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1. Introduction

Lassa haemorrhagic fever (LHF), or Lassa fever for short is a zoonotic, acute viral hemorrhagic fever
caused by the Lassa virus from the Arenaviridae family [1]. The disease was first described in the 1950s,
though the virus causing it was only identified in 1969 [2]. The disease was named after the Nigerian town
Lassa, where the first cases were observed. LHF is usually transmitted to humans via direct or indirect
exposure to food or other items contaminated with urine or feces of infected multimammate rats (Mastomys
natalensis), through the respiratory or gastrointestinal tracts. Person-to-person transmission has also been
observed [3]. The virus remains in body fluids even after recovery: in urine for 3-9 weeks from infection and
for three months in male genital secretions [3]. Lassa fever is endemic among rats in parts of West Africa,
while it is endemic in humans in several countries of the region. In these regions, the number of infections
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Fig. 1. Lassa fever transmission. The figure shows modes of transmission (human-to-human, human-to-rodent, rodent-to-human and
rodent-to-rodent).

per year is estimated between 100,000 and 300,000, with around 5000 deaths. Lassa menaces mostly those
who live in rural areas where multimammate rats are present, especially where poor sanitation and crowded
living conditions are typical. Fig. 1 shows the possible methods of LHF transmission.

About 80% of people infected with Lassa fever have only mild or no symptoms. Symptom onset occurs
usually 1-3 weeks after exposure, these include fever, tiredness, weakness, and headache. 20% of infected
develop a severe multisystem disease with symptoms including bleeding gums, respiratory distress, vomiting,
chest, back and abdomen pain, facial swelling, low blood pressure. Neurological problems can also be
observed, such as hear loss, tremors, encephalitis. Approximately 1% of infections result in death due to
multi-organ failure. However, the disease is particularly severe in women in the third trimester of their
pregnancy, with high rates of maternal death (29%) observed, while an estimated 80%-95% fetal and
neonatal mortality is reported [1,4,5].

Treatment of Lassa fever includes antiviral medication, fluid replacement and blood transfusions. For
women in late pregnancy, inducing delivery is necessary.

Although Lassa fever appears in WHO’s Blueprint list of diseases to be prioritized for research and
development [6], compared with other infectious diseases, a relatively small number of mathematical
modelling studies have been published up to now. Onah et al. [7] extended an SIR-SI-type compartmental
model by introducing different control intervention measures, e.g. external protection, treatment, isolation
and rodent control. They used optimal control theory to determine how to reduce disease transmission with
minimal cost. Musa et al. [8] established a model describing the interaction between humans and rodents
including quarantine, isolation and hospitalization. The authors showed the presence of a forward bifurcation
with a stability switch between the disease-free and the endemic equilibrium. Also, they fitted the model
to data from 2016-19 to find that initial susceptibility increased across the three outbreaks in these years.
Zhao et al. [9] studied the epidemiological features of Lassa epidemics in various regions of Nigeria. They
assessed the connection between the reproduction number and rainfall. They determined the infectivity of
Lassa by the reproduction number estimated from four types of growth models. They fitted the models to
Lassa surveillance data and estimated the reproduction number in various regions. Akhmetzanov et al. [10]
applied a model to study the datasets of human infection, population changes of rodents as well as weather
changes to quantify the seasonal drivers of Lassa fever transmission. They obtained that seasonal migration
of rats plays a key role in regulating the periodicity of Lassa epidemics. The peak exposure of humans to
rats is shortly after the beginning of the dry season and correlates with the mating period of rodents.

Although some of the above works put an emphasis on the time-changing nature of Lassa transmission
dynamics, so far, no compartmental model with time-dependent parameters has been established. In
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this work, we set up and study a compartmental epidemic model for Lassa fever transmission dynamics
considering infected humans with mild or severe symptoms, treatment, human-to-human and rodent-to
human transmission as well as time-dependent parameters. Namely, modelling the annual periodic change
of weather, we introduce time-periodic parameters for rodent birth rate and carrying capacity of the
environment with respect to rodents. To study the dynamics of our time-periodic model, we will apply
the theory initiated in [11-15], later applied in several periodic epidemic models (see, e.g. [16-23]). Here we
adapt these methods to our system with human-to-human and rodent-to-human transmission with a logistic
growth of rodents.

The rest of the paper is structured as follows. In the next section we introduce the time-dependent
mathematical model for Lassa fever transmission dynamics. In Section 3 we study the existence of the
disease-free periodic solution. In Section 4 we calculate the basic reproduction number of our model using
various methods. In Section 5, we show that depending on the basic reproduction number, either the disease-
free periodic solution is globally asymptotically stable or the disease persists in the population. In Section 6
we provide numerical simulations for both scenarios supporting the theoretical results.

2. Seasonal model for Lassa fever transmission

We divide the human population into six compartments: susceptible Sy (t), exposed Ep(t), symptomati-
cally infected I(t), mildly infected I,,,(t), treated It (t), and recovered individuals with temporary immunity
R(t). The total size of the human population at any time ¢ is denoted by

No(t) = Sa(t) + Eu(t) + Ln(t) + I() + I(t) + R(t).

An individual may proceed from susceptible (S;) to exposed (E}) upon contracting the disease. Individuals
in the exposed compartment have no symptoms yet. After the incubation time, an exposed individual moves
either to the symptomatically infected class (I5) or to the mildly infected class (I,,), depending on whether
that person shows symptoms or not. Infected people from I; may move to the treated compartment (Ir),
including those who need hospital treatment. After the infection period, recovered persons move to the class
R.

