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a b s t r a c t

In this paper, we formulate and study a compartmental model for Lassa fever
transmission dynamics considering human-to-human, rodent-to-human transmis-
sion and the vertical transmission of the virus in rodents. To incorporate the
impact of periodicity of weather on the spread of Lassa, we introduce a non-
autonomous model with time-dependent parameters for rodent birth rate and
carrying capacity of the environment with respect to rodents. We introduce the
basic reproduction number and show that it can be used as a threshold parameter
concerning the global dynamics. It also shown that the disease-free periodic
solution is globally asymptotically stable in the case of R0 < 1 and if R0 > 1,
then the disease persists. We show numerical studies for the Lassa fever in Nigeria
and give examples to describe what kind of parameter changes might trigger the
periodic recurrence of Lassa fever.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Lassa haemorrhagic fever (LHF), or Lassa fever for short is a zoonotic, acute viral hemorrhagic fever
caused by the Lassa virus from the Arenaviridae family [1]. The disease was first described in the 1950s,
though the virus causing it was only identified in 1969 [2]. The disease was named after the Nigerian town
Lassa, where the first cases were observed. LHF is usually transmitted to humans via direct or indirect
exposure to food or other items contaminated with urine or feces of infected multimammate rats (Mastomys

atalensis), through the respiratory or gastrointestinal tracts. Person-to-person transmission has also been
bserved [3]. The virus remains in body fluids even after recovery: in urine for 3–9 weeks from infection and
or three months in male genital secretions [3]. Lassa fever is endemic among rats in parts of West Africa,
hile it is endemic in humans in several countries of the region. In these regions, the number of infections
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Fig. 1. Lassa fever transmission. The figure shows modes of transmission (human-to-human, human-to-rodent, rodent-to-human and
rodent-to-rodent).

per year is estimated between 100,000 and 300,000, with around 5000 deaths. Lassa menaces mostly those
who live in rural areas where multimammate rats are present, especially where poor sanitation and crowded
living conditions are typical. Fig. 1 shows the possible methods of LHF transmission.

About 80% of people infected with Lassa fever have only mild or no symptoms. Symptom onset occurs
usually 1–3 weeks after exposure, these include fever, tiredness, weakness, and headache. 20% of infected
develop a severe multisystem disease with symptoms including bleeding gums, respiratory distress, vomiting,
chest, back and abdomen pain, facial swelling, low blood pressure. Neurological problems can also be
observed, such as hear loss, tremors, encephalitis. Approximately 1% of infections result in death due to
multi-organ failure. However, the disease is particularly severe in women in the third trimester of their
pregnancy, with high rates of maternal death (29%) observed, while an estimated 80%–95% fetal and
neonatal mortality is reported [1,4,5].

Treatment of Lassa fever includes antiviral medication, fluid replacement and blood transfusions. For
women in late pregnancy, inducing delivery is necessary.

Although Lassa fever appears in WHO’s Blueprint list of diseases to be prioritized for research and
development [6], compared with other infectious diseases, a relatively small number of mathematical
modelling studies have been published up to now. Onah et al. [7] extended an SIR–SI -type compartmental

odel by introducing different control intervention measures, e.g. external protection, treatment, isolation
nd rodent control. They used optimal control theory to determine how to reduce disease transmission with
inimal cost. Musa et al. [8] established a model describing the interaction between humans and rodents

ncluding quarantine, isolation and hospitalization. The authors showed the presence of a forward bifurcation
ith a stability switch between the disease-free and the endemic equilibrium. Also, they fitted the model

o data from 2016–19 to find that initial susceptibility increased across the three outbreaks in these years.
hao et al. [9] studied the epidemiological features of Lassa epidemics in various regions of Nigeria. They
ssessed the connection between the reproduction number and rainfall. They determined the infectivity of
assa by the reproduction number estimated from four types of growth models. They fitted the models to
assa surveillance data and estimated the reproduction number in various regions. Akhmetzanov et al. [10]
pplied a model to study the datasets of human infection, population changes of rodents as well as weather
hanges to quantify the seasonal drivers of Lassa fever transmission. They obtained that seasonal migration
f rats plays a key role in regulating the periodicity of Lassa epidemics. The peak exposure of humans to
ats is shortly after the beginning of the dry season and correlates with the mating period of rodents.

Although some of the above works put an emphasis on the time-changing nature of Lassa transmission
ynamics, so far, no compartmental model with time-dependent parameters has been established. In
2
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this work, we set up and study a compartmental epidemic model for Lassa fever transmission dynamics
considering infected humans with mild or severe symptoms, treatment, human-to-human and rodent-to
human transmission as well as time-dependent parameters. Namely, modelling the annual periodic change
of weather, we introduce time-periodic parameters for rodent birth rate and carrying capacity of the
environment with respect to rodents. To study the dynamics of our time-periodic model, we will apply
the theory initiated in [11–15], later applied in several periodic epidemic models (see, e.g. [16–23]). Here we
adapt these methods to our system with human-to-human and rodent-to-human transmission with a logistic
growth of rodents.

The rest of the paper is structured as follows. In the next section we introduce the time-dependent
mathematical model for Lassa fever transmission dynamics. In Section 3 we study the existence of the
disease-free periodic solution. In Section 4 we calculate the basic reproduction number of our model using
various methods. In Section 5, we show that depending on the basic reproduction number, either the disease-
free periodic solution is globally asymptotically stable or the disease persists in the population. In Section 6
we provide numerical simulations for both scenarios supporting the theoretical results.

2. Seasonal model for Lassa fever transmission

We divide the human population into six compartments: susceptible Sh(t), exposed Eh(t), symptomati-
ally infected Is(t), mildly infected Im(t), treated IT (t), and recovered individuals with temporary immunity
(t). The total size of the human population at any time t is denoted by

Nh(t) = Sh(t) + Eh(t) + Im(t) + Is(t) + IT (t) +R(t).

n individual may proceed from susceptible (Sh) to exposed (Eh) upon contracting the disease. Individuals
n the exposed compartment have no symptoms yet. After the incubation time, an exposed individual moves
ither to the symptomatically infected class (Is) or to the mildly infected class (Im), depending on whether
hat person shows symptoms or not. Infected people from Is may move to the treated compartment (IT ),
ncluding those who need hospital treatment. After the infection period, recovered persons move to the class
.

