informed consent was given by all subjects.

2.2 | Two-dimensional Doppler echocardiography

2D echocardiography was performed by experts (P. D., A. K., �A. K.,

N. G.) using an Artida ultrasound system (Toshiba Medical Systems,

Tokyo, Japan) with its PST-30SBP (1-5 MHz) phased-array transducer.

First, 2D Doppler echocardiographic image acquisitions and chamber

quantifications were performed according to the most recent guide-

lines.13 Color Doppler echocardiography was used to exclude visually

valvular regurgitations ≥grade 1. Doppler echocardiography was per-

formed to exclude significant valvular stenoses and to determine early

and late mitral inflow E and A.

2.3 | Three-dimensional speckle-tracking
echocardiography

We performed 3DSTE examination with the same Artida echocardio-

graphic system (Toshiba Medical Systems, Tokyo, Japan) and its PST-

25SX matrix-array transducer.1,2 Three-dimensional echocardio-

graphic datasets were digitally acquired from the apical window

within a single breath-hold. All subjects were in sinus rhythm with a

constant RR interval. Six wedge-shaped subvolumes were acquired

from which a full-volume (“pyramidal”) 3D dataset was automatically

created by the software. Analysis of this dataset was achieved with

3D Wall Motion Tracking software version 2.7 (Toshiba Medical Sys-

tems, Tokyo, Japan). Following optimization of image planes on lateral

and septal MA endpoints on apical two- and four-chamber views,

measurements were performed on the C7 short-axis view

(Figure 1).10

The following MA dimensions were calculated in end-systole and

end-diastole:

F IGURE 1 Extract from three-dimensional full-volume dataset
showing mitral annulus (MA) in a healthy subject: A, apical four-
chamber view; B, apical two-chamber view; and C7, a cross-sectional

view at the level of the mitral annulus optimized in apical four- and
two-chamber views. The white arrow represents the mitral annular
plane on the long-axis, A and B, and short-axis, C7, images. Kidney-
bean-shaped MA could be demonstrated on C7 image, on which while
yellow line represents MA diameter. LA, left atrium; LV, left ventricle;
MA, mitral annulus; RA, right atrium; RV, right ventricle; Area, MA
area; Circ, MA perimeter; Dist, MA diameter
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• MA diameter (MAD) defined as the perpendicular line drawn from

the peak of MA curvature to the opposite side of the MA border

was measured,

• MA area (MAA) was assessed by planimetry,

• MA perimeter (MAP) was obtained from planimetry determination.

The following MA functional variables were calculated using

MAD and MAA data:

• MA fractional shortening (MAFS) = 100 × [end-diastolic

MAD − end-systolic MAD]/end-diastolic MAD

• MA fractional area change (MAFAC) = 100 × [end-diastolic

MAA − end-systolic MAA]/end-diastolic MAA.

3 | STATISTICAL ANALYSIS

Normality of distribution was evaluated with Shapiro-Wilks test.

Continuous data were expressed as mean ± SD, while categorical

data were presented in frequencies and percentage. Statistical

significance was considered if P was less than .05. All tests were

two-sided. Levene's test was used to evaluate homogeneity of

variances. For normally distributed data sets, Students t test was

used, while Mann-Whitney Wilcoxon test was used for non-

normally distributed datasets. Fisher's exact test was used for

categorical variables. We used RStudio 2015 (RStudio: Integrated

Development for R. RStudio, Inc., Boston, MA) for statistical

analysis, MATLAB version 8.6 software package (The MathWorks

Inc., Natick, MA) for data analysis, and Medcalc (Medcalc,

Mariakerke, Belgium) for the assessment of measurement

reproducibility.

4 | RESULTS

4.1 | Demographic and two-dimensional
echocardiographic data

Conventional 2D echocardiographic data showed normal findings

(Table 1). No subjects had ≥ grade 1 valvular regurgitation or signifi-

cant valvular stenosis.

4.2 | Age-dependency of 3DSTE-derived MA
variables

The rate of volume acquisition for 3DSTE-derived measurements was

26 ± 2 volumes per second. End-diastolic MA dimensions did not

change significantly during the decades. End-systolic MAD, MAA, and

MAP were greater over the age of 50 years than in the 18-29-year-

old group. End-systolic MAD and MAA were greater in 30-39 year-

old than in 18-29 year-old subjects. MAFAC was lower over the age

of 50 years than in 18-29 years group. MAFS showed a decrease-

increase-decrease pattern over decades due to end-systolic MAD

changes (Table 2, Figures 2 and 3).

4.3 | Gender-dependency of 3DSTE-derived MA
variables

While end-diastolic MA variables did not show gender-differences,

end-systolic MAA and MAP were lower in females in the 18-29-year-

old group. Some parameters variables changed over decades only in

males/females. Moreover, MA functional variables were non-

significantly higher in females (Figures 2 and 3).