Fig. 2. Schematic diagram of the LHF transmission among rodents and humans. Red nodes denote infectious, brown nodes denote
non-infectious states. Blue solid arrows demonstrate infection progress, while red dashed arrows represent direction of human-to-human
transmission and rodent-to-rodent transmission. Blue dashed arrows show direction of transmission between humans and rodents. Green
arrows show recruitment rate for humans and maximum growth rate of the rodents. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

The vector population (Mastomys natalensis rat) at time ¢, denoted by N,(t), is divided into three
compartments: susceptible S, (t), exposed E,(t) and infectious I,.(t), respectively. Thus

Ny (t) = Sp(t) + Ep(t) + I(t).
3
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Table 1
Description of parameters of model (1).
Parameters Description
Iy, Recruitment rate for humans
d Natural death rates of humans
85,01 Disease-induced death rates for humans
Bms Bss Br Transmission rates from human-to-human
Bhr Transmission rate from human-to-rodent
Brn Transmission rate from rodent-to-human
B Transmission rate from rodent-to-rodent
Ns> MT Relative transmissibility of infectious human-to-rodent
6 Proportion of mild infections
s Progression rate from I to Ir
Ym> VT Recovery rates
v Humans incubation rate
v, Rodents incubation rate
3 Rate of relapse from R to Sy
K, Average carrying capacity of the environment for the rodents
1, Baseline value of rodents birth rate
" Natural death rates of rodents
b Phase angle (month of peak in seasonal forcing)
A Amplitude of seasonality

The transmission dynamics is shown in the flow diagram (see Fig. 2) and our model takes the form

dsgt(t) _ g, _ BrIn®) +€V§(S> Ol g 5., z{?ﬁ) Su(t) — dSu(t) + ER(1).

diht(t> ~ Snlull fv,f(g) o) Sh(t) + Brn (( >) n(t) — vnEn(t) — dEn(t),

YD) g1, 4 (6) — 3o (8) — L (1)

) (1~ unBn(t) ~ (D) — (d+ 6L (1),

dlgt(t) =5 Ls(t) = yrIr(t) — (d + 07)Ir (D), (1)
4Rt _

= YmIm(t) +'7TIT<) ER(t) — dR(1),

dS (o) (1= Jb ) o) = o, BRI O ), 5, 0) - s ),
B . W NI ) L)

ar = Bur Ni(t )T L Sp(t) + Br T(t)Sr(t)_VrEr(t)_:U'ET(t)v

ar, (1)

=v.E. —ul,.
dt v B (t) — pl (1),

where II,(t) and K (t) denote the time-dependent per capita birth rate and maximal carrying capacity of
the Mastomys natalensis rats. In our model we assumed II,.(t) and K (t) are continuous, positive w-periodic
functions. We denote by II;, and d the human birth and death rate, respectively. There is also an additional
disease-induced death rate, denoted by d5 and d7 for those in the compartments Iy and I, respectively. The
description of the model parameters are summarized in Table 1.

3. The disease-free periodic solution

3.1. Existence of the disease-free w-periodic solution

In this section, we study the existence and uniqueness of the disease-free periodic solution of system (1).
Define
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(b = (Sh(0)>Eh(0)’ Im(0)715<0)v IT(O)7 R(O), Sr(0)>Er(0)7 IT(O)) € R?F

In case of no disease, for the total human population N, with a positive initial condition ¢ € Ri, we have
the equation
d Ny (1)

dt - Hh - dN}L(t)a (2)

from which we obtain
Iy,

N (t) = Ny (0)e™ " + 7(1 —e ™). (3)
with an arbitrary initial value N (0). Eq. (3) has a unique equilibrium N} = % in Ry . Consequently,
|Np(t) — Nj| — 0 as t — oo and N} is globally attractive on R.

To identify the disease-free periodic solution of (1), consider
ds,(t) - S, (#)
= II.(t S,.(t) — 1S, (1), 4
o = o) (1= 320 ) S0 = S0 )

with initial condition S,(0) € R;. Eq. (4) has a unique positive w-periodic solution

oJo Tt (9)=p) ds

Sk(t) = > 0, 5
r() w n,(r)ef (T (s)—p) ds ®)
JE B Jo ()= d g Jo 1)
efo (Tt (s) =) ds _

dr

which is globally attractive in R;. Thus, system (1) has a unique disease-free periodic solution Ey =
(S;,0,0,0,0,0,S%(t),0,0), where S; = 2.

K () (1 () —p)

i) > 0 such that any forward solution in Ri of (1)

Lemma 3.1. There is N} = limsup,_, .,
enters eventually

'QN,’f = {(ShthaImaIS7IT7Ra ST'7E7'7I’I') € Ri : Nh < N}ta Nr g N:} 5
and for each N,.(t) = N}, 2x is a positively invariant set w.r.t. (1). Further, it holds that

lim (N, () — S*(t)) = 0.

t——+o0

Proof. From (1), we have

dN ( ) — [I.(t (t) <1 ((tt))) N, (t) — pN.(t)
( ][Y(T((;)) Nr(t)> N,.(t) <0 if N.(t) > N},

which implies that 2y, N,.(t) > N}, is positively invariant and each forward orbit enters {2+ eventually.

For the second part of the proof, let us assume that z(t) = N,(t) — S} (¢), t = 0. Then, it follows that

dz(t)
dt

which implies that lim; o 2(¢) =0. O
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4. Basic reproduction numbers and local stability

Based on the method established by Wang and Zhao [14], we demonstrate the local stability of the
disease-free periodic equilibrium Fy of (1) in terms of the basic reproduction number Ry.