Fig. 2. Schematic diagram of the LHF transmission among rodents and humans. Red nodes denote infectious, brown nodes denote
non-infectious states. Blue solid arrows demonstrate infection progress, while red dashed arrows represent direction of human-to-human
transmission and rodent-to-rodent transmission. Blue dashed arrows show direction of transmission between humans and rodents. Green
arrows show recruitment rate for humans and maximum growth rate of the rodents. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

The vector population (Mastomys natalensis rat) at time t, denoted by Nr(t), is divided into three
ompartments: susceptible Sr(t), exposed Er(t) and infectious Ir(t), respectively. Thus

N (t) = S (t) + E (t) + I (t).
r r r r

3
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Table 1
Description of parameters of model (1).

Parameters Description

Πh Recruitment rate for humans
d Natural death rates of humans
δs, δT Disease-induced death rates for humans
βm, βs, βT Transmission rates from human-to-human
βhr Transmission rate from human-to-rodent
βrh Transmission rate from rodent-to-human
βr Transmission rate from rodent-to-rodent
ηs, ηT Relative transmissibility of infectious human-to-rodent
θ Proportion of mild infections
γs Progression rate from Is to IT

γm, γT Recovery rates
νh Humans incubation rate
νr Rodents incubation rate
ξ Rate of relapse from R to Sh

Kr Average carrying capacity of the environment for the rodents
Πr Baseline value of rodents birth rate
µ Natural death rates of rodents
b Phase angle (month of peak in seasonal forcing)
Λ Amplitude of seasonality

The transmission dynamics is shown in the flow diagram (see Fig. 2) and our model takes the form

dSh(t)
dt = Πh − βmIm(t) + βsIs(t) + βT IT (t)

Nh(t) Sh(t) − βrh
Ir(t)
Nh(t)Sh(t) − dSh(t) + ξR(t),

dEh(t)
dt = βmIm(t) + βsIs(t) + βT IT (t)

Nh(t) Sh(t) + βrh
Ir(t)
Nh(t)Sh(t) − νhEh(t) − dEh(t),

dIm(t)
dt = θνhEh(t) − γmIm(t) − dIm(t),

dIs(t)
dt = (1 − θ)νhEh(t) − γsIs(t) − (d+ δs)Is(t),

dIT (t)
dt = γsIs(t) − γT IT (t) − (d+ δT )IT (t),

dR(t)
dt = γmIm(t) + γT IT (t) − ξR(t) − dR(t),

dSr(t)
dt = Π̃r(t)

(
1 − Nr(t)

K(t)

)
Nr(t) − βhr

ηsIs(t) + ηT IT (t)
Nh(t) Sr(t) − βr

Ir(t)
Nr(t)Sr(t) − µSr(t),

dEr(t)
dt = βhr

ηsIs(t) + ηT IT (t)
Nh(t) Sr(t) + βr

Ir(t)
Nr(t)Sr(t) − νrEr(t) − µEr(t),

dIr(t)
dt = νrEr(t) − µIr(t),

(1)

here Π̃r(t) and K(t) denote the time-dependent per capita birth rate and maximal carrying capacity of
the Mastomys natalensis rats. In our model we assumed Π̃r(t) and K(t) are continuous, positive ω-periodic
unctions. We denote by Πh and d the human birth and death rate, respectively. There is also an additional
isease-induced death rate, denoted by δs and δT for those in the compartments Is and IT , respectively. The
escription of the model parameters are summarized in Table 1.

. The disease-free periodic solution

.1. Existence of the disease-free ω-periodic solution

In this section, we study the existence and uniqueness of the disease-free periodic solution of system (1).
efine
4
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ϕ =
(
Sh(0), Eh(0), Im(0), Is(0), IT (0), R(0), Sr(0), Er(0), Ir(0)

)
∈ R9

+.

In case of no disease, for the total human population Nh with a positive initial condition ϕ ∈ R9
+, we have

the equation
dNh(t)

dt = Πh − dNh(t), (2)

rom which we obtain
Nh(t) = Nh(0)e−dt + Πh

d
(1 − e−dt). (3)

ith an arbitrary initial value Nh(0). Eq. (3) has a unique equilibrium N∗
h = Πh

d in R+. Consequently,
|Nh(t) −N∗

h | → 0 as t → ∞ and N∗
h is globally attractive on R+.

To identify the disease-free periodic solution of (1), consider

dSr(t)
dt = Π̃r(t)

(
1 − Sr(t)

K(t)

)
Sr(t) − µSr(t), (4)

ith initial condition Sr(0) ∈ R+. Eq. (4) has a unique positive ω-periodic solution

S∗
r (t) = e

∫ t

0
(Π̃r(s)−µ) ds

∫ t

0
Π̃r(τ)
K(τ) e

∫ τ

0
(Π̃r(s)−µ) ds

dτ +
∫ ω

0
Π̃r(τ)
K(τ) e

∫ τ

0
(Π̃r(s)−µ) ds

dτ

e

∫ ω

0
(Π̃r(s)−µ) ds

−1

> 0, (5)

hich is globally attractive in R+. Thus, system (1) has a unique disease-free periodic solution E0 =
S∗

h, 0, 0, 0, 0, 0, S∗
r (t), 0, 0

)
, where S∗

h = Πh
d .

emma 3.1. There is N∗
r = lim supt→∞

K(t)(Π̃r(t)−µ)
Π̃r(t) > 0 such that any forward solution in R9

+ of (1)
nters eventually

ΩN∗
r

:=
{

(Sh, Eh, Im, Is, IT , R, Sr, Er, Ir) ∈ R9
+ : Nh ⩽ N∗

h , Nr ⩽ N∗
r

}
,

nd for each Nr(t) ⩾ N∗
r , ΩN is a positively invariant set w.r.t. (1). Further, it holds that

lim
t→+∞

(Nr(t) − S∗
r (t)) = 0.

roof. From (1), we have

dNr(t)
dt = Π̃r(t)

(
1 − Nr(t)

K(t)

)
Nr(t) − µNr(t)

⩽

(
Π̃r(t) − µ− Π̃r(t)

K(t) Nr(t)
)
Nr(t) ⩽ 0 if Nr(t) ⩾ N∗

r ,

hich implies that ΩN , Nr(t) ⩾ N∗
r , is positively invariant and each forward orbit enters ΩN∗ eventually.

or the second part of the proof, let us assume that z(t) = Nr(t) − S∗
r (t), t ⩾ 0. Then, it follows that

dz(t)
dt = −µz(t),

hich implies that limt→+∞ z(t) = 0. □
5
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4. Basic reproduction numbers and local stability

Based on the method established by Wang and Zhao [14], we demonstrate the local stability of the
disease-free periodic equilibrium E0 of (1) in terms of the basic reproduction number R0.