4.4 | Reproducibility of 3DSTE-derived MA
measurements

The mean ± SD difference in values obtained by two measurements

of the same observer and by two independent observers for the mea-

surements of 3DSTE-derived end-diastolic and end-systolic MA

TABLE 1 Demographic and two-dimensional
echocardiographic data

Data

Age (years) 33.88 ± 12.97

Male/female gender (n) 107/97

Two-dimensional echocardiography

Left atrium (mm) 36.93 ± 3.89

Left ventricular end-diastolic diameter (mm) 48.29 ± 3.76

Left ventricular end-diastolic volume (ml) 108.33 ± 25.85

Left ventricular end-systolic diameter (mm) 38.78 ± 23.02

Left ventricular end-systolic volume (ml) 37.27 ± 9.81

Interventricular septum (mm) 9.04 ± 1.50

Left ventricular posterior wall (mm) 9.18 ± 1.55

Left ventricular ejection fraction (%) 65.58 ± 4.57

Three-dimensional speckle-tracking echocardiography

End-diastolic MAD (cm) 2.43 ± 0.43

End-diastolic MAA (cm2) 7.31 ± 2.26

End-diastolic MAP (cm) 10.22 ± 1.54

End-systolic MAD (cm) 1.59 ± 0.39

End-systolic MAA (cm2) 3.44 ± 1.27

End-systolic MAP (cm) 7.08 ± 1.27

MAFAC (%) 51.50 ± 15.39

MAFS (%) 34.01 ± 15.06

LV-EF (%) 58.1 ± 4.9

LV-LS (%) −16.7 ± 2.8

Abbreviations: MAD, mitral annular diameter; MAA, mitral annular area;

MAP, mitral annular perimeter; MAFAC, mitral annular fractional area

change; MAFS, mitral fractional shortening; LV-EF, left ventricular ejection

fraction; LV-LS, left ventricular longitudinal strain.
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TABLE 2 Mitral annular dimensions and functional variables in different age groups

18–29 year-old (n = 105) 30-39 year-old (n = 44) 40–49 year-old (n = 19) 50+ year-old (n = 36)

End-diastole

MAD (cm) 2.39 ± 0.46 2.51 ± 0.44 2.48 ± 0.27 2.41 ± 0.38

MAA (cm2) 7.08 ± 2.36 7.76 ± 2.36 7.65 ± 1.26 7.28 ± 2.12

MAP (cm) 10.09 ± 1.62 10.53 ± 1.58 10.51 ± 0.91 10.13 ± 1.39

End-systole

MAD (cm) 1.49 ± 0.36 1.77 ± 0.42* 1.54 ± 0.39 1.67 ± 0.34 *

MAA (cm2) 3.16 ± 1.19 3.76 ± 1.33* 3.37 ± 1.17 3.92 ± 1.24*

MAP (cm) 6.87 ± 1.31 7.27 ± 1.23 6.96 ± 1.10 7.53 ± 1.14*

Functional variables

MAFAC (%) 53.48 ± 15.22 50.42 ± 14.02 56.39 ± 15.15 44.52 ± 15.22*

MAFS (%) 36.43 ± 14.96 28.88 ± 15.30* 39.40 ± 15.54 30.38 ± 11.92*

Abbreviations: MAD, mitral annular diameter; MAA, mitral annular area; MAP, mitral annular perimeter; MAFAC, mitral annular fractional area change;

MAFS, mitral fractional shortening.

*P < .05 vs data of 18-29 year-old subjects.

F IGURE 2 Gender-dependency of mitral annular end-diastolic and end-systolic diameter, area and perimeter data in different decades

F IGURE 3 Gender-dependency of mitral annular functional properties in different decades
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dimensions and functional properties in 25 healthy subjects, along

with the respective correlation coefficients, are presented in Table 3.

4.5 | Feasibility of 3DSTE-derived MA
measurements

As mentioned before, 94 subjects from the original group of

298 healthy adults were excluded due to insufficient image quality

from the subjects recruited between 2011 and 2017. The overall fea-

sibility of measurements proved to be 68%, which improved to 90%

in the last year (54 out of 60, P < .05).