Linearizing the system (1) at Ey, we obtain the equations for exposed and infectious human and rodent
populations, respectively:

dEh(t) — /BmIm(t) + les(t) + ﬁTIT(t)

I”'( ) *
dt N; Sh

1)
Ny,

Sy — Brn — (vn +d)En(1),

dI:int Y 00 Bu(®) — I (0) — dLn(t),

dlgt(t) = (1 — O\ En(t) — vsIs(t) — (d + 65)I5(1),

djgt(t) = vsIs(t) — yrIr(t) — (d + o)1 (1),

T = o, O ) 1,210~ 1+ ) B ),
dfgt“) = VB (1) — ul(1).

Let us introduce the matrix functions F(t) and V (¢) of dimension 7 x 7 as

[ Sh Sh h h
0 Bm % Bs ~% Br 0 Brh %
N;: N;: N;: r N;
0 0 9 0 0 0
Fit)= 18 3§ 0 0 0 0 )
nNs * nr ox S:@)
0 0 BhrN—;S'T (t) BhrN—;:ST (t) 0 Br NF
LO 0 0 0 0 0
- wptd 0 0 0 0 0
—0Ovp, Ym+d 0 0 0 O
V(t) = —(1-0)vp, 0 ys+d+ds 0 0 0
0 0 —Vs 7T+d+5T 0 0
0 0 0 0 vrtp 0
L 0 0 0 0 —Ur

Note that F'(t) is a non-negative matrix function, while —V(t) is cooperative.
Suppose Z(t,s),t > s, is the evolution operator of the linear system

dy
— =-V(t)y. 6
Y= vy (6)
Thus, for s € R, Z(t, s) satisfies the equation

dZ(t, s)
dt

where [ stands for the 6 x 6 identity matrix.

= -V Z(t,s), Vit > s, Z(s,s) =1,

Assume ¢(s) is the initial distribution of infected, w-periodic in s. Then, F'(s)$(s) provides the rate of new
cases due to those infected who were introduced at time s. For t > s, the term Z(t, s)F(s)¢(s) provides us
the distribution of the infectious individuals who newly became infected at time s and who are still infected
at time ¢. Therefore,

Y(t) = L Z(t, s)F(s)p(s)ds = /000 Z(t,t —a)F(t —a)d(t — a)da,

gives the distribution of accumulative new infections at ¢ generated by all infected ¢(s) who were introduced
at any time s < t.
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Let us assume that C,, is the ordered Banach space of w-periodic functions from R to R®, endowed with
the usual maximum norm || - ||, and introduce the positive cone

Ch={pecC,:o(t) >0, vVt € R}.

Define the linear next infection operator £: C,, — C,, by
(Lo)(t) = / Z(tt—a)F(t— a)p(t —a)da, VEER, deCl. (1)
0

Then, the basic reproduction number of (1) is Rg := p(L), the spectral radius of £ [14].
Let W (t, A) be the monodromy matrix of the linear w-periodic equation

dw

== <V(t) + iF(t)) w, ViER,

with parameter A € (0, 00).
To numerically approximate the basic reproduction number, we will apply the following theorem from [14].

Theorem 4.1 (/14, Theorem 2.1]). The following statements are valid.

(i) If p(W(w, X)) = 1 has a positive solution Ao, then Ao is an eigenvalue of operator L, and hence Ry > 0.
(it) If Ro > 0, then A = Ry is the unique solution of p(W(w,\)) = 1.
(iii) Ro = 0 if and only if p(W(w, \)) < 1 for all X > 0.

4.1. Local stability of the disease-free periodic solution
First we recall the following theorem from [14].

Theorem 4.2 ([1/4, Theorem 2.2]). The following statements are valid:

(i) Ro =1 if and only if p(@p_v(w)) = 1.
(i) Ro > 1 if and only if p(Pp_v(w)) > 1.
(iii) Ro < 1 if and only if p(Pr_v (w)) < 1.

As per the above discussion, the following theorem concerns the local stability of the disease-free periodic
solution Fy of (1).

Theorem 4.3. The disease-free periodic solution Eq of (1) is locally asymptotically stable if Ry < 1, whereas
it is unstable if Rg > 1.

Proof. The Jacobian matrix of (1) calculated at Ey is given by.

F(t)—-V(t) 0
I = [0 ]

where
8 ﬁén %s ﬁOT 8 ﬁBh —d £ 0
= = —&—d .
A(t) 00 ,Bhr;\% S5 (t) Bhr;z]—T;ij(t) 0 p | and M { 0 =% OJ

According to [24], Ep is LAS if p(@y(w)) < 1 and p(@p_v(w)) < 1. M is a constant matrix and its
eigenvalues are Ay = —d < 0, \oa = =§ —d < 0 and A3 = —p < 0. Since A1, Ay and A3 are negative, we have
p(®Prr) < 1. Consequently, the stability of Fy depends on p(@p_vy (w)). Thus, Ey is locally asymptotically
stable if p(@r_y(w)) < 1, and unstable if p(®p_y(w)) > 1. Hence, we complete the proof by applying
Theorem 4.2. 0O
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4.2. The time-average basic reproduction number

Using the general method introduced in [25], we calculate the basic reproduction number of the
autonomous model obtain from (1) by setting the time-varying parameters II,(t) = II, and K(t) = K,
to constant.