Linearizing the system (1) at E0, we obtain the equations for exposed and infectious human and rodent
opulations, respectively:

dEh(t)
dt = βmIm(t) + βsIs(t) + βT IT (t)

N∗
h

S∗
h − βrh

Ir(t)
N∗

h

S∗
h − (νh + d)Eh(t),

dIm(t)
dt = θνhEh(t) − γmIm(t) − dIm(t),

dIs(t)
dt = (1 − θ)νhEh(t) − γsIs(t) − (d+ δs)Is(t),

dIT (t)
dt = γsIs(t) − γT IT (t) − (d+ δT )IT (t),

dEr(t)
dt = βhr

ηsIs(t) + ηT IT (t)
N∗

h

S∗
r (t) + βr

Ir(t)
N∗

r

S∗
r (t) − (νr + µ)Er(t),

dIr(t)
dt = νrEr(t) − µIr(t).

Let us introduce the matrix functions F (t) and V (t) of dimension 7 × 7 as

F (t) =

⎡⎢⎢⎢⎢⎣
0 βm

S∗
h

N∗
h

βs
S∗

h
N∗

h
βT

S∗
h

N∗
h

0 βrh
S∗

h
N∗

h
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 βhr

ηs
N∗

h
S∗

r (t) βhr
ηT
N∗

h
S∗

r (t) 0 βr
S∗

r (t)
N∗

r

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎦ ,

V (t) =

⎡⎢⎣
νh+d 0 0 0 0 0
−θνh γm+d 0 0 0 0

−(1−θ)νh 0 γs+d+δs 0 0 0
0 0 −γs γT +d+δT 0 0
0 0 0 0 νr+µ 0
0 0 0 0 −νr µ

⎤⎥⎦ .
Note that F (t) is a non-negative matrix function, while −V (t) is cooperative.

Suppose Z(t, s), t ⩾ s, is the evolution operator of the linear system

dy
dt = −V (t)y. (6)

hus, for s ∈ R, Z(t, s) satisfies the equation

dZ(t, s)
dt = − V (t)Z(t, s), ∀t ⩾ s, Z(s, s) = I,

here I stands for the 6 × 6 identity matrix.
Assume ϕ(s) is the initial distribution of infected, ω-periodic in s. Then, F (s)ϕ(s) provides the rate of new

cases due to those infected who were introduced at time s. For t ⩾ s, the term Z(t, s)F (s)ϕ(s) provides us
the distribution of the infectious individuals who newly became infected at time s and who are still infected
at time t. Therefore,

ψ(t) :=
∫ t

−∞
Z(t, s)F (s)ϕ(s)ds =

∫ ∞

0
Z(t, t− a)F (t− a)ϕ(t− a)da,

gives the distribution of accumulative new infections at t generated by all infected ϕ(s) who were introduced
at any time s ⩽ t.
6
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Let us assume that Cω is the ordered Banach space of ω-periodic functions from R to R6, endowed with
the usual maximum norm ∥ · ∥∞ and introduce the positive cone

C+
ω := {ϕ ∈ Cω : ϕ(t) ⩾ 0, ∀t ∈ R}.

efine the linear next infection operator L : Cω → Cω by

(Lϕ)(t) =
∫ ∞

0
Z(t, t− a)F (t− a)ϕ(t− a)da, ∀t ∈ R, ϕ ∈ Cω. (7)

hen, the basic reproduction number of (1) is R0 := ρ(L), the spectral radius of L [14].
Let W (t, λ) be the monodromy matrix of the linear ω-periodic equation

dw
dt =

(
−V (t) + 1

λ
F (t)

)
w, ∀t ∈ R,

ith parameter λ ∈ (0,∞).
To numerically approximate the basic reproduction number, we will apply the following theorem from [14].

heorem 4.1 ([14, Theorem 2.1]). The following statements are valid.

(i) If ρ(W (ω, λ)) = 1 has a positive solution λ0, then λ0 is an eigenvalue of operator L, and hence R0 > 0.
(ii) If R0 > 0, then λ = R0 is the unique solution of ρ(W (ω, λ)) = 1.

(iii) R0 = 0 if and only if ρ(W (ω, λ)) < 1 for all λ > 0.

.1. Local stability of the disease-free periodic solution

First we recall the following theorem from [14].

heorem 4.2 ([14, Theorem 2.2]). The following statements are valid:

(i) R0 = 1 if and only if ρ(ΦF −V (ω)) = 1.
(ii) R0 > 1 if and only if ρ(ΦF −V (ω)) > 1.

(iii) R0 < 1 if and only if ρ(ΦF −V (ω)) < 1.

As per the above discussion, the following theorem concerns the local stability of the disease-free periodic
solution E0 of (1).

Theorem 4.3. The disease-free periodic solution E0 of (1) is locally asymptotically stable if R0 < 1, whereas
it is unstable if R0 > 1.

Proof. The Jacobian matrix of (1) calculated at E0 is given by.

J(t) =
[

F (t)−V (t) 0
A(t) M

]
,

where

A(t) =
[

0 βm βs βT 0 βrh
0 0 0 0 0 0
0 0 βhr

ηs
N∗

h
S∗

r (t) βhr
ηT
N∗

h
S∗

r (t) 0 βr

]
and M =

[
−d ξ 0
0 −ξ−d 0
0 0 −µ

]
.