5 | DISCUSSION

The mitral valve is an atrio-ventricular valve, which comprises MA,

anterior and posterior leaflets, papillary muscles and chordae.14 MA is

an innervated fibrous ring affected by contractile forces of LV and LA,

and supplying blood vessels to the leaflets.14,15 Although MA resem-

bles a kidney-bean front-wise, it has a dynamic motion during cardiac

cycle and a non-planar 3D saddle-shape. Its 3D structure and dynamic

function reduces leaflet tissue stress and is important for coaptation

geometry.14 MA dilation is also accompanied by MA flattening

resulting in changes in leaflet stress and unfavorable mitral leaflet

remodeling.14 Therefore, MA is an important anatomical junction

between the left heart chambers, and its clinical relevance is related

to the etiology/mechanism of mitral regurgitation (MR) (primary or

organic vs secondary or functional).14,15

Although knowledge of the normal ranges of MA dimensions

would be essential in the clinical practice, they were provided so far

by a limited number of echocardiographic studies.11,12 Three-

dimensional echocardiography opens new opportunities in assessing

valves due to its potential for “en-face” measurements.1,2,16 However,

two different 3D echocardiographic techniques can be used in clinical

practice: the volumetric real-time 3D echocardiography (RT3DE),

widely available since 2003,17 and 3DSTE, which encompasses bene-

fits of 3D echocardiography and STE.1,2 With 3DSTE, myocardial

speckles are block-matched during their frame-to-frame motion, using

an algorithms intrisically different from those of RT3DE.1,2 Both

methods are capable for volumetric measurements, but 3DSTE is use-

ful for simultaneous assessments of strain and rotational variables

using the same virtual 3D heart chamber cast. Moreover, both RT3DE

and 3DSTE allow planimetric measurements, especially for determin-

ing MA dimensions.10,18 Although many clinical studies are available

with RT3DE, mainly with transesophageal approach,19 clinical data

related to 3DSTE are limited as regards the assessment of MA.10

Following 3D optimizations using valvular edges, the typical 2D

projected D-shape of the MA could be depicted, allowing its accurate

assessment with 3DSTE.10 Thus, not only optimal MA diameter, but

also MA area and perimeter by planimetry could be determined at the

same time using the same 3D dataset.

To our best knowledge, the present study is the first to determine

MA dimensions together with their age- and gender-dependency and

MA functional properties by 3DSTE in healthy adult subjects.

Although end-diastolic MA dimensions did not change over decades,

we observed specific alterations in end-systolic MA dimensions,

resulting in a special pattern of MA functional properties with signifi-

cant reduction over the age of 50 years. The physiological base of

these findings could be theoretically explained by aging-associated

subclinical calcification, focal edema, and increased fluid accumulation

capacity, but the role of deposition/infiltration of non-cardiomyocytes

cannot be excluded either. Moreover, it is known that MA functions

as a “sphincter” due to extrinsic contractile forces including LV and LA

movements.15 LA basal circumferential fibers are positioned in such a

way that their contraction imparts a centripetal force onto the inner

aspect of the adjacent fibrous MA, leading to its translation inward in

late diastole. The superficial oblique fibers of the LV inlet lay on a tor-

sional force onto the outer aspect of the MA, making it to translate

inwards during systole.15 Aging has also effects on these specific LA

and LV functions and morphology of these heart chambers, which

could have effects on MA dimensions as well.

TABLE 3 Intra- and interobserver variability for the mitral annular dimensions and functional properties

Intra-observer agreement Inter-observer agreement

Difference in values obtained by
two measurements by the same
observer

Correlation coefficient
between measurements
by the same observer

Difference in values
obtained by two observers

Correlation coefficient
between measurements
by two independent
observers

End-diastolic MAD 0.01 ± 0.23 cm 0.94 (P < .0001) 0.03 ± 0.14 cm 0.96 (P < .0001)

End-diastolic MAA −0.02 ± 1.01 cm2 0.97 (P < .0001) 0.01 ± 0.81 cm2 0.97 (P < .0001)

End-diastolic MAP −0.03 ± 0.84 cm 0.95 (P < .0001) −0.10 ± 0.89 cm 0.95 (P < .0001)

End-systolic MAD −0.03 ± 0.15 cm 0.98 (P < .0001) 0.02 ± 0.21 cm 0.99 (P < .0001)

End-systolic MAA −0.02 ± 0.30 cm2 0.97 (P < .0001) −0.05 ± 0.52 cm2 0.96 (P < .0001)

End-systolic MAP 0.07 ± 0.51 cm 0.98 (P < .0001) 0.05 ± 0.45 cm 0.97 (P < .0001)

Note: Values are provided as mean ± SD.

Abbreviations: MAD, mitral annular diameter; MAA, mitral annular area; MAP, mitral annular perimeter.
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There is a “learning curve” in measuring MA dimensions, as

suggested by the feasibility findings, which could also affect results.

However, further studies are warranted to confirm our findings

together with comparisons between 2D echocardiography and 3DSTE.

6 | LIMITATIONS

• With recently available 3DSTE systems, image quality is better in

2D than in 3D mode, affecting the results.1 Moreover, the results

can only be applied to the Toshiba equipment we used.

• As mentioned above, only 2D MA projection was evaluated during

3DSTE analysis, not its real 3D saddle shape.10

• The present study did not aim to compare 2D- and 3DSTE-derived

MA dimensions.

• We included a limited number of cases older than 50 years, and

none over 60 years.

• Although 3DSTE could combine volumetric and strain assessments

allowing more detailed analysis from the same 3D echocardio-

graphic dataset3-8 for MA featuring, no volumes or strains of other

heart chambers were assessed in the present study.

7 | CONCLUSIONS

Changes in end-systolic MA dimensions appear to occur over decades,

resulting in a special pattern of MA functional properties with signifi-

cant reduction over the age of 50 years.
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