Substituting the value of S*(t) = SF = K,.(HITY—:“) in the disease-free equilibrium for all ¢ > 0, we obtain

the Jacobian F' given by 5
h

Oﬁm 55 ﬁT 0 r
00 0 0 00
F= oo 0 0 00 |,
0 0 Bhrissy Bhr%s;f 0 Br
00 0" " 00
and the Jacobian V given by
vp+d 0 0 0 0 0
—0Ovy, Ym+d 0 0 0 O
V= |00, 0 ~ystd+ds 0 0 0
- 0 0 —vs ’YT+d+5T 0 0 ’
0 0 0 0 vr+p 0
0 0 0 0 —
thus the characteristic polynomial of FV 1 is
)\4 ()\2 — (th + Rrr))\ + thRrr - thRrh) = 07 (8)
where
_ 08m (1—0)Bs (1 —0)vsBr
Rhn = + + )
d+uvp \vm+d ’Ys+d+5s (75+d+65)(’YT+d+§T)
1-46 Up, ”»S:f s
thznh( Vi (ns+ 'Y;]T(s)’
“h(yy +d+65)(d+ v) V1 +d+0r
Ryp = —rhr
u(p + vr)
_ 67‘”7’
(e )

The characteristic polynomial therefore is the quadratic equation
>\2 - (th + 737'7')A + RunRrr — RiurRen = 0. (9)

According to [25], the basic reproduction number is the largest absolute eigenvalue of FV =1 and therefore,
it is given by the root of the quadratic equation (9),

2
'th—FRr—F\/ Run — R )™ +4R2
RY = p(FV 1) = . ( 5 i =3 (10)
where Rpn, Ry and R, = /Rn- R, are the basic reproduction numbers of human-to-human transmis-

sion, rodent-to-rodent transmission and vectorial transmission, respectively. From (10) one can see that

Rpp+Rrr+R2 - . .
% > 1 is the necessary and sufficient condition for R§ > 1.
rr

To calculate the time-average basic reproduction number, [Rq], of the associated non-autonomous system,

we use the following remark.

Remark 4.4. For a continuous w-periodic function g(t), define its average (using the notation presented
in [26]) as
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Then, the time-average basic reproduction number is given by

Rin + Rer + \/ (Rin — Rm-)2 + 4[Rnr]Ren
[Ro] = 5 ; (11)

where

R =
(R I oy +d + 85)(d + v,

Wﬂﬂm(%gﬁ)

(1 = 0)vnBrr[S;] < Vs )
) ns+’YT+d+5T ’

5. Threshold dynamics

In this section, we show the dynamics of our model depending on the basic reproduction number. We
prove the existence of a positive periodic solution of model (1) if the basic reproduction number Ry > 1. In
this case, the disease persists, whereas if the basic reproduction number Rg < 1, then the unique disease-free
equilibrium Fj is globally asymptotically stable and the disease goes extinct.

We will need the following lemma to show the global stability of Ey and the persistence of the disease.

Lemma 5.1 ([15, Lemma 2.1)). Let jp = L 1n p(P 4.

y(W)). Then there exists a positive, w-periodic function
v(t) such that e*v(t) is a positive solution of ' = A(t

x.

5.1. Global stability of the disease-free equilibrium

Theorem 5.2. If Ry < 1, then the disease-free periodic solution Ey of (1) is globally asymptotically stable
and if Ro > 1, then it is unstable.

Proof. We realize from Theorem 4.3 that if Rg > 1, then Ej is unstable and if Ry < 1, then Ej is locally
asymptotically stable. Consequently, it remains only to show that for Ry < 1, Fy is globally attractive. For
any £, from Lemma 3.1 and Eq. (2), there exists 77 > 0 such that S,.(¢) < S¥(t) + &1, N-(t) = Sk(t) — &y
and Ny (t) > N} — ey for t > T. Thus, we get

Sut) _ S, Se(t) _ Si+en
Nup(t) =~ Nf—e1’ Np(t) ~ Nf—e

() _ Siter

d < .
R AORSEORE
From (1), we obtain

) < (B 0) + 8L (1) + T (0) — Brady (1)) o

— (vn +d)En(t),

at Ni—=a
dlgt(t> = QVhEh<t) — ’ymIm(t) - dlm(t)a
dﬁf):(1—9ﬁ%EMﬂ—~mL@)—(d+5dh@%
dICTit(t) =75 Ls(t) = yrIr(t) — (d+ or)Ir(t),
é%glzymh4@+yfha>—aawde@x
d%t(t) < B (naL(t) + 77T[T(t))S]:\f(g)j;1 + ﬂrlr(t)S];:,(;)_JZ1 — (vp + W) E(t),
) vy t) — L 1),
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for ¢t > T. Let M., (t) be the 6 x 6 matrix function defined by

S Sk 5;; S*

i h h Sy
vp—d BmN;751 ﬂsN;7€1 ﬂTszsl 0 ﬁrhN;751
Ovy, —Ym—d 0 0 0 0
(1-0)vy, 0 —vs—d—30s 0 0 0
0 0 Vs 7A/T7d75T 0 0
S::+El S:+El S;—‘—é‘l
0 0 ﬁhwlsW BhrnTW —vr—p Br NF (D —e1
0 0 0 0 Vr —u
Consider the following auxiliary system:
dU(t) -
3 = M. (00, (12)

where U(t) = (En(t), In(t), I;(t), I7(t), E.(t), I,(1)).

Applying Theorem 4.2, it flows that Ry < 1 if and only if p(@p_v(w)) < 1. It is obvious that
lim, 0 P, (w) = Pr—v(w). As p(@p_v(w)) is continuous, we can choose £1 > 0 small enough such that
p(Par,, (@) < 1.