According to [24], E0 is LAS if ρ(ΦM (ω)) < 1 and ρ(ΦF −V (ω)) < 1. M is a constant matrix and its
igenvalues are λ1 = −d < 0, λ2 = −ξ − d < 0 and λ3 = −µ < 0. Since λ1, λ2 and λ3 are negative, we have
(ΦM ) < 1. Consequently, the stability of E0 depends on ρ(ΦF −V (ω)). Thus, E0 is locally asymptotically
table if ρ(ΦF −V (ω)) < 1, and unstable if ρ(ΦF −V (ω)) > 1. Hence, we complete the proof by applying
heorem 4.2. □
7
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4.2. The time-average basic reproduction number

Using the general method introduced in [25], we calculate the basic reproduction number of the
autonomous model obtain from (1) by setting the time-varying parameters Π̃r(t) ≡ Πr and K(t) ≡ Kr

o constant.
Substituting the value of S∗

r (t) ≡ S∗
r = Kr

(
Πr−µ
Πr

)
in the disease-free equilibrium for all t ⩾ 0, we obtain

he Jacobian F given by

F =

⎡⎢⎣
0 βm βs βT 0 βrh
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 βhr

ηs
N∗

h
S∗

r βhr
ηT
N∗

h
S∗

r 0 βr

0 0 0 0 0 0

⎤⎥⎦ ,
and the Jacobian V given by

V =

⎡⎢⎣
νh+d 0 0 0 0 0
−θνh γm+d 0 0 0 0

−(1−θ)νh 0 γs+d+δs 0 0 0
0 0 −γs γT +d+δT 0 0
0 0 0 0 νr+µ 0
0 0 0 0 −νr µ

⎤⎥⎦ ,
thus the characteristic polynomial of FV −1 is

λ4 (
λ2 − (Rhh + Rrr)λ+ RhhRrr − RhrRrh

)
= 0, (8)

where

Rhh = νh

d+ νh

(
θβm

γm + d
+ (1 − θ)βs

γs + d+ δs
+ (1 − θ)γsβT

(γs + d+ δs)(γT + d+ δT )

)
,

Rhr = (1 − θ)νhβhrS
∗
r

Πh
d (γs + d+ δs)(d+ νh)

(
ηs + γsηT

γT + d+ δT

)
,

Rrh = βrhνr

µ(µ+ νr) ,

Rrr = βrνr

µ(µ+ νr) .

The characteristic polynomial therefore is the quadratic equation

λ2 − (Rhh + Rrr)λ+ RhhRrr − RhrRrh = 0. (9)

ccording to [25], the basic reproduction number is the largest absolute eigenvalue of FV −1 and therefore,
t is given by the root of the quadratic equation (9),

RA
0 = ρ(FV −1) =

Rhh + Rrr +
√(

Rhh − Rrr

)2 + 4R2
v

2 , (10)

here Rhh, Rrr and Rv =
√

RhrRrh are the basic reproduction numbers of human-to-human transmis-
ion, rodent-to-rodent transmission and vectorial transmission, respectively. From (10) one can see that

Rhh+Rrr+R2
v

RhhRrr+1 > 1 is the necessary and sufficient condition for RA
0 > 1.

To calculate the time-average basic reproduction number, [R0], of the associated non-autonomous system,
e use the following remark.

emark 4.4. For a continuous ω-periodic function g(t), define its average (using the notation presented
in [26]) as

[g] := 1 ∫ ω

g(t) dt.

ω 0

8
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Then, the time-average basic reproduction number is given by

[R0] =
Rhh + Rrr +

√(
Rhh − Rrr

)2 + 4[Rhr]Rrh

2 , (11)

here

[Rhr] = (1 − θ)νhβhr[S∗
r ]

Πh
d (γs + d+ δs)(d+ νh)

(
ηs + γsηT

γT + d+ δT

)
,

[S∗
r ] = [K]

(
[Π̃r] − µ

[Π̃r]

)
.

. Threshold dynamics

In this section, we show the dynamics of our model depending on the basic reproduction number. We
rove the existence of a positive periodic solution of model (1) if the basic reproduction number R0 > 1. In
his case, the disease persists, whereas if the basic reproduction number R0 < 1, then the unique disease-free
quilibrium E0 is globally asymptotically stable and the disease goes extinct.

We will need the following lemma to show the global stability of E0 and the persistence of the disease.

emma 5.1 ([15, Lemma 2.1]). Let µ = 1
ω ln ρ(ΦA(·)(ω)). Then there exists a positive, ω-periodic function

(t) such that eµtv(t) is a positive solution of x′ = A(t)x.

.1. Global stability of the disease-free equilibrium

heorem 5.2. If R0 < 1, then the disease-free periodic solution E0 of (1) is globally asymptotically stable
nd if R0 > 1, then it is unstable.

roof. We realize from Theorem 4.3 that if R0 > 1, then E0 is unstable and if R0 < 1, then E0 is locally
symptotically stable. Consequently, it remains only to show that for R0 < 1, E0 is globally attractive. For
ny ε1, from Lemma 3.1 and Eq. (2), there exists T1 > 0 such that Sr(t) ⩽ S∗

r (t) + ε1, Nr(t) ⩾ S∗
r (t) − ε1

nd Nh(t) ⩾ N∗
h − ε1 for t > T1. Thus, we get

Sh(t)
Nh(t) ⩽

S∗
h

N∗
h − ε1

,
Sr(t)
Nh(t) ⩽

S∗
r + ε1

N∗
h − ε1

and Sr(t)
Nr(t) ⩽

S∗
r + ε1

N∗
r (t) − ε1

.

From (1), we obtain

dEh(t)
dt ⩽

(
βmIm(t) + βsIs(t) + βT IT (t) − βrhIr(t)

) S∗
h

N∗
h − ε1

− (νh + d)Eh(t),

dIm(t)
dt = θνhEh(t) − γmIm(t) − dIm(t),

dIs(t)
dt = (1 − θ)νhEh(t) − γsIs(t) − (d+ δs)Is(t),

dIT (t)
dt = γsIs(t) − γT IT (t) − (d+ δT )IT (t),

dR(t)
dt = γmIm(t) + γT IT (t) − ξR(t) − dR(t),

dEr(t)
dt ⩽ βhr

(
ηsIs(t) + ηT IT (t)

)S∗
r (t) + ε1

N∗
h − ε1

+ βrIr(t)S
∗
r (t) + ε1

N∗
r − ε1

− (νr + µ)Er(t),

dIr(t) = νrEr(t) − µIr(t),
dt
9
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for t > T1. Let Mε1(t) be the 6 × 6 matrix function defined by⎡⎢⎢⎢⎢⎢⎣
−νh−d βm

S∗
h

N∗
h

−ε1
βs

S∗
h

N∗
h

−ε1
βT

S∗
h

N∗
h

−ε1
0 βrh

S∗
h

N∗
h

−ε1
θνh −γm−d 0 0 0 0

(1−θ)νh 0 −γs−d−δs 0 0 0
0 0 γs −γT −d−δT 0 0

0 0 βhrηs
S∗

r +ε1
N∗

h
−ε1

βhrηT
S∗

r +ε1
N∗

h
−ε1

−νr−µ βr
S∗

r +ε1
N∗

r (t)−ε1
0 0 0 0 νr −µ

⎤⎥⎥⎥⎥⎥⎦ .