From Lemma 5.1, there is an w-periodic positive function p;(t) such that p;(¢)est? is a solution of (12)
and & = 11n p(Pur., (w)) < 0. For any h(0) € R}, we can choose n* > 0 s.t. 2(0) < n*p1(0) where

h(t) = (Bu(t), Im(t), L(t), Ir(t), Ev(t), I:(¢)) "

Applying the comparison principle [27, Theorem B.1], we obtain h(t) < p;(t)e®t? for all ¢ > 0. Therefore, we
get
lim (Ep(t), In(t), I(t), Ir(t), E.(t), I())" = (0,0,0,0,0,0)" .

t—o00

One can easily find that Nj(t) — N as t — co. Let &1 > 0, we can find t., > 0 such that I,,,(t) < &1 and

Ip(t) < eq for all t > t.,. Then, the equation for R'(t) of (1) gives dlzit) < (Ym +y7)e1 — ER(t) — dR(t), for

large t. From where R(t) — 0 as t — 4o0. Thus, from (5) and the first equation of (1), we obtain that

tllglo Sp(t) =S; and tll>rrolo Sy(t) = Sk(t),
and the proof is complete. [

5.2. Existence of positive periodic solutions

Define

(Shthvjmv-[S;ITaRv STvETaI’r‘) S Ri} )
E,>0,1,>0,1, > o,}

X::{
Xo =< (Sh, Ep, Iy, Is, I, R, S, B, I.) € X :
0 {( o T ) Ir>0,FE,.>0,1.>0

and
9Xo = X \ Xo.
Let P: R} — R} denote the Poincaré map corresponding to (1), then P is given by
P(z°) = u(w,2?), for 2° € RY,
where u(t, 2°) is the unique solution of (1) with initial condition z° € X. Clearly,
P™(2%) = u(mw, 2°), Ym = 0.

10
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Proposition 5.3. The sets Xo and 90X are both positively invariant w.r.t. the flow defined by (1).

Proof. Let ¢ € Xy be any initial condition. By solving (1) for all ¢ > 0, we get that

Sp(t) = edo el ds [S )+ [L (I + ER(t))edo (1 FDdr ds} >0, (13)
Bi(t) = =000 | Bu(0) + [y ar(s)Sn(s)et 2 ds| > 0, (14)
In(t) = e~ Oimta)t {Im(o) + 0wy, [ By (s)eOm+d)s ds] >0, (15)
I,(t) = e~ (Ym+d+6a)t [Im(o) +(1- 0w, fg B (s)elmTd+os)s ds} >0, (16)
Ir(t) = e~ Ortd+or [ 7(0) + 7 [L I, (r)eCr+a+oT)r dr] >0, (17)
Ri(t) = e~ €D [R(0) + [} (3L, (r) + 37 Lr(r) €7 dr| > 0, (18)
S, (t) = eJo (@) +m)ds [ 0) + fy Ir(s)(1 — £ Ni(s)e Jo aa)tm dr ds] >0 (19)
B, (t) = e~ Wrmt {ET(O) + [L as(s)Sy(s)er s d } (20)
I(t) = et [I,,(O) + vy [ By (s)e s ds] >0, (21)
where
o = Bl £ B+ W) g 0
) 3, RO ) 1)

Thus, Xy is a positively invariant set. Since X is also positively invariant and 90X is relatively closed in X,
it gives 0Xy is positively invariant. [J

Lemma 5.4. If Ry > 1, then there exists a o > 0 such that for any ¢ € Xy with ||¢ — Ep|| < o, we have

limsup d (P™(¢), Ep) > o

m—r oo

Proof. We recognize from Theorem 4.2 that p(®p_v(w)) > 1 if Rg > 1. Then, we can select £ > 0 small
enough such that we have p(®p_v_p, (w)) > 1, where M, (¢) is the 6 x 6 matrix function defined by

Bmk  Bsk  Brr 0 Brpk

0 m S

0 0 0 0 0 0
0 0 0 O 0 O
0 0 0 0

0 0 Bh'rnsn Bhr'qTrcO ﬂrm
0 0 0 0 0

Using the continuous dependence of the solutions on initial values, we find a ¢ = (k) > 0 such that for
all ¢ € Xy with [|¢ — Eo| < o, it holds that

[u(t, @) — u(t, Eo)|| < &, for 0 <t < w.

We further claim that
limsupd (P™(¢), Ey) > o. (22)

m—r o0

By contradiction suppose that (22) does not hold. Then

limsupd (P™(¢), Ey) < o, (23)

m—r o0

11
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for some ¢ € Xy. Without loss of generality, we may assume

d(P™(¢), Ep) < o, Ym > 0.
Then, from the above discussion, we have that
[lu(t, P™ (@) — u(t, Eo))|| < o, ¥Ym >0, t € [0,w].