Consider the following auxiliary system:

dŨ(t)
dt = Mε1(t)Ũ(t), (12)

here Ũ(t) =
(
Ẽh(t), Ĩm(t), Ĩs(t), ĨT (t), Ẽr(t), Ĩr(t)

)
.

Applying Theorem 4.2, it flows that R0 < 1 if and only if ρ(ΦF −V (ω)) < 1. It is obvious that
imε1→0 ΦMε1

(ω) = ΦF −V (ω). As ρ(ΦF −V (ω)) is continuous, we can choose ε1 > 0 small enough such that
(ΦMε1

(ω)) < 1.
From Lemma 5.1, there is an ω-periodic positive function p1(t) such that p1(t)eξ1t is a solution of (12)

nd ξ1 = 1
ω ln ρ(ΦMε1

(ω)) < 0. For any h(0) ∈ R6
+, we can choose n∗ > 0 s.t. h(0) ⩽ n∗p1(0) where

h(t) = (Eh(t), Im(t), Is(t), IT (t), Er(t), Ir(t))T .

pplying the comparison principle [27, Theorem B.1], we obtain h(t) ⩽ p1(t)eξ1t for all t > 0. Therefore, we
et

lim
t→∞

(Eh(t), Im(t), Is(t), IT (t), Er(t), Ir(t))T = (0, 0, 0, 0, 0, 0)T
.

ne can easily find that Nh(t) → N∗
h as t → ∞. Let ε1 > 0, we can find tε1 > 0 such that Im(t) ⩽ ε1 and

IT (t) ⩽ ε1 for all t ⩾ tε1 . Then, the equation for R′(t) of (1) gives dR(t)
dt ⩽ (γm + γT )ε1 − ξR(t) − dR(t), for

arge t. From where R(t) → 0 as t → +∞. Thus, from (5) and the first equation of (1), we obtain that

lim
t→∞

Sh(t) = S∗
h and lim

t→∞
Sr(t) = S∗

r (t),

nd the proof is complete. □

.2. Existence of positive periodic solutions

Define

X :=
{

(Sh, Eh, Im, Is, IT , R, Sr, Er, Ir) ∈ R9
+

}
,

X0 :=
{

(Sh, Eh, Im, Is, IT , R, Sr, Er, Ir) ∈ X :
Eh > 0, Im > 0, Is > 0,
IT > 0, Er > 0, Ir > 0

}
,

and
∂X0 := X \X0.

Let P : R9
+ → R9

+ denote the Poincaré map corresponding to (1), then P is given by

P (x0) = u(ω, x0), for x0 ∈ R9
+,

where u(t, x0) is the unique solution of (1) with initial condition x0 ∈ X. Clearly,

Pm(x0) = u(mω, x0), ∀m ⩾ 0.
10
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Proposition 5.3. The sets X0 and ∂X0 are both positively invariant w.r.t. the flow defined by (1).

roof. Let ϕ ∈ X0 be any initial condition. By solving (1) for all t > 0, we get that

Sh(t) = e

∫ t

0
−(a1(s)+d) ds

[
Sh(0) +

∫ t

0
(
Πh + ξR(t)

)
e

∫ s

0
(a1(r)+d) dr

ds

]
> 0, (13)

Eh(t) = e−(νh+d)t
[
Eh(0) +

∫ t

0 a1(s)Sh(s)e(νn+d)s ds
]
> 0, (14)

Im(t) = e−(γm+d)t
[
Im(0) + θνh

∫ t

0 Eh(s)e(γm+d)s ds
]
> 0, (15)

Is(t) = e−(γm+d+δs)t
[
Im(0) + (1 − θ)νh

∫ t

0 Eh(s)e(γm+d+δs)s ds
]
> 0, (16)

IT (t) = e−(γT +d+δT )t
[
IT (0) + γs

∫ t

0 Is(r)e(γT +d+δT )r dr
]
> 0, (17)

Rh(t) = e−(ξ+d)t
[
R(0) +

∫ t

0 (γsIs(r) + γT IT (r)) e(ξ+d)r dr
]
> 0, (18)

Sr(t) = e

∫ t

0
−(a2(s)+µ) ds

[
Sr(0) +

∫ t

0 Π̃r(s)
(
1 − Nr(s)

K(s)
)
Nr(s)e

∫ s

0
(a2(r)+µ) dr

ds

]
> 0 (19)

Er(t) = e−(νr+µ)t
[
Er(0) +

∫ t

0 a2(s)Sr(s)e(νr+µ)s ds
]
> 0, (20)

Ir(t) = e−µt
[
Ir(0) + νr

∫ t

0 Er(s)e−µs ds
]
> 0, (21)

here

a1(t) = βmIm(t) + βsIs(t) + βT IT (t)
Nh(t) + βrh

Ir(t)
Nh(t) ,

a2(t) = βhr
ηsIs(t) + ηT IT (t)

Nh(t) + βr
Ir(t)
Nr(t) .

Thus, X0 is a positively invariant set. Since X is also positively invariant and ∂X0 is relatively closed in X,
t gives ∂X0 is positively invariant. □

emma 5.4. If R0 > 1, then there exists a σ > 0 such that for any ϕ ∈ X0 with ∥ϕ− E0∥ ⩽ σ, we have

lim sup
m→∞

d (Pm(ϕ), E0) ⩾ σ.

Proof. We recognize from Theorem 4.2 that ρ(ΦF −V (ω)) > 1 if R0 > 1. Then, we can select κ > 0 small
enough such that we have ρ(ΦF −V −Mκ(ω)) > 1, where Mκ(t) is the 6 × 6 matrix function defined by⎡⎣ 0 βmκ βsκ βT κ 0 βrhκ

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 βhrηsκ βhrηT κ 0 βrκ
0 0 0 0 0 0

⎤⎦ .
Using the continuous dependence of the solutions on initial values, we find a σ = σ(κ) > 0 such that for

ll ϕ ∈ X0 with ∥ϕ− E0∥ ⩽ σ, it holds that

∥u(t, ϕ) − u(t, E0)∥ ⩽ κ, for 0 ⩽ t ⩽ ω.