For any t > 0, let t = mw +ty, where ¢; € [0,w) and m = [L], which is the largest integer less than or equal

to £. Then, we get
[u(t, @) —u(t, Eo) || = [lu(ty, P™(¢)) — ulty, Eo)| <o,

for all ¢ > 0, which implies that

Su(t) _ S; Se(t) _ S: S(t)  Si()
IO R A O R A A () Rl
Then for ||¢ — Ey|| < o, we obtain
dE(’iht(t) > (Bondm (t) + BoIs(t) + BrIp(t) — Brnl (1)) (f];i - fi) — (vn + d)En(t),
h
dfgt(“ — O En(t) — oI (£) — dI (£),
dfét(“ = (1= O)unEn(t) — 7o Lo(t) — (d+ 6,)L(t),
dfgt(t) — o L(8) — v () — (d + 67) I (8),
dE, S Sy
dt(t) 2 Brr (ns1s(t) + nrir(t)) <N; - “) + 8L (?) (N: B ”) B D),
ar(t)
o = VB () - uL(b).
Next we consider the auxiliary linear system
U 2
% = (F(t) = V(t) — M. (t))U(t), (24)

where U(t) = (En(t), Ln(t), I(t), I7(t), Ex(t), L.(t)).
Now we have that p(®Pp_v_p, (w)) > 1. Again, we have from Lemma 5.1 that there exists a positive,

w-periodic function pa(t) such that h(t) = e%2'p,(t) is a solution of (24) and & = L In p(Pr_y 4, (w)) > 0.

Let ¢t = nw and n be non-negative integer, we obtain
h(nw) = €™ py(nw) — (oo,oo,oo,oo,oo,oo)T

For any h(0) € RS, we can choose a real number ng > 0 such that h(0) > ngp2(0) where
B(E) = (En(t), I (8), 1,(0), Er(t), Ev(t), 1, (6))7

Applying the comparison principle [27, Theorem B.1], we obtain h(t) > po(t)e%2! for all ¢ > 0, which implies
that

lim (Eh(t),lm(t),Is(t),IT(t),ET(t),IT(t))T = (oo, 00, 00, 00, 00, oo)T
t— o0

This leads to a contradiction that completes the proof. [

12
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Theorem 5.5. Assume that Rg > 1. Then system (1) has at least one positive periodic solution and there
exists an € > 0 such that

lim inf (B (1), In (£), T(1), I (£), R(t), Ex(8), I.(1)) " = (c,¢,e,6,6,6,¢) ",

t—o0

for all ¢ € Xg.

Proof. First, we prove that P is uniformly persistent with respect to (Xo,9Xy), as from this, applying [28,
Theorem 3.1.1], it follows that the solution of (1) is uniformly persistent with respect to (Xo, 9Xp).

From Proposition 5.3, we have that both X and X are positively invariant and 90X is relatively closed
in X. Furthermore, from Lemma 3.1 it follows that system (1) is point dissipative. Let us introduce

My = {JJO € 0Xy: Pm(mo) € 0Xg, Ym > 0} R

where 20 = ¢. We will apply the theory developed in [28] (see also [15, Theorem 2.3]). In order to do so, we
first show that

My = {(S1,0,0,0,0,0,5,,0,0): Sp >0, S, > 0}. (25)
Let us note that My O {(54,0,0,0,0,0,5,,0,0):S, >0, S, >0}. It suffices to prove that My C
{(5#,0,0,0,0,0,5,,0,0): S, >0, S, >0}, i.e., for arbitrary initial condition ¢ € 90Xy, Ep(nw) = 0 or
L, (nw) =0 or I;(nw) =0 orly(nw) =0 or R(nw) =0 or E,.(nw) =0 or I.(nw) =0, for all n > 0.

Assume by contradiction the existence of an integer ny > 0 for which Ep(niw) > 0, I,(niw) > 0,
I;(niw) > 0, It(niw) > 0, R(nqw) > 0,E,(njw) > 0 and I.(njw) > 0. Then, by putting ¢ = nyw into the
place of the initial time ¢t = 0 in (13)—(21), we get that Sy (¢t) > 0, Ex(t) > 0, L, (t) > 0, I;(t) > 0, Ip(t) > 0,
R(t) > 0, S.(t) > 0, E.(t) > 0, I.(t) > 0. This is in contradiction with the positive invariance of 9Xp.

By Lemma 5.4, P is weakly uniformly persistent w.r.t. (Xo,0Xp). Lemma 3.1 guarantees the existence
of a global attractor of P. Then Ej is an isolated invariant set in X and W?*(FEy) N Xy = 0. Each solution in
Myp tends to Ey and Ej is clearly acyclic in Mpy. By [28, Theorem 1.3.1 and Remark 1.3.1], we can deduce
that P is uniformly (strongly) persistent w.r.t. (Xo,9Xo). Hence, there exists an € > 0 such that

litrgiogf(Eh(t),Im(t),Is(t),IT(t),R(t),Er(t),IT(t))T > (6,6,6,6,6,6,6)

for all ¢ € Xo. By [28, Theorem 1.3.6], P has a fixed point ¢ € X, and hence system (1) has at least one

periodic solution wu(t, ¢) with
é = (Sh(o)’ Eh(0)7 I_a(o), I_a(o)a I_s(0>7 Rh(o)a gr(o)v Er(0)7 I_r(o)) € X0~

Now, let us prove that Sy, (0) and S,.(0) are positive. If S;(0) = 0 = S,.(0), then we obtain that Sj,(0) > 0
and S,.(0) > 0 for all t > 0. However, using the periodicity of solution, we have S;(0) = Sj,(nw) = 0, and
S,(0) = S,(nw) = 0, that is a contradiction. [

6. A case study — Lassa fever in Nigeria 2017-2020

In this section, we use our model to study the spread of Lassa fever in Nigeria during the epidemic in
November 2017 to May 2020. From Section 5, we see that Rg is a threshold parameter for the persistence
of the disease in the population (see Theorems 5.2 and 5.5). Simulation results are provided to demonstrate
that our model with periodic parameters is well aligned with seasonal fluctuation data.