We further claim that
lim sup
m→∞

d (Pm(ϕ), E0) ⩾ σ. (22)

By contradiction suppose that (22) does not hold. Then

lim sup d (Pm(ϕ), E0) < σ, (23)

m→∞

11
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for some ϕ ∈ X0. Without loss of generality, we may assume

d (Pm(ϕ), E0) < σ, ∀m ≥ 0.

hen, from the above discussion, we have that

∥u(t, Pm(ϕ) − u(t, E0))∥ < σ, ∀m ≥ 0, t ∈ [0, ω] .

or any t ⩾ 0, let t = mω+ t1, where t1 ∈ [0, ω) and m = [ t
ω ], which is the largest integer less than or equal

o t
ω . Then, we get

∥u (t, ϕ) − u (t, E0) ∥ = ∥u (t1, Pm(ϕ)) − u(t1, E0)∥ < σ,

or all t ⩾ 0, which implies that

Sh(t)
Nh(t) ⩾

S∗
h

N∗
h

− κ,
Sr(t)
Nh(t) ⩾

S∗
r

N∗
h

− κ and Sr(t)
Nr(t) ⩾

S∗
r (t)
N∗

r

− κ.

Then for ∥ϕ− E0∥ ⩽ σ, we obtain

dEh(t)
dt ⩾ (βmIm(t) + βsIs(t) + βT IT (t) − βrhIr(t))

(
S∗

h

N∗
h

− κ

)
− (νh + d)Eh(t),

dIm(t)
dt = θνhEh(t) − γmIm(t) − dIm(t),

dIs(t)
dt = (1 − θ)νhEh(t) − γsIs(t) − (d+ δs)Is(t),

dIT (t)
dt = γsIs(t) − γT IT (t) − (d+ δT )IT (t),

dEr(t)
dt ⩾ βhr (ηsIs(t) + ηT IT (t))

(
S∗

r

N∗
h

− κ

)
+ βrIr(t)

(
S∗

r

N∗
r

− κ

)
− (νr + µ)Er(t),

dIr(t)
dt = νrEr(t) − µIr(t).

Next we consider the auxiliary linear system

dÛ(t)
dt =

(
F (t) − V (t) −Mκ(t)

)
Û(t), (24)

here Û(t) =
(
Êh(t), Îm(t), Îs(t), ÎT (t), Êr(t), Îr(t)

)
.

Now we have that ρ(ΦF −V −Mκ(ω)) > 1. Again, we have from Lemma 5.1 that there exists a positive,
-periodic function p2(t) such that h(t) = eξ2tp2(t) is a solution of (24) and ξ2 = 1

ω ln ρ(ΦF −V +Mκ(ω)) > 0.
et t = nω and n be non-negative integer, we obtain

h(nω) = enωξ2p2(nω) →
(
∞,∞,∞,∞,∞,∞

)T
.

For any h(0) ∈ R6
+, we can choose a real number n0 > 0 such that h(0) ⩾ n0p2(0) where

h(t) = (Eh(t), Im(t), Is(t), IT (t), Er(t), Ir(t))T .

pplying the comparison principle [27, Theorem B.1], we obtain h(t) ⩾ p2(t)eξ2t for all t > 0, which implies
hat

lim
t→∞

(
Eh(t), Im(t), Is(t), IT (t), Er(t), Ir(t)

)T =
(
∞,∞,∞,∞,∞,∞

)T
.

This leads to a contradiction that completes the proof. □
12
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Theorem 5.5. Assume that R0 > 1. Then system (1) has at least one positive periodic solution and there
xists an ε > 0 such that

lim inf
t→∞

(
Eh(t), Im(t), Is(t), IT (t), R(t), Er(t), Ir(t)

)T
⩾

(
ε, ε, ε, ε, ε, ε, ε

)T
,

or all ϕ ∈ X0.

roof. First, we prove that P is uniformly persistent with respect to (X0, ∂X0), as from this, applying [28,
heorem 3.1.1], it follows that the solution of (1) is uniformly persistent with respect to (X0, ∂X0).
From Proposition 5.3, we have that both X and X0 are positively invariant and ∂X0 is relatively closed

n X. Furthermore, from Lemma 3.1 it follows that system (1) is point dissipative. Let us introduce

M∂ =
{
x0 ∈ ∂X0 : Pm(x0) ∈ ∂X0, ∀m ⩾ 0

}
,

here x0 = ϕ. We will apply the theory developed in [28] (see also [15, Theorem 2.3]). In order to do so, we
rst show that

M∂ = {(Sh, 0, 0, 0, 0, 0, Sr, 0, 0) : Sh ⩾ 0, Sr ⩾ 0} . (25)
Let us note that M∂ ⊇ {(Sh, 0, 0, 0, 0, 0, Sr, 0, 0) : Sh ⩾ 0, Sr ⩾ 0}. It suffices to prove that M∂ ⊂
{(Sh, 0, 0, 0, 0, 0, Sr, 0, 0) : Sh ⩾ 0, Sr ⩾ 0}, i.e., for arbitrary initial condition ϕ ∈ ∂X0, Eh(nω) = 0 or
Im(nω) = 0 or Is(nω) = 0 orIT (nω) = 0 or R(nω) = 0 or Er(nω) = 0 or Ir(nω) = 0, for all n ⩾ 0.

Assume by contradiction the existence of an integer n1 ⩾ 0 for which Eh(n1ω) > 0, Im(n1ω) > 0,
Is(n1ω) > 0, IT (n1ω) > 0, R(n1ω) > 0,Er(n1ω) > 0 and Ir(n1ω) > 0. Then, by putting t = n1ω into the
place of the initial time t = 0 in (13)–(21), we get that Sh(t) > 0, Eh(t) > 0, Im(t) > 0, Is(t) > 0, IT (t) > 0,
R(t) > 0, Sr(t) > 0, Er(t) > 0, Ir(t) > 0. This is in contradiction with the positive invariance of ∂X0.

By Lemma 5.4, P is weakly uniformly persistent w.r.t. (X0, ∂X0). Lemma 3.1 guarantees the existence
of a global attractor of P . Then E0 is an isolated invariant set in X and W s(E0) ∩X0 = ∅. Each solution in
M∂ tends to E0 and E0 is clearly acyclic in M∂ . By [28, Theorem 1.3.1 and Remark 1.3.1], we can deduce
that P is uniformly (strongly) persistent w.r.t. (X0, ∂X0). Hence, there exists an ε > 0 such that

lim inf
t→∞

(
Eh(t), Im(t), Is(t), IT (t), R(t), Er(t), Ir(t)

)T
⩾

(
ε, ε, ε, ε, ε, ε, ε

)T
,

for all ϕ ∈ X0. By [28, Theorem 1.3.6], P has a fixed point ϕ̄ ∈ X0, and hence system (1) has at least one
periodic solution u(t, ϕ̄) with

ϕ̄ =
(
S̄h(0), Ēh(0), Īa(0), Īa(0), Īs(0), R̄h(0), S̄r(0), Ēr(0), Īr(0)

)
∈ X0.