The functions II,.(t) and K (t) are assumed to be time-periodic with one year as a period and, following
e.g. [29,30], they are supposed to be of the form

I.(t) = I, - @HMW)) and K(t) = K, - (1 _ ACOS(W)) ,
where p is period length, a is free adjustment parameter, A is the amplitude of seasonality, b is phase angle
and (I, K,) are the (constant) baseline values of the corresponding time-dependent parameters.

Fig. 3 shows the weekly confirmed cases of 2017-2020 Lassa outbreak in Nigeria [31].

13
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Fig. 3. Confirmed number of cases reported of the November 2017-May 2020 Lassa fever epidemic in Nigeria [31].
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Fig. 4. Fitting the model to the data for the 2017-2020 Lassa outbreaks in Nigeria with parameter values

in Table 2 and initial
condition (Sy, En, Im, Is, I7, R, Sy, E., I,)(0) = (2 x 10%, 40, 49, 2,20, 14 x 10%,5 x 108,10, 10%).

6.1. Parameter estimation for Nigeria

We used Latin Hypercube Sampling, a sampling tool applied in statistics to quantify simultaneous
variation of many parameter values (see, e.g., [34]), as a way to estimate the parameters providing the best
fit. The method consists of generating a representative sample set for all parameters shown in Table 2 from
parameter ranges obtained from literature and the World Bank website [32] as shown in Table 2. Then the
solutions of model (1) with the specified parameters value are determined numerically for all elements of
this representative sample set. Finally, the least squares method is used to get the best fit.

Fig. 4 shows model (1) fitted to data from Nigeria [31]. Our model provides a reasonably good fit,
generating the three peaks of Lassa fever happened in the last three seasons in Nigeria.

Fig. 5 shows the long-term behaviour of infectious humans and rodents with the best fit parameters given
in Table 2 (see baseline). The results indicate that Lassa fever in Nigeria will persist and show periodic
fluctuations in the coming years unless additional measures are taken.

6.2. Long-term behaviour

We compute the basic reproduction Ry numerically by using the method developed in [26, Section 2].
By Theorem 5.2, we know that the disease will die out if Ry < 1. We obtain Ry = 0.7165 < 1 with the
set of parameter values in Table 2 (see Extinction). In this case, the long-term behaviours of the infectious

14



M.A. Ibrahim and A. Dénes Nonlinear Analysis: Real World Applications 60 (2021) 103310

Table 2
Baseline values, ranges, units and values for extinction and persistence of model (1) parameters.
Parameter Baseline Range Units Value for Source
Extinction Persistence

Ny, 2 x 108 - Persons 2 x 108 2 x 108 [32]

Iy, 10,000 - Persons day ! 10,000 10,000 [32]

d 0.00005 — Day ! 0.00005 0.00005 [32]

5, 0.485 0.1-0.5 Day~! 0.201 0.201 18]

St 0.269 0.1-0.5 Day ™! 0.224 0.224 [8]

Bum 0.0637 0.03-0.5 Day ™! 0.181 0.181 [8,33]

Bs 0.221 0.03-0.5 Day ™! 0.275 0.367 [8,33]
Br 0.206 0.03-0.5 Day~! 0.259 0.259 [8,33]
Bhr 0.259 0.03-0.5 Day ! 0.242 0.242 8]

Brn 0.0296 0.1-0.8 Day ! 0.216 0.373 8]

B8, 0.052 0.005-0.4 Day ! 0.007 0.02 [8,29]

Ns 0.238 0.1-0.5 Day ™! 0.392 0.392 Assumed
nr 0.319 0.1-0.5 Day ! 0.344 0.344 Assumed
6 0.815 0.7-0.9 Day ™! 0.802 0.802 [32]

Ym 0.108 0-1 Day ! 0.433 0.433 [8]

Vs 0.024 0.001-0.025 Day ! 0.0123 0.0123 [8]

N 0.446 0-1 Day ™! 0.256 0.256 18]

v 0.528 0.1-1 Day ! 0.515 0.515 [8,29]

v, 0.32 0.1-1 Day ™' 0.299 0.299 [8,29]

£ 0.00578 0.0035-0.03 Day~! 0.00578 0.00578 [8]

1, 0.172 - - 0.2 0.146 Assumed
m 0.003 0.001-0.006 Day ! 0.005 0.006 [8,29]
K, 20,000 - - 198,000 342,000 Assumed
a 0.31 0-1 - 0.31 0.31 Assumed
A 0.31 0-1 — 0.31 0.31 [29]

b 134.8 0-365 - 249 163.5 [29]
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Fig. 5. The long-term dynamic behaviour of the model (1) variables with parameter values in Table 2 (see baseline).

humans and rodents are shown in Fig. 6, which implies that the unique disease-free equilibrium Ej is globally

asymptotically stable when Rg < 1.
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Fig. 7. Uniform persistence of Lassa fever for Ry = 3.2678 > 1 with parameters given in Table 2 (see Persistence).

By Theorem 5.5, system (1) has a positive w-periodic solution if Rg > 1. Fig. 7 illustrates the uniform
persistence of the disease when Ry = 3.2678 > 1 with the set of parameter values in Table 2 (see Persistence).
These simulations correspond to our theoretical resuls.
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Fig. 8. The number sympatrically infected humans with three different values of in (a) rodent birth rate (II.), in (b) human-to-human
transmission rate (8;) and in (c) rodent-to-rodent transmission rate (3,) with parameter values are given in Table 2.

6.3. Parameter changes for Nigeria

In this study, one of our core concerns was to see what changes in the parameters might trigger a periodic
reappearance of the epidemic. Since we have a large number of parameters, it is not easy to rigorously
determine which of the parameters play the most important role in the variation of the dynamics, so we are
just attempting to explain the possible changes through a few examples.

Numerically, with the same set of parameter values used in the extinction case (see Fig. 6) except human-
to-human transmission (8s) and the rodent-related parameters (5,4, Br, I, 1, K ), we calculated the value
of the basic reproduction number Ry = 3.2678 > 1, i.e. we increased human-to-human, rodent-to-human
and rodent-to-rodent transmission rates, rodent death rate and maximal carrying capacity of rodents, while
rodent birth rate was decreased. Accordingly, it can be seen that the disease compartments are persistent
with these parameters, and the epidemic becomes endemic in the population periodically recurring annually
(see Fig. 7).

For a further illustration to explain the impact of parameter changes on the spread of Lassa fever, we
plotted the solution of our model with three different values for a rodent birth rate (/7.), human-to-human
transmission rate (85) and rodent-to-rodent transmission rate (5,) in Fig. 8. As is observed, the number of
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Fig. 9. The contour plot of the time-average basic reproduction number, [Ro] in (a) and the basic reproduction number, Ré of the
autonomous model in (b), as a function of maximal carrying capacity of the rats (K,) and in a) human-to-human transmission rate
(Bs), b) rodent-to-human transmission rate (3,,) and c) human-to-rodent transmission rate (Bp.).

symptomatically infected people increases by raising any term of II. or 85 or ., and the disease becomes
recurring periodically every year.

6.4. Sensitivity analysis of Ro

In any given time, formula (10) gives us with the basic reproduction number, R{', of the associated
autonomous system by substituting the parameter values in it, along with the value of the time-dependent
parameters at that time. Moreover, formula (11) provides us the time-average basic reproduction number,
[Ro], of the associated non autonomous system which can be calculated using the notation in Remark 4.4.

In Fig. 9, we plot the time-average basic reproduction number [Ry] (see Fig. 9(a)) and the basic
reproduction number R (see Fig. 9(b)), as a function of maximal carrying capacity of the rodents (K.,
and human-to-human transmission rate (8s), rodent-to-human transmission rate (8,5) and human-to-rodent
transmission rate (8p,). The rest of the parameters are set as obtained in the fitting of symptomatically
infected cases in Table 2 (see baseline). As can be observed, both reproduction numbers increase by increasing
the transmission rates (s, 8,5 and Bj.. Increasing rodent birth rates also increase reproduction numbers.
Although human-to-human and human-to-rodent transmission rates have a notable impact on the increase
in both reproduction numbers, the figure indicates that rodent control is a significant factor in Lassa’s spread
and that vector control might be necessary to suppress the disease.

In Fig. 10, we plot the curves of the time-average basic reproduction number [Ro], and the basic
reproduction number Rg‘ with respect to maximal carrying capacity of rodents (K,.), rodents birth rate
(I1,.), human-to-human transmission rate (;), human-to-rodent transmission rate (8, ), rodent-to-human
transmission rate (5,5,) and rodent-to-rodent transmission rate (3,), respectively. The calculations show that
[Ro] = R, suggesting that R provides an underestimation of the risk of disease transmission.
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Fig. 10. The curves of the time-average basic reproduction number [R(] and the basic reproduction number of the autonomous model
7264 versus in a) maximal carrying capacity of rodents (K,), b) rodents birth rate (I1,.), ¢) human-to-human transmission rate (3;5), d)
human-to-rodent transmission rate (83j,), e) rodent-to-human transmission rate (8,,) and f) rodent-to-rodent transmission rate (3,).

We mention that numerous papers have results on under- and overestimation of the average basic
reproduction number. For instance, it was shown in [14] that Ry > [Ro], while in [21] the authors gave
an example with R < [Rg]. In general, Ry # [Ro] and more details can also be found in [14,35].

7. Discussion

We formulated and analysed a periodic LHF transmission model between humans and rodents that
involves the seasonal effects (by including periodic coefficients), human-to-human transmission and the
vertical transmission of the virus in rodents. By using the theory presented in [14], we derived and
numerically computed the basic reproduction number Ry. It is demonstrated that the global dynamics is
determined by the basic reproduction number Ry. If Rg > 1, then the disease is uniformly persistent and
there exists at least one positive periodic solution, while the disease-free periodic solution Ej is globally
asymptotically stable and the disease dies out if Ry < 1. Our numerical simulations show that there is only
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one positive periodic solution which is globally asymptotically stable in the case where Ry > 1 (see Fig. 7)
and the disease dies out if Ry < 1 (see Fig. 6).

Numerically, we have computed all constant and periodic parameters by using some published data and
studied LHF in Nigeria. The fitted curve based on our model reflects the seasonal fluctuation and coincide
in quite well with the reported data (see Fig. 4). The reproduction numbers were estimated as a function of
the parameters K., II,., B, Bnr, Brn and B,.. The calculations show that the basic reproduction number R()“
underestimates the disease transmission risk (see Fig. 10).

Our model enables us to evaluate what kind of parameter changes might trigger a periodic recurrence
of LHF. Using numerical simulations, we observed that the human-to-human transmission rate has a
substantial impact on the prevalence of the disease, but the most significant factors in Lassa’s periodic
recurrence are the rodent related parameters.

The simulation results indicate that, if no additional intervention is taken, Lassa will persist and exhibit
periodic fluctuation in the next few years in Nigeria. These simulations are compatible with our analytic
results, and the model can be also used to study the Lassa fever transmission in other countries of West
Africa such as Benin, Ghana, Guinea, Liberia, Mali, Sierra Leone, and Togo so long as the data are accessible.
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