Now, let us prove that S̄h(0) and S̄r(0) are positive. If S̄h(0) = 0 = S̄r(0), then we obtain that S̄h(0) > 0
and S̄r(0) > 0 for all t > 0. However, using the periodicity of solution, we have S̄h(0) = S̄h(nω) = 0, and
S̄r(0) = S̄r(nω) = 0, that is a contradiction. □

6. A case study — Lassa fever in Nigeria 2017–2020

In this section, we use our model to study the spread of Lassa fever in Nigeria during the epidemic in
November 2017 to May 2020. From Section 5, we see that R0 is a threshold parameter for the persistence
of the disease in the population (see Theorems 5.2 and 5.5). Simulation results are provided to demonstrate
that our model with periodic parameters is well aligned with seasonal fluctuation data.

The functions Π̃r(t) and K(t) are assumed to be time-periodic with one year as a period and, following
e.g. [29,30], they are supposed to be of the form

Π̃r(t) = Πr ·
(
a+ sin( 2π(t+b)

p )
)

and K(t) = Kr ·
(

1 − Λ cos( 2π(t+b)
p )

)
,

here p is period length, a is free adjustment parameter, Λ is the amplitude of seasonality, b is phase angle
nd (Πr,Kr) are the (constant) baseline values of the corresponding time-dependent parameters.

Fig. 3 shows the weekly confirmed cases of 2017–2020 Lassa outbreak in Nigeria [31].

13
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Fig. 3. Confirmed number of cases reported of the November 2017–May 2020 Lassa fever epidemic in Nigeria [31].

Fig. 4. Fitting the model to the data for the 2017–2020 Lassa outbreaks in Nigeria with parameter values in Table 2 and initial
condition (Sh, Eh, Im, Is, IT , R, Sr, Er, Ir)(0) = (2 × 108, 40, 49, 2, 20, 14 × 103, 5 × 108, 106, 103).

6.1. Parameter estimation for Nigeria

We used Latin Hypercube Sampling, a sampling tool applied in statistics to quantify simultaneous
variation of many parameter values (see, e.g., [34]), as a way to estimate the parameters providing the best
fit. The method consists of generating a representative sample set for all parameters shown in Table 2 from
parameter ranges obtained from literature and the World Bank website [32] as shown in Table 2. Then the
solutions of model (1) with the specified parameters value are determined numerically for all elements of
this representative sample set. Finally, the least squares method is used to get the best fit.

Fig. 4 shows model (1) fitted to data from Nigeria [31]. Our model provides a reasonably good fit,
generating the three peaks of Lassa fever happened in the last three seasons in Nigeria.

Fig. 5 shows the long-term behaviour of infectious humans and rodents with the best fit parameters given
in Table 2 (see baseline). The results indicate that Lassa fever in Nigeria will persist and show periodic
fluctuations in the coming years unless additional measures are taken.

6.2. Long-term behaviour

We compute the basic reproduction R0 numerically by using the method developed in [26, Section 2].
By Theorem 5.2, we know that the disease will die out if R0 < 1. We obtain R0 = 0.7165 < 1 with the
set of parameter values in Table 2 (see Extinction). In this case, the long-term behaviours of the infectious
14
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a

Table 2
Baseline values, ranges, units and values for extinction and persistence of model (1) parameters.

Parameter Baseline Range Units Value for Source

Extinction Persistence

Nh 2 × 108 – Persons 2 × 108 2 × 108 [32]
Πh 10,000 – Persons day−1 10,000 10,000 [32]
d 0.00005 – Day−1 0.00005 0.00005 [32]
δs 0.485 0.1–0.5 Day−1 0.201 0.201 [8]
δT 0.269 0.1–0.5 Day−1 0.224 0.224 [8]
βm 0.0637 0.03–0.5 Day−1 0.181 0.181 [8,33]
βs 0.221 0.03–0.5 Day−1 0.275 0.367 [8,33]
βT 0.206 0.03–0.5 Day−1 0.259 0.259 [8,33]
βhr 0.259 0.03–0.5 Day−1 0.242 0.242 [8]
βrh 0.0296 0.1–0.8 Day−1 0.216 0.373 [8]
βr 0.052 0.005–0.4 Day−1 0.007 0.02 [8,29]
ηs 0.238 0.1–0.5 Day−1 0.392 0.392 Assumed
ηT 0.319 0.1–0.5 Day−1 0.344 0.344 Assumed
θ 0.815 0.7–0.9 Day−1 0.802 0.802 [32]
γm 0.108 0–1 Day−1 0.433 0.433 [8]
γs 0.024 0.001–0.025 Day−1 0.0123 0.0123 [8]
γT 0.446 0–1 Day−1 0.256 0.256 [8]
νh 0.528 0.1–1 Day−1 0.515 0.515 [8,29]
νr 0.32 0.1–1 Day−1 0.299 0.299 [8,29]
ξ 0.00578 0.0035–0.03 Day−1 0.00578 0.00578 [8]
Πr 0.172 – – 0.2 0.146 Assumed
µ 0.003 0.001–0.006 Day−1 0.005 0.006 [8,29]
Kr 20,000 – – 198,000 342,000 Assumed
a 0.31 0–1 – 0.31 0.31 Assumed
Λ 0.31 0–1 – 0.31 0.31 [29]
b 134.8 0–365 – 249 163.5 [29]

Fig. 5. The long-term dynamic behaviour of the model (1) variables with parameter values in Table 2 (see baseline).

humans and rodents are shown in Fig. 6, which implies that the unique disease-free equilibrium E0 is globally

symptotically stable when R < 1.
0

15
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p

Fig. 6. Extinction of Lassa fever for R0 = 0.7165 < 1 with parameters given in Table 2 (see Extinction).

Fig. 7. Uniform persistence of Lassa fever for R0 = 3.2678 > 1 with parameters given in Table 2 (see Persistence).

By Theorem 5.5, system (1) has a positive ω-periodic solution if R0 > 1. Fig. 7 illustrates the uniform

ersistence of the disease when R0 = 3.2678 > 1 with the set of parameter values in Table 2 (see Persistence).

These simulations correspond to our theoretical results.16
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Fig. 8. The number sympatrically infected humans with three different values of in (a) rodent birth rate (Πr), in (b) human-to-human
ransmission rate (βs) and in (c) rodent-to-rodent transmission rate (βr) with parameter values are given in Table 2.

.3. Parameter changes for Nigeria

In this study, one of our core concerns was to see what changes in the parameters might trigger a periodic
eappearance of the epidemic. Since we have a large number of parameters, it is not easy to rigorously
etermine which of the parameters play the most important role in the variation of the dynamics, so we are
ust attempting to explain the possible changes through a few examples.

Numerically, with the same set of parameter values used in the extinction case (see Fig. 6) except human-
o-human transmission (βs) and the rodent-related parameters (βrh, βr,Πr, µ,Kr), we calculated the value
f the basic reproduction number R0 = 3.2678 > 1, i.e. we increased human-to-human, rodent-to-human
nd rodent-to-rodent transmission rates, rodent death rate and maximal carrying capacity of rodents, while
odent birth rate was decreased. Accordingly, it can be seen that the disease compartments are persistent
ith these parameters, and the epidemic becomes endemic in the population periodically recurring annually

see Fig. 7).
For a further illustration to explain the impact of parameter changes on the spread of Lassa fever, we

lotted the solution of our model with three different values for a rodent birth rate (Πr), human-to-human
ransmission rate (β ) and rodent-to-rodent transmission rate (β ) in Fig. 8. As is observed, the number of
s r

17
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Fig. 9. The contour plot of the time-average basic reproduction number, [R0] in (a) and the basic reproduction number, RA
0 of the

utonomous model in (b), as a function of maximal carrying capacity of the rats (Kr) and in a) human-to-human transmission rate
βs), b) rodent-to-human transmission rate (βrh) and c) human-to-rodent transmission rate (βhr).

ymptomatically infected people increases by raising any term of Πr or βs or βr, and the disease becomes
ecurring periodically every year.

.4. Sensitivity analysis of R0

In any given time, formula (10) gives us with the basic reproduction number, RA
0 , of the associated

utonomous system by substituting the parameter values in it, along with the value of the time-dependent
arameters at that time. Moreover, formula (11) provides us the time-average basic reproduction number,
R0], of the associated non autonomous system which can be calculated using the notation in Remark 4.4.

In Fig. 9, we plot the time-average basic reproduction number [R0] (see Fig. 9(a)) and the basic
eproduction number RA

0 (see Fig. 9(b)), as a function of maximal carrying capacity of the rodents (Kr),
nd human-to-human transmission rate (βs), rodent-to-human transmission rate (βrh) and human-to-rodent
ransmission rate (βhr). The rest of the parameters are set as obtained in the fitting of symptomatically
nfected cases in Table 2 (see baseline). As can be observed, both reproduction numbers increase by increasing
he transmission rates βs, βrh and βhr. Increasing rodent birth rates also increase reproduction numbers.
lthough human-to-human and human-to-rodent transmission rates have a notable impact on the increase

n both reproduction numbers, the figure indicates that rodent control is a significant factor in Lassa’s spread
nd that vector control might be necessary to suppress the disease.

In Fig. 10, we plot the curves of the time-average basic reproduction number [R0], and the basic
eproduction number RA

0 with respect to maximal carrying capacity of rodents (Kr), rodents birth rate
Πr), human-to-human transmission rate (βs), human-to-rodent transmission rate (βhr), rodent-to-human
ransmission rate (βrh) and rodent-to-rodent transmission rate (βr), respectively. The calculations show that
R ] ⩾ RA, suggesting that RA provides an underestimation of the risk of disease transmission.
0 0 0
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Fig. 10. The curves of the time-average basic reproduction number [R0] and the basic reproduction number of the autonomous model
RA

0 versus in a) maximal carrying capacity of rodents (Kr), b) rodents birth rate (Πr), c) human-to-human transmission rate (βs), d)
uman-to-rodent transmission rate (βhr), e) rodent-to-human transmission rate (βrh) and f) rodent-to-rodent transmission rate (βr).

We mention that numerous papers have results on under- and overestimation of the average basic
eproduction number. For instance, it was shown in [14] that R0 > [R0], while in [21] the authors gave
n example with R0 < [R0]. In general, R0 ̸= [R0] and more details can also be found in [14,35].

. Discussion

We formulated and analysed a periodic LHF transmission model between humans and rodents that
nvolves the seasonal effects (by including periodic coefficients), human-to-human transmission and the
ertical transmission of the virus in rodents. By using the theory presented in [14], we derived and
umerically computed the basic reproduction number R0. It is demonstrated that the global dynamics is
etermined by the basic reproduction number R0. If R0 > 1, then the disease is uniformly persistent and
here exists at least one positive periodic solution, while the disease-free periodic solution E0 is globally
symptotically stable and the disease dies out if R < 1. Our numerical simulations show that there is only
0
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one positive periodic solution which is globally asymptotically stable in the case where R0 > 1 (see Fig. 7)
nd the disease dies out if R0 < 1 (see Fig. 6).

Numerically, we have computed all constant and periodic parameters by using some published data and
studied LHF in Nigeria. The fitted curve based on our model reflects the seasonal fluctuation and coincide
in quite well with the reported data (see Fig. 4). The reproduction numbers were estimated as a function of
the parameters Kr,Πr, βs, βhr, βrh and βr. The calculations show that the basic reproduction number RA

0
nderestimates the disease transmission risk (see Fig. 10).

Our model enables us to evaluate what kind of parameter changes might trigger a periodic recurrence
f LHF. Using numerical simulations, we observed that the human-to-human transmission rate has a
ubstantial impact on the prevalence of the disease, but the most significant factors in Lassa’s periodic
ecurrence are the rodent related parameters.

The simulation results indicate that, if no additional intervention is taken, Lassa will persist and exhibit
eriodic fluctuation in the next few years in Nigeria. These simulations are compatible with our analytic
esults, and the model can be also used to study the Lassa fever transmission in other countries of West
frica such as Benin, Ghana, Guinea, Liberia, Mali, Sierra Leone, and Togo so long as the data are accessible.
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